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Abstract: This study aimed to develop a warning system platform for coffee rust incidence fifteen
days in advance, as well as validating and regionalizing multiple linear regression models based
on meteorological variables. The models developed by Pinto were validated in five counties. Ex-
periments were set up in a randomized block design with five treatments and five replications. The
experimental plot had six lines with 20 central plants of useful area. Assessments of coffee rust
incidence were carried out fortnightly. The data collected from automatic stations were adjusted
in new multiple linear regression models (MLRM) for five counties. Meteorological variables were
lagged concerning disease assessment dates. After the adjustments, two models were selected and
calculated for five counties, later there was an expansion to include ten more counties and 35 prop-
erties to validate these models. The result showed that the adjusted models of 15–30 days before
rust incidence for Carmo do Rio Claro and Nova Resende counties were promising. These models
were the best at forecasting disease 15 days in advance. With these models and the geoinformation
systems, the warning platform and interface will be improved in the coffee grower region of the
south and savannas of the Minas Gerais State, Brazil.

Keywords: incidence; multiple linear regression models; meteorological variables; Brazil

1. Introduction

Since coffee is usually served hot and possesses functional compounds, such as
caffeine, amino acids, sugars and phenols, it is one of the most consumed beverages
worldwide [1,2]. It is consumed in all continents, but mainly in the populous northern
hemisphere, which has low temperatures during most of the year. However, it is produced
in the southern hemisphere, where a tropical climate predominates, without an intense
cold period to contribute to the reduction of the initial inoculum. Moreover, the soils are
most often poor and the raining season is mainly restricted to the summer, adding to the
current extreme weather scenario. Under these conditions, producers cultivate varieties
resistant to these climate conditions, that is, to drought and frost, during the winter or
specific periods, and also varieties adaptable to new cultivation technologies, resulting
in increased productivity [3]. Nevertheless, the high productivity associated with the
favorable environment and the disease susceptibility of cultivars can lead to significant
losses in the main Brazilian producing regions, principally in the Minas Gerais state [4–12].
In Brazil, loss of productivity associated with the disease can reach up to 30% [13]. However,
in a recent study, Colares [14], using mathematical modeling, estimated that these yield
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losses might vary from 59.8% to 99.8% over more than one year of cultivation. Rust causes
deleterious effects on the coffee tree [15], including defoliation, which is responsible for
reducing the tree photosynthetic area, and consequently death of the plagiotropic branches
with reflexes in posterior crop loads [6,16,17].

According to Pinto et al. [18], the first disease signs, based on the disease progress
curve, occur from December to January. Then, there is an increase in the disease progress
rate in March and April, assuming exponential growth. Finally, from June to August,
normally after the harvest in a cold climate with reduced rainfall, the culture displays
the most intense disease signs throughout the year. The pathogen sporulation reaches
its greatest intensity and a drastic fall of leaves can occur with severe reduction of the
plant canopy.

High crop load, susceptible cultivars, dense plantation, temperature between 21 and
25 ◦C with periods of leaf moisture between 6 and 24 h [15,19–22], shading, nutritional
imbalance and water deficit increase the high disease progress rate (r) [6]. The nutritional
balance of the coffee crop makes it more difficult to achieve the highest productivity, as
a result of the drain of plant nutrients and soil reserves, causing, therefore, a tendency
to increase the disease intensity [6]. Under these growing conditions, to mitigate the
risks of epidemics with high rates of rust progress (r), the maintenance of water and soil
fertility, which influence the nutrition of the coffee trees and consequently constitute and
reinforce resistance barriers against the pathogen, should be part of the disease management
strategies [23–30]. Furthermore, periodic pruning and the use of disease resistant or tolerant
varieties contribute to the disease control [31].

In addition to management techniques, fungicides are also used [6,32]. Currently,
scheduled sprayings are carried out with protective and/or systemic fungicides in the
months with the greatest disease progress rate (r) from the very beginning of the rainy
summer in Brazil. In any case, they must be applied when the visual sign or manifestation
of the pathogen sporulation in the leaves is still below a 5% incidence. These sporulations
indicate that other points of infection and/or colonization that has not yet been spotted
already exist, which characterizes coffee rust. In order to avoid the pressure to select
resistant populations of H. vastatrix, rust control programs are used, where two or three
sprays of a mixture of triazoles or carboxamides with strobilurins, the strobymix, associated
or alternated with two or three applications of protectors, cuprics or dithiocarbamates,
during the rainy season [6].

However, consumers worldwide are demanding better environmental, social and eco-
nomic sustainability in coffee plantations by reducing and optimizing fungicide spraying
on crops [29].

