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Abstract: Stable, efficient and lossless fruit picking has always been a difficult problem, perplexing
the development of fruit automatic picking technology. In order to effectively solve this technical
problem, this paper establishes a multi-objective trajectory model of the manipulator and proposes
an improved multi-objective particle swarm optimization algorithm (represented as GMOPSO). The
algorithm combines the methods of mutation operator, annealing factor and feedback mechanism
to improve the diversity of the population on the basis of meeting the stable motion, avoiding the
local optimal solution and accelerating the convergence speed. By adopting the average optimal
evaluation method, the robot arm motion trajectory has been testified to constructively fulfill the
picking standards of stability, efficiency and lossless. The performance of the algorithm is verified
by ZDT1~ZDT3 benchmark functions, and its competitive advantages and disadvantages with
other multi-objective evolutionary algorithms are further elaborated. In this paper, the algorithm
is simulated and verified by practical experiments with the optimization objectives of time, energy
consumption and pulsation. The simulation results show that the solution set of the algorithm is
close to the real Pareto frontier. The optimal solution obtained by the average optimal evaluation
method is as follows: the time is 34.20 s, the energy consumption is 61.89 ◦/S2 and the pulsation is
72.18 ◦/S3. The actual test results show that the trajectory can effectively complete fruit picking, the
average picking time is 25.5 s, and the success rate is 96.67%. The experimental results show that
the trajectory of the manipulator obtained by GMOPSO algorithm can make the manipulator run
smoothly and facilitates efficient, stable and nondestructive picking.

Keywords: fruit picking; trajectory planning; particle swarm optimization; multi-objective optimization

1. Introduction

China has been the world’s largest fruit producer, and its output of fruit varieties
has ranked at the top globally. Nonetheless, in the scenario of a complicated orchard
environment, the whole process of an intelligent picking operation is still difficult to
tackle [1]. The intelligent fruit picking operation is mainly divided into three steps: (1)
Locating the target fruit by using the visual system; (2) Automatic path planning combined
with target positioning information; (3) Motion planning combined with the planned path
and completing picking. In the past few decades, many researchers have concentrated
on target positioning and path planning, yet have neglected stable and reliable motion
planning, the premise for ensuring the completion of a picking operation. Fruit picking
without motion planning will cause instability of speed and acceleration in the picking
process, a high picking failure rate and is unable to achieve efficient and stable picking.
Therefore, in order to achieve efficient and stable picking, the trajectory planning of the
robot needs to be deeply studied on the basis of a collision free path.
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Due to the manipulator’s operating space and its own characteristics, the planned joint
trajectory is supposed to meet the requirements of smoothness and continuity. During the
picking process, the manipulator is expected to complete the picking task with low energy
consumption in a short time in order to obtain high work efficiency. Accordingly, after
obtaining the executable motion trajectory, the trajectory needs to be further optimized [2–4].
The optimization of the motion trajectory is to be realized in three main aspects: time,
energy consumption and pulsation. Time optimization means that when the kinematic and
dynamic constraints are met, the manipulator completes the specified task in the shortest
time to enhance the work efficiency of the system. Energy consumption optimization
means that the robot completes the specified task with the lowest energy consumption
and prolongs the working time of the robot. Pulsation optimization refers to reducing the
changes of acceleration of the robot under the condition of meeting various constraints,
thus alleviating the impact on the joints and prolonging the service term of the robot. In
addition, by optimizing the trajectory of the manipulator, the accuracy of the trajectory
tracking of the impact arm can be reduced.

Researchers have conducted in-depth studies on the trajectory optimization of the
manipulator. For the multi-objective optimization problems, such as time, energy consump-
tion and pulsation, the multi-objective optimization method is mainly adopted. The specific
optimization algorithms include: the weighting coefficient method, the multi-objective
genetic algorithm and the multi-objective particle swarm optimization algorithm, and so
forth [5].

Shen Yue used the quintic non-uniform B-spline curve interpolation method to plan
the trajectory of the manipulator joint space, combined with the weighting coefficient
method and the particle swarm optimization method to obtain the trajectory with a short
running time and low pulsation [6]. Honggang Duan et al. [7] proposed a trajectory
planning method based on execution time, acceleration and jerk for the glass-handling
robot. The minimum objective function is established by the weighting coefficient method,
consisting of the weighted sum of the square of the integral of the execution time, the
integral of the acceleration, and the integral of the jerk. The obtained trajectory not only
makes the robot run smoothly, but also improves the working efficiency of the robot. Xu
Haili et al. [8] proposed an optimal time and optimal energy trajectory optimization method
for industrial robots. The motion trajectory of the robot is regarded as the connection of
key points in the robot space. The key points are fitted and connected by cubic polynomial
and iterated by the weighting coefficient method, so as to optimize the overall motion time
and energy consumption of the robot [8].

R. Saravanan takes the energy consumption and smoothness of the joint trajectory
curve as optimization objectives, and uses a non-dominated sorting genetic algorithm
II(NSGA-II) to optimize the trajectory of an industrial robot with load, but only for point-
to-point tasks in joint space [9]. Qi Ruolong et al. [10,11] studied the trajectory planning of
a space robot, transformed the trajectory planning problem of the space manipulator into
a multi-objective optimization problem, resolving it by way of a genetic algorithm, and
establishing the evaluation function of the manipulator motion angle, maximum torque,
total motion time and other parameters through the weighting coefficient method, and
ultimately came up with a collision free trajectory with short motion time. Wang Huifang
used a high-order B-spline curve to construct the continuous trajectory of manipulator
joint space. Taking short motion time, small pulsation and low energy consumption as
the optimization objectives, NSGA-II was used to solve the multi-objective optimization
problem of manipulator trajectory, and the Pareto optimal solution set was obtained. It
was studied and analyzed on a six degrees of freedom robot and was obtained with good
optimization results [12]. Wang et al. interpolated the motion path of a micro motion
parallel robot by using a 7th degree B-spline curve, and the motion trajectory obtained was
stable and continuous [13].

Traditional optimization methods, such as the weighting coefficient method, mostly
adopt different strategies to decompose the multi-objective problem into a single objective
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problem respectively. Then, a single objective algorithm is adopted to complete the opti-
mization, which depends on prior knowledge and is limited by the shape of the Pareto
front. Especially when the multi-objective problem presents complex characteristics such as
nonlinearity and high dimension, the traditional methods are inadequate to be employed
for a significant optimization effect, and are even unable to attain the optimal solution. The
NSGA-II algorithm has complex operation and low efficiency, while the multi-objectives
particle swarm optimization (MOPSO) algorithm has stronger searching ability, which is
conducive to obtaining the optimal solution in the sense of multi-objectives. It is achieved
by the whole solution set population, and multiple non-inferior solutions are searched
simultaneously in parallel, leading to fast convergence speed and high efficiency. Its coding
method has been proven to be simpler than NSGA-II and has good applicability. The
algorithm is simple and easy to implement, with a few parameters to be adjusted, yet no
gradient information is required. It is suitable for dealing with various types of objective
functions and constraints, particularly in engineering applications [14–16].

In summary, due to the complex orchard environment, the ultimate goal of a stable,
efficient and nondestructive picking manipulator trajectory has been difficult to achieve. In
response to the existing issue, aiming at tackling the above-mentioned problems, this paper
thoroughly studies the trajectory optimization of the picking manipulator, and proposes an
improved multi-objective optimization algorithm. By introducing non-dominated sorting,
crowding distance, feedback mechanism, annealing factor and mutation strategy, the
convergence and diversity of the MOPSO algorithm are perfected. The main research
contents are as follows: (1) A B-spline curve is used for trajectory planning to obtain a
smooth manipulator trajectory; (2) Combined with the idea of multi-objective optimization,
multiple performance indexes of the manipulator trajectory are optimized at the same time,
and the Pareto frontier of the manipulator trajectory planning is obtained. The average
optimal evaluation method is used to select the trajectory planning scheme; (3) The above
theoretical analysis is verified by practical experiments to prove the effectiveness of the
algorithm. Through the research, the stability, efficiency and nondestructiveness of the
picking process are effectively promoted, and it provides a theoretical and practical research
basis for intelligent picking under complex orchard conditions.

2. Kinematic Model and Path Planning of the Picking Manipulator
2.1. Kinematic Model of the Picking Manipulator

This paper takes the 6-DOF series manipulator, produced by Guangdong Ruobo
Intelligent Co., Ltd., as the research object, whose joints are rotating joints, and the sixth
joint is connected with the end effector to grasp the target fruit. In order to accurately
describe the pose of the manipulator, the D-H rule is applied to determine the coordinate
system position of the connecting rod, as shown in Figure 1.

2.2. Path Planning

Trajectory planning needs to be based on collision free path planning. For the purpose
of attaining the collision free path, combined with the basis of previous research [17], this
paper uses the optimized rapidly-exploring random tree (RRT) algorithm to generate a
path. The optimized RRT algorithm introduces the idea of target gravity into the basic RRT
algorithm, increasing the path search speed. It combines the improved methods such as
the genetic algorithm and the smoothing method to smooth and optimize the path. By
applying this algorithm, a collision free and short distance path can be quickly obtained
to provide a path basis for trajectory planning. The path planning flow chart is shown in
Figure 2.
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3. Trajectory Optimization of Manipulator Based on Multi-Objective Particle Swarm
Optimization Algorithm
3.1. B-Spline Parameterization

In order to acquire information about the speed, acceleration and jerk of path points,
B-spline curve interpolation is carried out for the path points obtained by the above path
planning method. Because the B-spline curve has local support, changing the i-th control
vertex Pj of the curve only affects the k curves related to the vertex, and the rest of the
curves will not be influenced. In accordance with this principle, the speed, acceleration and
jerk among path points can be configured arbitrarily, so that the motion trajectory of the
manipulator has stronger adaptability [18,19]. Each path point is connected by a section of
the B-spline curve, and each section of the B-spline curve is connected smoothly to ensure
that the trajectory smoothness requirements are met.

In this paper, a quintic B-spline curve is used to interpolate the joint path to construct
the motion trajectory of the manipulator. To interpolate the path with B-spline function,
the control vertices of the B-spline curve need to be determined through the path points.
The essence of determining the control vertices is to calculate the vertices of the control
polygon according to the path point P. The robot joint path point sequence is expressed as
(ti, Pi) i = 0, 1, 2, . . . , N. The starting time is t0 and the ending time is tf. The i-th quintic
B-spline curve is shown in Equation (1). In order to construct the motion trajectory of the
manipulator, B-spline curve interpolation is carried out for the known n path points, and
n − 1 quintic B-spline curves are used to connect, so that the starting point and end point
of each B-spline curve coincide with the path points. Since the motion at the initial position
and the end position is known, n + 5 control vertices Q0, Q1, . . . , Qn+4 can be obtained.