In terms of disease management, there is an ongoing search by coffee growers for
a more effective method of disease control that can reduce crop maintenance costs and
increase profit, generating financial resources to be invested in the environmental and social
sustainability of the coffee farms and, consequently, attaching the producers to their rural
properties. This behavior conforms with consumer demands on a global scale. Therefore,
to avoid a fixed spraying schedule and applications on dates unfavorable to rust or after
infection and colonization of the pathogen, warning or forecast systems could be used [33].
According to Pinto et al. [18] and Hinnah et al. [34], using variables from the disease triangle,
that is, the pathogen, the host, or the environment, the disease forecast systems can be
used as a tool to contribute and guide crop disease management and the rational use of
fungicides, and, in this way, reaching global demands to mitigate risks to the environment,
in the context of green thinking. Therefore, environmental sustainability could be balanced
with the economic and social needs of the agricultural production [35–37].

The main objectives of the disease forecast system are to optimize or increase efficiency
of fungicide applications, decreasing production cost and the risk of economic losses caused
by diseases and consequently increasing productivity [33,34,38,39]. The cost–benefit ratio
is another criterion mentioned by Campbell and Madden [33] for early warning or forecast
systems. According to the authors, these procedures should be available at reasonable
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costs, especially considering the potential savings in management costs and reduction of
losses caused by the disease. Thus, the platform or software must be simple and proven
efficient, with an interface for technicians and producers easy to implement in the field,
and understandable for the coffee grower to improve the spray efficiency.

Warning or forecast systems are decision support methods or tools to help farmers
define the best moment to apply the techniques to control plant diseases [40]. Thus, there
is a spray optimization with greater efficiency in pest control and increased productivity
since the risks of epidemics are continuously monitored. Therefore, fungicide sprayings
for disease management are carried out only under environmental conditions favorable
to their progress [33], when hosts or even populations of pathogenic and virulent agents
are susceptible. Thus, unnecessary sprays, earlier or later than the infection period are
not carried out, optimizing the use of sprayings and the producer’s time dedicated to
this activity [41]. Furthermore, there is a reduction in the probability of contamination of
workers responsible for directly handling the products and a reduction in the environmental
impacts as well [42].

These systems use information from the environment and/or host and/or pathogen
and/or disease to warn the producers of future disease intensity values [33]. Many early
warning systems use information from the environment to estimate future disease intensity
values because the environment can determine whether epidemics occur [18,43–48]. The
occurrence of the disease process depends on the minimum duration of favorable envi-
ronmental conditions to the establishment of parasitic relationships between the pathogen
and its host, known as the critical period. If this is not met, phases of the pathogen’s life
cycle such as germination, infection and colonization may be compromised. The most
important variables are air temperature and water availability at infection sites, which
are characterized by the relative humidity of the air and the duration of the leaf moisture
period, caused by rain, dew, fog or irrigation. Such variables are strongly associated with
the progress of plant diseases [49] and, therefore, are often used in estimating future disease
values [41].

Traditionally, forecast or warning systems for coffee diseases have been based on the
use of regression models or double-entry variable tables, mainly using temperature and
water availability as variables [15,18,38,50]. However, with the current extreme weather
scenario, the cultivation of coffee in different biomes and edaphoclimatic conditions and the
increase in productivity and new techniques of cultivation and management of the coffee
tree, other approaches, such as time series techniques, neural networks, Bayesian network,
fuzzy logic, decision trees, and others, have been gaining the attention of researchers [18,51].
These new tools, together with traditional techniques, can help one understand the dynam-
ics of the disease process, providing better results in disease control.

The variables used to build up forecasting systems in this new scenario can be selected
from mathematical and statistical tools, besides the use of artificial intelligence, according
to the characteristics of the pathosystem to which they are related. The variables selected
by these methods, which belong to the disease triangle, that is, pathogen, environment and
host [33], were used in several studies to build and validate disease prediction systems for
coffee crops [34,52–54].

The reason for using forecasting systems involves economic, environmental and
disease-related aspects [33]. Thus, coffee rust, nowadays, in a scenario of climate change
and the protection of rural workers and the environment, meets important prerequisites
for developing a forecasting system. Furthermore, it is an economically important disease
that does not occur on established dates to provide a calendar for spraying fungicides,
but occurs seasonally or sporadically, a recurrent factor in the current scenario of extreme
weather, and it is cultivated in different biomes and under high pressure to increase
productivity, besides having traditional control that still results in a cost to the producer.

Although warning systems were developed to monitor coffee leaf rust [18,43,44,50,51,55,56]
due to the importance and conditions already mentioned, few were implemented and vali-
dated for different Brazilian regions or biomes where coffee is produced.
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Nowadays, in the current context of green thinking, seeking to mitigate risks to the
environment, the use of forecasting or warning systems is gaining new momentum. How-
ever, the benefits for the farmers should be real, and could not be achieved without the
system. Certainly, the main variables selected to calculate forecast equations have already
been identified by researchers. However, before becoming available to farmers, these
methodologies have to be validated in different coffee-producing regions or biomes. Few of
the forecasting systems mentioned above have been validated for several Brazilian regions
or biomes different from those where they have been evaluated. Concomitantly, the hard-
ware and methodology must supply the software daily, and the consultation or warning
platform must be set up on an easy-to-interpret interface for producers and technicians.