Pi,5 =
5

∑
j = 0

Qi+jNj,5(u), (1)

where P is the path point, Q is the control vertex of the B-spline curve, and u is the node
vector; Nj,5 (u) is a quintic normalized B-spline basis function, which can be recursively
obtained by the Deboor–Cox formula.

With reference to the above, the first point and the end point are generally consistent
with the first data point and the end data point (that is Q0 = P0, Qn+4 = Pn) when inversely
calculating the control vertex. Therefore, the repeatability at both ends of the curve is taken
as 6. Pi point corresponds to the node value u5 +i, so the B-spline curve corresponds with
the node vector U = [U0, U1, . . . , UN+10]. The cumulative chord length parameterization
method is used to normalize the time node to obtain the node vector value [20].

3.2. Multi-Objective Trajectory Optimization of Manipulator
3.2.1. Constraints and Optimization Objectives of Manipulator Trajectory

In order to improve the picking efficiency, the B-spline curve is used to interpolate the
path of the manipulator to obtain a smooth motion trajectory with time parameters. On this
basis, the trajectory is further optimized to enable the trajectory to meet the kinematic and
dynamic constraints of the manipulator and meet the requirements of different performance
indexes in the picking task. Combined with the kinematic characteristics of the manipulator,
the picking efficiency, energy consumption and pulsation are defined as objective functions
respectively to establish a multi-objective trajectory optimization model [21].

To ensure the normal operation of the manipulator, the trajectory of the manipulator
must be within the kinematic and dynamic constraints. The specific contents need to meet
the following three points.

(1) Position constraint: the position constraint is that the trajectory curve must pass
through each position point of the given path to ensure that the manipulator will not
collide with obstacles during movement;
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(2) Joint limit constraint: the rotation angle range of each joint of the manipulator is
certain, and the position curve of the manipulator generated by interpolation cannot
exceed the rotation angle range of each joint;

(3) Speed constraint and acceleration constraint: the speed curve and acceleration curve
of the manipulator joint shall not only ensure continuity, but also meet the speed
constraint and acceleration constraint of the manipulator. The constraint values are
shown in Table 1. Assuming that the maximum speed, maximum acceleration and
maximum jerk of joint motion are vm, am and jerm respectively, the trajectory of each
joint shall meet the kinematic constraint Equation (2):

|v(t)| ≤ vm, |a(t)| ≤ am, |jerk(t)| ≤ jerm m= 1, 2, . . . , 6, (2)

where m represents the joint number.

Table 1. Joint motion range and constraints.

Joint Number Angle Range/(◦) Angular Speed
Constraints/(◦/s)

Angular
Acceleration

Constraints (◦/s2)

1 −165~165 156 400
2 −55~145 140 400
3 −165~170 156 400
4 −185~185 270 600
5 −120~120 180 600
6 −350~350 430 600

In the light of the characteristics of the convex hull of the B-spline curve, the constraints
in Equation (2) can be transformed into the control vertices of the B-spline curve of each
joint, only under the following conditions:

max
∣∣∣Q1

km

∣∣∣ ≤ vm (3)

max
∣∣∣Q2

km

∣∣∣ ≤ am (4)

max
∣∣∣Q3

km

∣∣∣ ≤ jerm, (5)

where k represents the k-th control vertex of joint speed, acceleration and the acceleration
curve.

On the premise of meeting the above constraints, the motion time, pulsation and
energy consumption of the manipulator are optimized to give full play to the performance
of the robot.

(1) Time

In order to improve the operation efficiency of the robot, the operation time of the
robot is optimized to minimize the time for the robot to move along the specified trajectory
under the condition of meeting various constraints. Definition formula (6):

S1 = min

(
n−1

∑
i = 1

∆ti

)
= min

[
n−1

∑
i = 1

(ti+1 − ti)

]
, (6)

where S1 is the total operation time of the manipulator. The smaller S1 is, the higher the
working efficiency of the manipulator is;

n is the number of path points;
i is the number of path points.
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(2) Energy consumption

The working environment of the picking robot is mostly in the field. Reducing energy
consumption can effectively improve the continuous working time of the robot when the
robot lacks energy supply. The energy consumption expression is:

S2 = min

 M

∑
m = 1

√
1
Ti

∫ Ti

0

(
aj(t)

)2dt

, (7)

where S2 is an index used to measure the energy consumption of the joint. The smaller S2
is, the less energy will be consumed by the joint; a(t) is the acceleration curve of the joint.

(3) Pulsation

During the movement of the robot, the sudden change of acceleration will have a
great impact on the body of the manipulator, reducing the tracking accuracy and destroy
the mechanical structure. Therefore, non-abrupt acceleration is the core requirement of
trajectory planning. Optimizing the jerk cure of the robot can reduce the impact, promote
the accuracy of the motion trajectory and the target trajectory, and further reduce the contact
force among the internal components of the manipulator, thus alleviating the vibration
intensity during resonance. The pulsation optimal expression is defined as Equation (8):

S3 = min

 M

∑
m = 1

√
1
Ti

∫ Ti

0

(
jerk j(t)

)2dt

, (8)

where S3 represents the average joint pulsation. Smaller S3 equates to a smaller pulsation
of the joint trajectory and more stable motion;