Besides being the largest coffee producer, Brazil is a country with continental dimen-
sions with different edaphoclimatic conditions in coffee-producing regions, presenting
different altitudes, landscapes, climates and soil types, among other distinct variables. The
continental dimensions and edaphoclimatic variability of the country are a hindrance to
validating forecasting systems in regions different from where they were initially developed
and evaluated.

Validation in different regions is the differential of the forecast system to be proposed
in relation to the others mentioned above. In addition, it will be regionalized, with selected
climate and host variables, in the main coffee regions of the Minas Gerais state, Brazil.
Thus, it is expected to have its efficiency and applicability in the field proven, helping the
producer to control coffee rust in a sustainable way and meeting the green thinking of
globalized consumers. In this way, it is not only about producing science, but offering
technology, with applicability with the producer.

In light of the above, based on the state of the art presented, this study aims to develop
a warning or forecast platform for the coffee rust incidence, 15 days in advance, to validate
and regionalize Multiple Linear Regression Models from regionalized meteorological vari-
ables for the main coffee producing regions and biomes in the state of Minas Gerais, Brazil.

2. Methodology to Construct Forecast Models and Interface

The use of predictive models is an alternative to optimize and rationalize the use of
fungicides. Therefore, we evaluated the viability of two prediction models developed by
Pinto et al. [18]. Since the forecast models were developed with meteorological data from
Lavras county, Minas Gerais state, Brazil, other geographic locations were incorporated
to validate the models. Then, the study was divided into three phases. In phase I, five
sampling points were initially implemented in different counties from 2018 to 2019, us-
ing two warning or forecasting methodologies, collecting meteorological variables and
assessing coffee rust. In phase II, in 2020, ten more counties were incorporated into the
system, with the selection of variables and the adjustment of the multiple regression model
from the data collected in the five previous counties. In phase III, besides those fifteen
locations, another 35 properties for the collection of meteorological and disease data were
incorporated, totaling 50 sampling points to obtain disease and host data in the state of
Minas Gerais, Brazil.

2.1. Phase 1: Validation of the Forecast System from 2018 to 2020

Initially, a total of five areas (Table 1) with trials were used to validate the forecasting
systems from models developed [18], which still have the system operating and were
chosen for being located at different altitudes and producing regions in Alto Paranaíba, in
the south and the north of the state.
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Table 1. Location of areas for validation of forecast systems in five municipalities in the state of Minas Gerais, Brazil.

Municipality Location Altitude (m) Latitude (S) Longitude (W)

Carmo do Rio Claro Fazenda Boa Esperança 796 21.004600 46.022900
Monte Santo de Minas Sítio Bela Vista 915 21.181100 46.965600

Nova Resende Sítio São João 1184 21.104300 46.410400
Rio Paranaíba Fazenda Caetés e Olhos D’água 1129 19.226100 46.219200

Serra do Salitre Fazenda Cachoeira do Campo 1200 19.163300 46.589200

In this phase, these areas were conducted with two consecutive harvests, 2018/2019
and 2019/2020, to validate the forecast models and obtain data on meteorological and
host variables. Rust was evaluated fortnightly during this period, seeking to add the
meteorological variability [6] and the biennial of coffee production [57,58]. The arabica
coffee (Coffea arabica L.) planted in these fields was an around-seven-year-old variety of
the cultivar Catuaí group with red fruits, rust susceptible, in a spacing of 3.8 m × 0.6 m
between rows and plants, respectively. The tests were conducted according to the technical
recommendations for coffee growing in Brazil [59–64]. Weed and pest management was
carried out according to the control level. The soil fertility management and crop nutrition
was performed based on the results of chemical analysis of the soil and nutrition of leaves,
applying correctives and fertilizers in the projection of the plant canopy, according to
Mesquita et al. [61], Alvarez V.; Ribeiro [65] and Alvarez V. et al. [66].

Standard disease and pest controls were carried out in all experimental areas for uni-
formization before starting the trial programs to validate the warning systems. For disease
control, the fungicide Epoxiconazole (50 g L−1 of the active ingredient) + Fluxapyroxade
(50 g L−1 of the active ingredient) + Pyraclostrobin (81 g L−1 of the active ingredient), trade
name Ativum®, was used at a dose of 1.5 L ha−1 in October 2018.

2.1.1. Sampling of Environmental Variables

The regression equations were supplied with environmental data obtained from the
automatic stations model Davis Vantage Pro® in the counties and transferred to the Weather
Link® software located in the Cooperative of Coffee Growers in Guaxupé (Cooxupé)
(Table 1). The data were recorded on an hourly basis and sent via a dedicated link to the
server system at Cooxupé’s headquarters in Guaxupé, Minas Gerais, where they were
processed and entered into an interface designed to visualize the results.