M is the number of joints;
Ti is the total time of exercise;
jerk (t) is the pulsation trajectory of the joint.
It can be seen from the above that the trajectory of the manipulator needs to meet

multiple constraints and needs to be optimized under multiple objectives. Using the
multi-objective optimization method, the above multiple objectives can be optimized
synchronously to achieve the best overall effect. Due to the conflict of objectives in multi-
objective optimization problems, the method to solve multi-objective optimization prob-
lems is usually to coordinate and balance among objectives to make each objective optimal
as much as possible [22]. The optimal solution is not the global optimal one, but the
equilibrium solution of all objectives, the set of non-inferior solutions, called the Pareto
optimal solution set, is definitely the chosen one. In order to solve the multi-objective
optimization problem of manipulator trajectory, the Pareto optimal solution set is obtained
and solved by the multi-objective particle swarm optimization algorithm. The algorithm
is an optimization algorithm based on swarm intelligence theory. It depends on coop-
eration and information sharing among all individuals in the group to find the optimal
solution. Individuals will adjust the motion state according to their own experience and
group experience, and constantly approach the optimal solution through the evolution of
the population [23]. MOPSO uses Pareto optimality and other concepts to evaluate the
advantages and disadvantages of particles, and continuously updates the position and
speed of particles through individual optimal Pbest and global optimal Gbest. The update
formula is shown in formulas (9) and (10).

vi+1 = w× vi + c1 × rand× (Pbest(i)− xi) + c2 × rand× (Gbest(i)− xi) (9)

xi+1 = xi + vi+1, (10)

where: v represents the speed of particles;
x represents the position of the particle;
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i represents the number of iterations;
w represents inertia weight;
c1 and c2 are acceleration factors;
rand is a random number with uniform distribution of [0, 1].
With the aim of better obtaining the individual optimal solution and the global optimal

solution, and guiding the algorithm to quickly converge to the Pareto front, this paper
introduces the individual violation degree and Pareto constraint domination to evaluate
the solution set. In order to strengthen the search ability and convergence speed of the tra-
ditional MOPSO algorithm, and shielding if from falling into local optimization, this paper
optimizes the MOPSO algorithm by adding a mutation operator, a feedback mechanism
and an annealing factor.

3.2.2. Constraints and Pareto Constraints

There are many constraints in multi-objective optimization problems. In order to
effectively deal with multiple constraints and to better compare different solutions, an
individual violation degree is used to deal with constraints. Individual violation degree is
defined as the normalized sum of all conflicting constraint values and it can be described
as Equation (11) [24]:

violation(x) =

{
max(0, gj(x)) ifi= 1, 2, . . . q∣∣hj(x)

∣∣ ifj = q+1,q+2, . . . , m
, (11)

where it is expressed as the distance between solution x and the feasible region. The greater
the distance is, the higher the individual violation degree will be. When x is the feasible
solution, the individual violation degree is 0.

In the multi-objective optimization algorithm, it is necessary to compare not only
the individual violation degree between the two solutions, but also the objective function
values. However, the objective function is not unique, so the optimal solution cannot be
determined directly. In this paper, the Pareto constraint domination is used to compare the
solutions and clarify the relationship between advantages and disadvantages. Solution xi
dominates solution xj, which must satisfy any of the following conditions:

(1) If the solutions xi and xj are all feasible solutions of the optimization problem, and
the solution xi is Pareto dominated xj;

(2) If the solution xi is feasible and xj is infeasible;
(3) If solutions xi and xj are infeasible solutions, but solution xi has less constraint viola-

tion degree;
(4) If both solutions xi and xj are infeasible solutions and have the same constraint

violation degree, then solution xi is Pareto dominated xj.

3.2.3. Mutation Operator

In the MOPSO algorithm, the external file set is devised to store all non-dominated
solutions. In each iteration, the global optimal solution needs to be selected from the
external file set. In the iterative process of the algorithm, the non-dominated solution will
be continuously added to the external file set, resulting in the increasing scale of the external
file set, increasing the amount of calculation of the algorithm and reducing the efficiency of
the algorithm. Therefore, an upper limit needs to be set on the external file size. When the
number of solutions in the external file sets exceeds the upper limit, a certain amount of
solutions would be deleted to keep the size of the external file set unchanged. This paper
adopts crowding distance sorting to delete the individuals with a small crowding distance
and maintain the number of solutions in the external file sets. Crowding distance evaluates
the distance between an individual and its adjacent individuals. For an individual in the
target space, the distance between the individual and the individuals on both sides is
calculated in each target space. The average sum of the distances in each dimension of the
target space is the crowding distance. The larger the crowding distance, the sparser the
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distribution of solution sets, and the better the diversity of solution sets. The crowding
distance formula is shown in (12) [25]:

l

∑
j = 1

∣∣ f j(xi+1)− f j(xi−1)
∣∣

f jmax − f jmin
, (12)

where fi(xi) represents the function value of individual xi on the j-th objective function;
f jmax and f jmin represent the maximum and minimum values of the population on the

j-th objective function, respectively.
During optimization, all particle updates rely on the searched non-dominated so-

lutions. The greater the number of non-dominated solutions and the more uniform the
distributions are, the better the solution set will be [26,27]. Maintaining the diversity of
non-dominated solution sets can avoid premature convergence of the algorithm. Therefore,
when maintaining external file sets, mutation operators are added to improve the diversity
of solution sets and avoid premature convergence of the algorithm. A mutation operator
is added to the external file set to produce a new solution. For each individual in the
external archive set, a mutation solution is generated randomly. The generated mutation
solution set is compared with the external file set. If an individual in the external file set
is dominated by the mutation solution, the mutation solution will replace the dominated
individual in the external file set. Otherwise, the mutation solution is discarded. If the
random value rand is less than the set probability p, the individual of the external file
set is taken as the parent to generate a mutation solution. If the random value rand is
greater than the set probability p, no mutation solution is generated. By setting p, the size
of the mutation solution set can be controlled, which not only increases the population
diversity, but also does not increase the amount of calculation of the algorithm, so as to
avoid reducing the efficiency of the algorithm [28]. The mutation solution set can guide
particles to fly to a wide area and increase the diversity of solutions in the external file set,
so it can reduce the probability of the algorithm falling into local minima. The generation
process of the variant solution set is shown in Equation (13):

child(x) = p× parent1(x) + (1− p)× parent2(x)
child(v) = parent1(v)+parent2(v)

|parent1(v)+parent2(v)|
parent1(v)

(13)

where parent(x) represents the position of the parent particle; parent(v) represents the speed
of the parent particle; p is the probability of variation.