2.1.2. Forecasting Systems and Spraying Methodology

Two phytosanitary warning systems were evaluated during two consecutive harvests
(2018/2019 and 2019/2020). Initially, the system developed by Pinto et al. [18] was validated
when the fortnightly assessment of coffee rust incidence reached 5% (a control level also
called the technical assessment model). In the formula used by Pinto et al. [18], the
warnings were issued when the model calculated a rust incidence of 5% or more. The
models were called Decision Support System 1 (DSS 1–5% control level also called the
technical assessment model) and 2 (DSS 2) (Equation (1)), respectively:

y = −39.12 − 1.09 ∗ Tavg30 + 0.30 ∗ DP45 + 0.54 ∗ RHavg60 + 2.68 ∗ NIH60 (1)

where:

y = Rust incidence forecast;
Tavg30 = Average of mean temperatures to 30 days before rust incidence;
DP45 = Days with precipitation to 45 days before rust incidence: precipitation > 0 mm;
RHavg60 = Average of mean relative humidity to 60 days before rust incidence;
NIH60 = Average of mean number of isolation hours to 60 days before rust incidence.

The experiments were implemented in a randomized block design (RBD) with five
treatments (Table 2) and five replications. The experimental plot had six lines with 20 plants
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each, totaling 120 plants. Two lines were discarded on each side and in the two inner parts
were 10 plants, five at each end. Therefore, the useful area plot for evaluation contained 20
inner plants.

Table 2. Treatments, trade name, dose per hectare, active ingredient and their concentration and chemical group, used in
the areas for validation of the warning systems in the 2018/2019 and 2019/2020 harvests.

Treatments Trade Name Dose per Hectare Active Ingredient Concentration of Active
Ingredient Chemical Group

1. Control - - - - -

2. Standard
farm

Verdadero® and Opera®

(with 2 pulverization) or
Priori Xtra, depends of

the location

1 kg + 1.5 L + 0.75 L

Cyproconazole +
ThiamethoxamPyra-

clostrobin +
Epoxiconazole and

Azoxystrobin +
Cyproconazole

300 g kg−1 +
300 g kg−1e133 g L−1+

50 g L−1 and 200 g L−1+
80 g L−1

Triazole +
Neonicotinoid and

Strobirulin

3. IHARA Fusão® and Spirit® 1.5 L + 2 L

Tebuconazole +
Metominostrobin
and Flutriafol +

Dinotefuran

165 g L−1 + 110 g L−1 and
273 g L−1 + 87.5 g L−1

Triazole +
Strobirulin +

Neonicotinoid

4. DSS 1 1 Fusão® 1.5 L Tebuconazole+
Metominostrobin 165 g L−1 + 110 g L−1 Triazole +

Strobirulin

5. DSS 2 1 Fusão® 1.5 L Tebuconazole+
Metominostrobin 165 g L−1 + 110 g L−1 Triazole +

Strobirulin
1 DSS—Decision support system.

As of November 1, 2018, to control rust, when the warnings for DSS 1 and 2 were
issued, a systemic fungicide mixed with a mesostemic one was used (Table 2). Spraying
took place using a manual costal sprayer model Jacto PJB 20® in a volume of 400 L of
water ha−1.

The coffee rust incidence assessment was carried out fortnightly from 31 October
2018, randomly, by non-destructive method, on five plagiotropic branches per plant, on
the morning shade side, in the middle third of the plants [67]. In each of the 20 plants, five
leaves were evaluated from the second to fourth pairs of nodes in the plagiotropic branch,
totaling 100 leaves per plot or replicate. New sporulating lesions with a light-yellow
appearance characteristic of the pathogen signs were observed.

For this, the rust incidence was determined by the percentage of the number of
leaves with damage in relation to the number of leaves evaluated, through the following
equation [33]:

I(%) =

(
NLL
NTL

)
∗ 100 (2)

where:

I(%) = Coffee rust incidence;
NLL = Number of lesioned leaves;
NTL = Number of total leaves sampled on the coffee tree.

2.1.3. Development of the Interface to View Phytosanitary Warnings or Coffee
Rust Forecast

After the collection of meteorological variables from the meteorological stations, they
were transmitted, received and processed. The resulting spraying warning was made
available in a proper interface for the five counties located in the Southeast region of
Brazil in Minas Gerais state. For the interface development, the following programming
languages were used: Python 2.7 with the Django Framework 1.6 (back-end) and HTML,
CSS, JavaScript, Jquery with the Bootstrap Framework (front-end). The latter is responsible
for the entire presentation of the system, as well as its responsiveness (adaptability to
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different screen sizes: TV, notebook, tablet, smartphone). In parallel to this system, routines
were also developed using the Java SE programming language.

Thus, using two warning methodologies, DSS 1 and 2, the spraying warning was
issued when the predicted or estimated control level reached an incidence of 5%. The
technicians and their supervisors received the spraying warning through email. After
spraying, they informed the system in the built interface, and then the daily emails stopped
being sent. After three days, besides sending spraying warnings, another daily email was
sent to notify the technicians and supervisor in charge of the area about the spray delay.

2.2. Phase 2: Adjustment of Models with Data Collected in Five Different Counties in the State of
Minas Gerais, Brazil

In this phase, new regression equations were developed with the disease incidence
as a function of the variables collected in the meteorological stations of the five counties
mentioned above. Thus, 18 variables were generated (Table 3).

Table 3. Environmental variables collected and generated with an automatic station model Davis
Vantage Pro®, software Weather Link®, located in the five cities or nuclei of the Cooperative of Coffee
Growers of Guaxupé (Cooxupé).

Variables Description

Tavg 1 Average of mean temperatures
Tmax 1 Average of maximum temperatures
Tmin 1 Average of minimum temperatures

RHavg 1 Average of mean relative humidity
RHmin 1 Average of minimum relative humidity
RHmax 1 Average of maximum relative humidity

WS 1 Windy speed
IH 1 Insolation hours

DPT 1 Dew point temperature
LT 1 Leaf temperature

WH 2 Wetness hours
P 2 Precipitation

TavgLW(6 p.m.–9 a.m.)
1 Average temperatures with leaf wetness from 6 p.m. to 9 a.m.

TavgLW(6 p.m.–6 a.m.)
1 Average temperatures with leaf wetness from 6 p.m. to 6 a.m.

NHDT(≥18 ◦C, <26 ◦C)
2 Number of hours of the day with temperature ≥18 ◦C and <26 ◦C

NHDT(≥15 ◦C, <26 ◦C)
2 Number of hours of the day with temperature ≥15 ◦C and <26 ◦C

NDP 2 number of days with precipitation
NHP(6 p.m.–9 a.m.)

2 number of hours of precipitation from 6 p.m. to 9 a.m.
1 Variable created from the average of the values considered in the lag. 2 Variable created from the accumulated
values considered in the lag.

With these data collected from October 2018 to January 2020, totaling 35 fortnightly
assessments, multiple linear regression models (MLRM) of disease incidence were adjusted
as a function of meteorological variables (Table 3) in each of the five counties.

These environmental variables were lagged in relation to the disease assessment dates,
as follows:

1. Average/accumulated values of 2–4, 4–7, 7–15 and 15–30 Days Before Rust Incidence
(DBRI) including the day of assessment of twelve meteorological variables collected
from meteorological stations from October 2018 to August 2019;

2. Average/accumulated values of eleven meteorological variables collected from Oc-
tober 2018 to January 2020 at the meteorological stations fifteen days before the
disease assessments, including the assessment day, according to the methodology of
Pinto et al. [18] and Oliveira [50]. The adjustment of the models was performed with
two data sets in and out of the harvest period (June, July and August). Regression
equations were also adjusted, excluding the environmental variables Insolation Hours,
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Wind Speed, Wetting and Dew Point Temperature, to obtain fitted models with few
variables, also in and out of the harvest period;

3. Average/accumulated values delayed from 15 to 45 DBRI, including the assessment
day from October 2018 to January 2020, of ten meteorological variables, four of
which were collected from the meteorological stations and six elaborated from these
data. Initially, the best variables were selected to adjust the models. In this case,
Pearson’s correlation was performed between the variables and disease incidence.
The analyses used significant variables and others with a correlation greater than
0.6. Afterward, the following variables were also calculated: Average of maximum,
mean and minimum temperatures; Average of temperatures with leaf moisture from
6 p.m. to 9 a.m.; Average of temperatures with leaf moisture from 6 p.m. to 6 a.m.;
Number of hours a day with temperature ≥ 18 ◦C and <26 ◦C, and ≥15 ◦C and <26 ◦C;
Precipitation; Number of days with precipitation; Number of hours of precipitation
from 6 p.m. to 9 a.m.. In addition, models with all these variables were fitted data in
and out of the harvest period from June to August. In this case, the following variables
were also excluded from the analysis: insolation hours, dew point temperature, wind
speed and duration of the moisture period, which are variables obtained only from
complete meteorological stations, rarely found throughout the coffee-producing areas
in the state of Minas Gerais, Brazil.

After obtaining the lag of the meteorological variables, in the four periods above
(item 1), they were evaluated in the MLRM, with the following general equation:

y = β0 + β1x1 + β2x2 + . . . + βρxρ + ε (3)

where:

y = Disease incidence, in percentage;
x1, x2, xp = Environmental variables;
β0 = Regression constant;
β1, β2, . . . ,βp = Partial regression parameters or coefficients;
ε = Independent random errors.

The data were analyzed to verify if they met the assumptions of the analysis of
variance, observing the Shapiro–Wilk (normality), Breush–Pagan (homoscedasticity) and
Box–Pierce (independence) (p > 0.05) tests. Afterward, the regression analyses were per-
formed to adjust the disease forecasting models.