3.2.4. Feedback Mechanism

In order to ensure the diversity of solution sets in the iterative process, it is necessary
to replace the inferior solutions in the solution set. In this paper, the feedback mechanism
is used to deal with it: the solution sets after each iteration are arranged in the order
of advantages and disadvantages, and a certain number of bad solutions are selected
for mutation. For the individuals who have not become optimized after n iterations,
individuals are randomly selected from the external solution set to replace them. The
solution set is fed back in two ways to improve the diversity of the solution set and to
accelerate the convergence speed of the algorithm.

3.2.5. Annealing Factor

In the iterative process of the algorithm, particles are continuously selected from the
external file set as the global optimal solution to guide the convergence of the algorithm.
Due to the single evolution direction, when a better solution cannot be generated, the
population easily falls into local optimization and the real Pareto frontier cannot be found.
To solve this problem, an annealing factor is added in the iterative process to accept the
poor solution with a certain probability, enhance the diversity of the population and make
it jump out of the local optimal solution. The specific process is as follows: when the
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new solution Qnew dominates the current solution, the new solution Qnew is taken as the
individual historical optimal solution. If the new solution does not dominate the current
solution, the new solution Qnew is accepted as the individual historical optimal solution
with probability Pm, and the expression is shown in Equation (14). It can be seen from the
formula that, at the initial stage of the algorithm iteration, there are fewer individuals in
the external file set and the Pm value is large. Accepting the poor solution with a large
probability can increase the diversity of the population. In the later stage of the algorithm,
there are many individuals in the external file set, and a higher Pm value will slow down
the convergence speed of the algorithm. To compensate, in the later stage of the algorithm
iteration, a small Pm value is adopted [29].

Pm =

{
1 Qnew ≺ Q

t
Tmax

(pstart − pend) + pend Qnew ⊀ Q , (14)

where pstart is the initial annealing factor;
pend is the final annealing factor;
t is the current number of iterations;
Tmax is the maximum number of iterations.
The pseudo code of the improved multi-objective particle swarm optimization algo-

rithm (represented as GMOPSO) is shown in the following algorithm. objfun represents the
objective function and constfun represents the constraints of the optimization issue:

GMOPSO Algorithm ()

1: Initialize(popsize, archive size, objfun,constfun, iterative times);
2: For each particali ∈ [1, popsize]
3: [xi, vi]← Initializepositionand speed
4: Initialize individual best solution Pbest
5: end
6: archive← Determination(pop,objfun,constfun)//sort particals and get non-dominant
individuals
7: for it = 1:(iterative times)
8: for each partical
9: Obtain the Gbest
10 :[xi, vi]← Position_speed(Pbest, Gbest)
11: Pbest ← Update(Pm, Pbest)
12: end
13: pop← sort (pop, M)//eliminatethe poorerparticals and supplyparticals
14: Update external archive
15: archive←Mutate(archive, mu)
16: Until stopping criterion is met
17: end

Taking the motion time, energy consumption and pulsation as the optimization ob-
jectives, the optimal trajectory optimization model is established. The multi-objective
trajectory optimization problem of the manipulator is solved by using the GMOPSO al-
gorithm, so as to obtain the trajectory of the manipulator that meets the constraints and
performance requirements. The joint path of the manipulator is interpolated by a quintic B-
spline curve to make the manipulator meet kinematic and dynamic constraints. According
to the definition of the performance index above, the multi-objective optimization problem
with optimal time, energy consumption and pulsation can be defined as Equation (15):

minF(x) = [ f1, f2, f3] = [
n−1
∑

i = 1
∆ti,

6
∑

j = 1

√
1
T
∫ T

0 jerk2
i dt,

6
∑

j = 1

√
1
T
∫ T

0 a2
i dt]∣∣vj

∣∣ ≤ VMj∣∣aj
∣∣ ≤ AMj

, (15)
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where f 1 is the movement time;
f 2 is the average joint pulsation, which measures the smoothness of the trajectory; and
f 3 is the average joint acceleration. The simplified analysis of the dynamic model

of the manipulator shows that the energy consumption of the manipulator is directly
proportional to the square of the absolute value of the acceleration. Therefore, the average
joint acceleration is defined as the optimization objective as an index to measure the energy
consumption of the robot;

VMj and AMj represent the maximum speed and acceleration of each joint respectively.
The specific algorithm flow is shown in the Figure 3 below:
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4. Test and Analysis
4.1. Performance Verification of GMOPSO Algorithm

In order to verify the effectiveness and accuracy of the GMOPSO algorithm, three
classical test functions are selected for the performance test and the simulation test, and
are further compared with the basic MOPSO algorithm and the classical multi-objective
optimization algorithm NSGA-II. The generational distance (GD), a non-inferior solution
spacing measure (represented by SP) and algorithm running time are employed to evaluate.
GD, as shown in formula (16), represents the distance between the non-dominated solution
set obtained by the algorithm and the real Pareto optimal solution set. The smaller the GD
is, the closer the solution set obtained by the algorithm is to the real Pareto front. GD = 0
means that all the solutions obtained by the algorithm are located on the Pareto front, that
is, all the solutions obtained are the solutions in the real Pareto optimal solution set. This
index reflects the convergence degree between the non-inferior solution set obtained by
the algorithm and the real Pareto optimal solution set. The spacing index SP, as shown in
formula (17), can be used to measure the distribution of the solution set searched by the
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algorithm. The smaller the SP value is, the more uniform the solution distribution is. SP = 0
indicates that the front end of the non-inferior solution set obtained by the algorithm is
absolutely evenly distributed, and this index reflects the uniformity of the front end of the
non-inferior solution set obtained by the algorithm.