To select the environmental variables, the Stepwise technique was used to estimate
coffee rust incidence by MLRM. As a standard, in the estimation of the parameters of the
MLRM, a least squares method was applied to minimize the sum of squares residuals [68].

The best models were selected based on the significance of meteorological variables in
the t-test of the parameters of the regression equation (p < 0.05), with higher values of R2

and R2adjusted, and lower values of the Akaike information criterion (AIC), errors, mean
of errors, standard deviations and mean squared deviations.

To assess the quality of the adjustments and identify the model with the best standard
description of disease prediction, the Akaike information criterion (AIC) was applied. The
AIC was based on information minimization or the Kullback–Leibler distance, being a
measure of proximity between the ideal (perfect) model and the candidate. An estimate of
this distance is calculated with the following equation:

AIC = −2 ln(L(θ)) + 2ρ (4)

where:

L (θ) = Estimate of the maximum likelihood function;
p = Number of parameters of the evaluated model.

The adjusted model with the lowest AIC value is considered close to ideal and,
therefore, the best adjustment [69].
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The lm function was used to adjust the MLRM, and the ggplot2 package was used to
make graphs and the maps were implemented in the open access software “R” version
3.6.2 [70]. After the adjusted models, the best models were validated from February to
October 2020 in five counties.

2.3. Phase 3: Expansion of the Warning System with New Models

From October 2020, the expansion of the forecast system to ten more counties began.
Of these, eight are in Minas Gerais and two in São Paulo state (Table 4), besides the previous
five, totaling 15 locations, or Cooxupé branches or cooperation nucleus, with complete
meteorological stations as described above. Beyond the two models selected in phase 2 to
substitute DSS 1, the DSS 2 denominated Meteorological Model was also used to forecast
or send the disease warning 15 days in advance in 15 counties. In this case, three equations
were used to send the spray warning. The trials in the five counties of phase 1 continued to
be carried out.

Table 4. Distribution of areas with meteorological stations for the validation of models of the coffee
rust prediction system in 10 municipalities in the states of Minas Gerais and São Paulo, Brazil.

Municipality Altitude (m) Latitude (S) Longitude (W)

Alfenas 1 827 21.41373 45.97055
Alpinópolis 1 935 20.84751 46.37944
Cabo Verde 1 940 21.45448 46.41182

Caconde 2 830 21.53722 46.63796
Campestre 1 1082 21.69692 46.25357

Campos Gerais 1 900 21.24417 45.75556
Coromandel 1 962 18.47386 47.21385

Guaxupé 1 870 21.28687 46.69303
Monte Carmelo 1 912 18.75402 47.51819

São José do Rio Pardo 2 755 21.63306 46.89889
1 State of Minas Gerais. 2 State of São Paulo.

The fungicide spray warning in the DSS 1 treatment was issued when two of the three
formulas calculated a disease incidence of 5% or more in three consecutive days. These three
formulas are the two formulas selected in phase 2 (Carmo do Rio Claro 15–30 DBRI and
Nova Resende 15–30 DBRI models); a third one by Hinnah et al. [34] was also incorporated.
The notification methodology for DSS 2 remained the same as for phase 2.

Despite the larger error or residual of other models compared to the two selected ones,
they were still used to calculate the disease incidence for further analysis, attempting to
prospect or select good models, but never to send the spray warnings.

At the same time, the expansion of areas with meteorological stations, the incidence
assessment in 35 other properties, was also included for the validation of these forecasting
models in different regions and localities, besides the 15 already under evaluation, totaling
50 areas for rust samplings (Figure 1).

These areas are in counties situated in the savanna biome and in southern Minas
Gerais state, Brazil, with atlantics forest, savanna and transitions area. In each county, four
stands of coffee trees were and are still being assessed on different farms, strategically
distributed and close to meteorological stations, to verify the efficiency of the proposed
models in different conditions of altitude, terrain, soil, climate and crop management.

In these areas, the disease incidence was assessed in a single plot or homogeneous
area of the farm on a monthly basis in 25 randomly-chosen-around-seven-year-old plants
of the cultivar Catuaí group. For this sample, four leaves from the second to the fourth
node of plagiotropic branches in the middle to lower third of the plant were evaluated on
the morning shade side of the plantation, totaling 100 leaves per plot.
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Figure 1. Expansion to 35 properties to validate the models developed to compose the coffee rust
forecast system in the southern and savanna municipalities of the Minas Gerais state, Brazil.

Of these 50 points, the disease progress curves evaluated in the field and the estimated
or predicted values from the multiple adjusted regression equations, as a function of the
months of the year, were plotted to assess the quality of the adjustment as well as the
forecasting system.

3. Results
3.1. Phase 1: Validation of the Models

According to the two methodologies, DSS 1 and 2, using the formulas of Pinto et al. [18]
with a control level of 5% [43], the coffee rust incidence was calculated. Spray warnings
were made available on the website. The five counties are located on the map of Minas
Gerais (Figure 2).
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Figure 2. Interface for viewing the phytosanitary warning in the municipalities of Carmo do Rio Claro, Monte Santo de
Minas, Nova Resende, Rio Paranaíba and Serra do Salitre in the state of Minas Gerais, Brazil: (a) DSS 1; (b) DSS 2.