GD =

√
n

∑
i = 1

d2
i /n (16)

SP =

√
1

n− 1

n

∑
i = 1

(d− doi)
2, (17)

where n is the number of non-dominated solutions searched by the algorithm;
di is the shortest distance from solution xi to Pareto front; and
doi is the distance between the target vector of solution xi and its nearest target vector;

doi = min

{
l

∑
k = 1

∣∣ fk(xi)− fk(xj)
∣∣}i, j= 1, 2, . . . , n, i 6= j.

d is the average value of doi.
The real Pareto frontier of classical test functions ZDT1, ZDT2 and ZDT3 is known,

so it can objectively test the performance of the algorithm. The Pareto front of function
ZDT1 is continuous and concave. The Pareto front of function ZDT2 is continuous and
nonconvex. The Pareto front of function ZDT3 is discontinuous and convex [30].

Fifty simulation tests are conducted for each test function. The algorithm parameter
settings are shown in Table 2.

Table 2. Parameters of algorithms.

Algorithm

Parameter Settings

Population Number Number of External
File Sets

Number of
Iterations

non-dominated sorting genetic
algorithm II(NSGA-II) 300 300 300

multi-objective particle swarm
optimization algorithm

(MOPSO)
300 300 300

improved multi-objective
particle swarm optimization

algorithm (represented as
GMOPSO)

300 300 300

The test results are shown in Tables 3–5. Indexes GD, SP and the calculation time
of the optimal solution of the test function are given respectively. Ave is the mean value
to characterize the performance of the algorithm, and Std is the mean square deviation
to describe the stability of the algorithm. Figures 4–6 show the Pareto front obtained by
solving the test function with each algorithm.

Table 3. Performance comparison for NSGA-II, MOPSO and GMOPSO in test function ZDT1.

Algorithm GD SP Elapsed Time (s)
Ave Std Ave Std Ave Std

NSGA-II 2.21 × 10−3 3.76 × 10−4 3.34 × 10−3 3.49 × 10−4 8.43 0.11
MOPSO 2.52 × 10−4 4.45 × 10−5 6.56 × 10−3 6.55 × 10−4 1.95 0.16

GMOPSO 1.02 × 10−4 6.33 × 10−6 1.25 × 10−3 5.01 × 10−5 4.23 0.13
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Table 4. Performance comparison for NSGA-II, MOPSO and GMOPSO in test function ZDT2.

Algorithm GD SP Elapsed Time (s)
Ave Std Ave Std Ave Std

NSGA-II 5.67 × 10−5 2.29 × 10−6 2.31 × 10−3 1.64 × 10−4 16.3 4.25
MOPSO 8.66 × 10−5 4.2 × 10−5 3.74 × 10−3 4.15 × 10−4 4.02 0.23

GMOPSO 4.26 × 10−5 9.85 × 10−7 1.30 × 10−3 5.65 × 10−5 4.43 0.15

Table 5. Performance comparison for NSGA-II, MOPSO and GMOPSO in test function ZDT3.

Algorithm GD SP Elapsed Time (s)
Ave Std Ave Std Ave Std

NSGA-II 2.67 × 10−3 2.74 × 10−3 3.09 × 10−3 3.82 × 10−4 17.87 1.04
MOPSO 2.32 × 10−4 4.86 × 10−5 2.42 × 10−3 7.48 × 10−4 2.17 0.27

GMOPSO 1.25 × 10−4 2.67 × 10−5 1.57 × 10−3 6.53 × 10−4 2.86 0.44
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It can be seen from Figure 4 that, when the Pareto optimal solution set obtained by
the NSGA-II algorithm can better cover the real Pareto front of function ZDT1, a lack of
small decomposition in the middle appears. The Pareto optimal solution set of the MOPSO
algorithm shows uneven distribution, with some clusters and multiple Pareto optimal
solutions missing, which cannot completely cover the real Pareto front. The Pareto optimal
solution set obtained by the GMOPSO algorithm can accurately and uniformly cover the
real Pareto front of function ZDT1.

It can be seen from Figure 5 that the Pareto optimal solution set obtained by the NSGA-
II algorithm is relatively uniform, but a lack exists in the first half. The Pareto optimal
solution set of function ZDT2 obtained by the MOPSO algorithm is discontinuous. Besides,
several parts are absent on the Pareto front and the solution set is unevenly distributed.
The Pareto optimal solution set obtained by the GMOPSO algorithm completely covers the
real Pareto front of function ZDT2 and is evenly distributed.

It can be seen from Figure 6 that the Pareto optimal solution set obtained by the NSGA-
II algorithm deviates from the real Pareto front of function ZDT3. The Pareto optimal
solution set of the MOPSO algorithm covers most of the real Pareto front of function ZDT3,
but there are many missing solutions in the Pareto optimal solutions. The solution set is
unevenly distributed. The Pareto optimal solution set obtained by the GMOPSO algorithm
completely covers the real Pareto front of function ZDT3 and is evenly distributed.