The visualization and understanding of the warnings were simplified by the use of
the traffic light color system, where green meant “with no probability of occurrence of
rust”, yellow meant “attention required with an estimated incidence of 3 to 5%, prepare the



Agronomy 2021, 11, 2284 11 of 22

spraying logistics, and red meant “high probability of coffee rust with a disease incidence
of 5% or more after 15 days. Then spraying could be necessary”.

The estimated or calculated values were compared with the real ones sampled in the
field in the five locations throughout the trial period. The differences between the forecasts
or calculated data and the field or real values varied among counties and months of the
year (Figure 3).

The DSS 1 was replaced because in the field validation period, the 5% control level
methodology presented failures in the control of the disease, when compared to the other
models being validated. Furthermore, this methodology needs human resources available
for the assessments every fifteen days.

3.2. Phase 2: Adjustment of Forecasting Models in Five Different Counties in the State of Minas
Gerais, Brazil

Disease incidence models were adjusted as a function of the variables collected in the
five counties, using the forecasting models proposed by Pinto et al. [18], which are based
on a 5% level of disease incidence to begin the chemical control [43].

For this purpose, four models were adjusted for each county, and the best-fitted
equation was selected based on the selection criteria. Models with the lagged variables
15–30 days before disease assessments were selected since they obtained higher R2 and
R2adjusted, and lower Akaike Information Criterion (AIC) values. Furthermore, this
methodology was also employed by Pinto et al. [18] since it is within the coffee rust
incubation period [71–73]. However, the adjustment of these models included variables
that could not be obtained from less sophisticated meteorological stations.

Therefore, after singling out the variables to obtain simpler formulas capable of being
used in smaller stations of lower acquisition and maintenance value, 35 models were
adjusted for the period from October 2018 to January 2020 for the five counties. From
those, the ten best-fitted models were selected as described above, and then again, the
two most promising models to forecast coffee rust incidence with the smallest errors or
deviations were singled out, one from Carmo do Rio Claro and the other from Nova
Resende, municipalities in Minas Gerais state, Brazil.

Due to better results, the DSS 1 model, from June 2020, was replaced by these other
two new equations (Table 5). By replacing the meteorological variables (Table 3) used to
adjust the models, it is possible to obtain forecasting values for coffee leaf rust incidence.

Table 5. Estimated parameters of the adjusted models for the Carmo do Rio Claro and Nova Resende municipalities, Minas
Gerais state, Brazil.

Municipality Model 1 Equation 2

Carmo do Rio Claro 15–30 DBRI Y = −304.78667634 *** + 13.16506156 Tmax *** − 13.91295446 Tmin ***
− 0.07066871 p + 3.42680986 RHmin ***

Nova Resende 15–30 DBRI Y = 18.3098934 *** − 1.3387465 Tavg ** + 1.2618530 Tmin ** − 1.0714839 IH **
− 0.2205387 WH **

1 Model 15–30 DBRI: 15–30 days before rust incidence. 2 Regarding the significance of the equation parameters: ** p < 0.01; *** p < 0.001.

In an attempt to obtain better-fitted models, one of the hypotheses was to exclude
the harvest period and some meteorological variables not obtained in less sophisticated
meteorological stations. Thus, besides the 35 models described above, we adjusted 30 others
in the same period for those five counties, and the nine best-fitted models were singled
out according to the methodology described in Section 2.2. However, when implemented
in the platform and interface to calculate and issue the disease control warning, those
models were not promising since they displayed large errors or deviations in comparison
to previous models.
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Figure 3. Comparison of the 5% control level methodology (DSS 1) and the Model developed by
Pinto et al. [18] (DSS 2) to forecast coffee rust for the five municipalities in the Minas Gerais state,
Brazil: (a) and (b) DSS 1 and DSS 2 applied in Carmo do Rio Claro, respectively; (c) and (d) DSS 1
and DSS 2 applied in Monte Santo de Minas, respectively; (e) and (f) DSS 1 and DSS 2 applied in
Nova Resende, respectively; (g) and (h) DSS 1 and DSS 2 applied in Rio Paranaíba, respectively;
(i) and (j) DSS 1 and DSS 2 applied in Serra do Salitre, respectively.
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In the second phase of the modeling, we raised the hypothesis to elaborate meteo-
rological variables, as described in phase 2 of the methodology, from temperature and
precipitation data obtained from the five automatic meteorological stations installed by
Cooxupé. Thus, 35 models were calculated, including the coffee harvest period and
35 models excluding it. The ten best-fitted models were selected with harvest period and
nine were selected with no harvest period.

Based on the ten best-fitted models with the harvest period (Figure 4) and nine without
this period (Figure 5), we verified the error, the residual or deviations concerning rust
incidence observed in the field, which is the real data.