The test data are counted, and the performance indexes of each algorithm are given, so
as to more accurately analyze the advantages and disadvantages of each algorithm. Results
are shown in Tables 3–5.

It can be seen from Tables 3–5 that the average value of GD of the GMOPSO algorithm
is less than that of the NSGA-II and MOPSO algorithms, that is, the convergence of the
GMOPSO algorithm is the prime. The average SP value of the GMOPSO algorithm is
1.25 × 10−3, smaller than the NSGA-II algorithm and the MOPSO algorithm, that is, the
GMOPSO algorithm has the best distribution. The average running time of the GMOPSO
algorithm is 4.23 s, which is less than the NSGA-II algorithm and greater than the MOPSO
algorithm, which is within the acceptable range. The main reason the running time of the
GMOPSO algorithm is longer than that of the MOPSO algorithm is that the GMOPSO
algorithm increases the mutation operator and the annealing factor, and increases the
diversity of solution sets, so that the algorithm can escape the local optimization and obtain
a better distribution. Accordingly, the time is slightly longer than that of the MOPSO
algorithm. With reference to the variance test results, the GMOPSO algorithm has the
smallest variance and the best stability.

In conclusion, the GMOPSO algorithm can accurately converge to the real Pareto front
of the test function, and performs better than the MOPSO and NSGA-II algorithms in terms
of convergence and distribution. Theoretically, the application of this algorithm to the
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trajectory optimization of the picking manipulator is supposed to be a good numerical
guarantee.

4.2. Simulation Test and Analysis

In order to compare the results obtained by the multi-objective optimization algorithm
GMOPSO, particle swarm optimization (PSO) is used to optimize the motion trajectory
with the objectives of motion time, energy consumption and pulsation, respectively [31].
The optimal trajectories of a single objective are obtained. Then, the multi-objective
optimization problem of time, energy consumption and pulsation is solved by GMOPSO.

A set of collision free paths of the manipulator are obtained through the path planning
algorithm, as shown in Table 6. The PSO algorithm is used to optimize the motion trajectory
with the objectives of shortest time, lowest energy consumption and optimal pulsation.
The upper limit of the time interval is 6 s, and the parameter settings of the algorithm are
shown in Table 7. The optimal solution is obtained by simulation with MATLAB software.
The simulation results are shown in Figures 7–9.

Table 6. Joint path of the manipulator.

Path Point Serial
Number Joint 1/◦ Joint 2/◦ Joint 3/◦ Joint 4/◦ Joint 5/◦ Joint 6/◦

1 −103.9 13.23 −14.57 −12.6 6.81 139.9
2 −103.33 10.99 −14.02 −14.23 7.73 143.05
3 −99.22 5.84 −14.72 −18.88 10.01 143.03
4 −90.3 1.9 −15.62 −23.7 11.47 145.82
5 −83.23 3 −20.77 −30.14 14.34 151.63
6 −78.84 3.28 −21.56 −40.89 19.34 165.62
7 −65.31 9.29 −23.21 −46.66 22.86 173.5
8 −58.16 14.92 −18.8 −57.59 27.16 188.85
9 −57.3 19.17 −14.76 −68.66 31.26 199.42
10 −61.04 23.6 −11.01 −90.61 37.58 212.86
11 −65.58 24.84 −8.9 −90.61 37.58 212.86

Table 7. Parameters of PSO Algorithm.

Parameter Name Value

Population quantity 200
Acceleration factor c1 = 1, c2 = 2

Inertia factor 2
Iterative times 200

As shown in Figure 7, the motion trajectory of the manipulator with the least time opti-
mization objective has a motion time of 7.87 s, an energy consumption index of 437.35 ◦/s2

and a pulsation index of 1586.87 ◦/s3. As shown in Figure 8, the motion trajectory of
the manipulator with the optimal energy consumption optimization objective has a mo-
tion time of 41.65 s, an energy consumption index of 58.56 ◦/s2 and a pulsation index of
66.32 ◦/s3. As shown in Figure 9, the motion trajectory of the manipulator with the optimal
pulsation optimization objective has a motion time of 41.82 s, an energy consumption index
of 58.11 ◦/s2 and a pulsation index of 65.08 ◦/s3. The results show that the single objective
function can only be optimally solved for a single index, ignoring other solutions that meet
the constraints. The single objective solution is not suitable for practical production, and
the resulting solution will exert a great impact on the manipulator.
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Figure 9. Pulsation optimal trajectory; (a) Position−Time chart of each joint; (b) Speed−Time chart of each joint speed;
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GMOPSO is used to solve the multi-objective optimization problem of the path in
Table 6. The number of populations is set to 200, with the number of external file setting to
200 and the number of iterations being 300. The Pareto front obtained is shown in Figure 10.
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The simulation results are shown in Table 8. The closer to point A, the better the pulsation
and energy consumption performance, and the worse the time performance. The optimal
pulsation is 70.18 ◦/s3. The closer to point C, the better the time performance is, but the
worse the pulsation and energy consumption performance would be. The optimal time is
7.58 s. Compared with the results of the single objective trajectory optimization test, the
movement time of point C is 7.58 s, which is 0.29 s less than that of a single objective, which
is better than the results of a single target test. The pulsation performance index value of
point A is 70.18 ◦/s3, which is slightly larger than the minimum pulsation index value of
single objective 65.08 ◦/s3, with a small difference. The energy consumption index value
of point a is 60.88 ◦/s2, which is slightly larger than the minimum energy consumption
index value of single objective 58.11 ◦/s2, with a small difference. The results show that
the optimal solution set obtained by the GMOPSO algorithm can better approach the real
Pareto frontier.
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Figure 10. Pareto frontier for trajectory optimization of the manipulator.

Table 8. Performance indicators of optimization schemes.

Optimization Scheme Time (s) Energy-Consumption (◦/s2) Pulsation (◦/s3)

A 36.06 60.88 70.18
B 17.01 97.72 151.41
C 7.58 464.01 1707.42

average optimal solution 34.20 61.89 72.18

It can be seen from Figure 10 that, when the motion trajectory meets the constraints,
there is a large number of feasible solutions and it provides a large number of equilibrium
solutions, which can be selected by the decision-maker according to the actual needs. In
order to obtain the optimal trajectory that meets multiple objectives and is suitable for
picking tasks, the average optimal evaluation method is used to select the appropriate
average optimal solution in the Pareto solution set [32]. The expression of the average
optimal solution is shown in (18):

H =
3

∑
i = 1

ωi
fi(x)− fi(x)min

fi(x)max − fi(x)min
, (18)

where fi(x)max and fi(x)min are the maximum and minimum values corresponding to the
objective function in the solution set. ωi is the weight coefficient, and all values in this
example are 1.

All the obtained Pareto solutions are brought into Equation (18), and the average
optimal solution time series is: [6 6 5.45 2.22 2.52 6 6]. The evaluation value H of the
average optimal solution is 0.3584. As shown in Table 8, the time performance index is
34.20 s, with the energy consumption performance index being 61.89 ◦/s2, and the pulsation
performance index being 72.18 ◦/s3. The trajectory diagram of the optimal solution is
shown in Figure 11.
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Figure 11. The optimal solution trajectory; (a) Position−Time chart of each joint; (b) Speed−Time chart of each joint speed;
(c) Acceleration−time chart of each joint; (d) Jerk−time chart of each joint.

4.3. Picking Test

In order to verify the feasibility of the algorithm, combined with the visual positioning
system, the path planning and trajectory planning algorithms are integrated, and the single
fruit picking experiment is carried out.

The test prototype is mainly composed of a visual positioning system, picking robot,
control system, industrial computer and an end effector. The visual positioning system
adopts a depth camera, as shown in Figure 12.
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Figure 12. Depth Camera Calibration; (a) Calibration plate; (b) Depth camera.

In order to meet the requirements of nondestructive and efficient picking of the
manipulator, the position information of the target and obstacle is obtained through the
above vision system, and the information is input into the motion planning module to
obtain the picking path of the manipulator. The picking path is interpolated by the trajectory
planning algorithm to render a smooth motion path satisfying kinematic and dynamic
constraints. The workflow is shown in Figure 13.
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An apple was used as the picking object, which was hung on the built shelf, and
obstacles were set. A total of 30 picking experiments were carried out by changing the
position of obstacles and the position of target fruits.

As the apple is a single fruit, the claw end effector is used for picking [33]. The
picking scene is shown in Figure 14. The motion planning algorithm described above was
adopted. The collision free joint path and multi-objective optimization trajectory of the
picking manipulator were obtained, and the joint trajectory input was obtained. The joint
movement time and speed were input into the manipulator to complete the picking task.
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Figure 14. Picking experimental scene.

The test results are shown in Table 9. The average picking time is 25.5 s and the picking
success rate is 96.67%. There was a failure in the picking test because the distance between
the fruit and the branch was too small. Although the end effector could pick the fruit in
theory, the picking failed due to the visual positioning error and the positioning error of
the manipulator itself.

Table 9. The results of harvesting tests.

Picking Object Average Motion Time/s Success Rate/%

Apple 25.5 96.67

The experimental results show that the picking robot can effectively avoid obstacles
and successfully complete the picking task. During picking, the manipulator moves
steadily, when the speed changes continuously and the working efficiency is high. The
movement process is shown in Figure 15.
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Figure 15. Motion process of apple picking with picking manipulator; (a) initial motion state of
manipulator; (b) intermediate motion state 1; (c) intermediate motion state 2; (d) final arrival state of
the manipulator.

5. Conclusions

(1) In this paper, the path of each joint of the manipulator is interpolated by the quintic
B-spline curve. Each two path points are connected by a section of the B-spline curve,
and each section of the B-spline curve is smoothly connected to obtain a continuous
and smooth trajectory of the manipulator.

(2) Aiming at the multi-constraint and multi-objective trajectory optimization problem
of the manipulator, a multi-constraint and multi-objective optimization model of the
picking manipulator is established. The multi-objective particle swarm optimization
algorithm is used to achieve the optimal trajectory of the manipulator. In order to
meet the needs of population diversity, speed up population convergence and avoid
falling into local optimization, the MOPSO algorithm is optimized by the mutation
operator, feedback mechanism and annealing factor. The feasibility of the algorithm
is verified by simulation experiments. The simulation results show that the GMOPSO
algorithm is used to optimize the multi-objective problem of the manipulator, the
obtained Pareto solution set is close to the real Pareto front, the selection scheme is
given by using the average optimal evaluation method, and the motion trajectory of
the optimal solution is drawn.

(3) The experimental results show that the average picking time is 25.5 s and the pick-
ing success rate is 96.67%, which meets the picking requirements and provides a
referential basis for the motion planning of the picking process.
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