The models presented (Figures 4 and 5) were implemented in the interface to forecast
rust incidence in the field and are being validated.

3.3. Phase 3: Expansion of the Warning System

In phase 2 of this study, the models using two regression equations (Table 5) as
described in Section 3.2 were adjusted, and we selected those with the best adjustments
for the five counties. These two models were selected based on the parameters of the
regression equation, determination coefficient (R2), Akaike information criterion (AIC),
standard deviations and sum of the squared errors (Table 6).

Table 6. Qualitative index used to select the best models and describe the accuracy of the models for
the Carmo do Rio Claro and Nova Resende municipalities, Minas Gerais state, Brazil.

Model Determination
Coefficient 1 AIC Standard

Deviation
Sum of Squared

of Errors

Carmo do Rio Claro 15–30 DBRI 0.67 *** 4.11 8.95 155.71
Nova Resende 15–30 DBRI 0.56 *** 0.76 1.24 1.71

1 Regarding the significance of the test F: *** p < 0.001.

Afterward, we expanded those that presented promising field results to 15 more
counties in the Minas Gerais state, Brazil. Currently, incidence sampling is being carried
out in 50 areas, from which meteorological data are also being obtained to estimate rust
values and thus issue phytosanitary warnings via the constructed interface. Notifications
are issued from DSS 1 and 2 according to the methodology described above.

The incidence values calculated from the two adjusted models for Carmo do Rio Claro
(Figure 6a) and Nova Resende (Figure 6b) obtained a good fit compared with the field data.

Since October 2020, these two models have been getting validated to forecast cof-
fee rust incidence in ten counties apart from those where they were developed, total-
ing 15 municipalities (Figure 7), and from January 2021 in another 35 counties, totaling
50 places to send fungicide spray warnings.
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Figure 4. Performance of the best fitted models with forecast estimates of coffee leaf rust compared
to field observed data: (a) Carmo do Rio Claro, model 15–45 DBRI (Days before rust incidence) with
all variables; (b) Carmo do Rio Claro, model 2 15–45 DBRI excluding variables; (c) Monte Santo
de Minas, model 15–45 DBRI with all variables; (d) Monte Santo de Minas, model 2 15–45 DBRI
excluding variables; (e) Nova Resende, model 15–45 DBRI with all variables; (f) Nova Resende,
model 2 15–45 DBRI excluding variables; (g) Rio Paranaíba, model 15–45 DBRI with all variables;
(h) Rio Paranaíba, model 15–45 DBRI excluding variables; (i) Serra do Salitre, model 15–45 DBRI
with all variables; (j) Serra do Salitre, model 2 15–45 DBRI excluding variables.
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Figure 5. Performance of adjusted models excluding harvest for coffee rust forecast estimates com-
pared to field observed data: (a) Carmo do Rio Claro, model 15–45 DBRI (Days before rust incidence)
with all variables; (b) Carmo do Rio Claro, model 2 15–45 DBRI excluding variables; (c) Monte Santo
de Minas, model 15–45 DBRI with all variables; (d) Monte Santo de Minas, model 2 15–45 DBRI ex-
cluding variables; (e) Nova Resende, model 2 15–45 DBRI with variable exclusion; (f) Rio Paranaíba,
model 15–45 DBRI with all variables; (g) Rio Paranaíba, model 15–45 DBRI excluding variables;
(h) Serra do Salitre, model 15–45 DBRI with all variables; (i) Serra do Salitre, model 2 15–45 DBRI
excluding variables.
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Figure 7. Real current phytosanitary forecast system interface of the Decision Support System (DSS) project showing the
favorability of climatic conditions for the occurrence of coffee leaf rust according to the icon (green: not favorable to disease
occurrence, yellow: favorable to disease occurrence, red: very favorable to disease occurrence and white: no information) in
15 municipalities in the states of Minas Gerais and São Paulo, Brazil. * Favorability are updated daily at 10 a.m.

Currently, the Disease Support System is predicting the incidence of coffee leaf rust in
15 municipalities. The expansion of the Disease Support System to other coffee producing
municipalities in the states of Minas Gerais and São Paulo is expected in the future, and
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thus the phytosanitary forecast interface can be visualized by coffee producers with the
indication through the icon indicating the occurrence or not of coffee leaf rust.

4. Discussion

The models used for validation in the first phase did not obtain a good adjustment
in all counties as expected. Several hypotheses emerged to improve the results for new
model adjustments. Therefore, a second phase started using models adjusted with lagged
variables of 15–30 DBRI since they were the models with the best results. There was an
attempt to adjust at this stage and contemplate the premise of sending warnings of the
disease forecast or warning 15 days beforehand. From the warning send, such time is
needed for the producer to provide the spraying logistics based on the rust incubation
period. That is, before pathogen sporulation or visualization of its signs. Nonetheless, it
has already infected and colonized the coffee tree leaves [15,43].

In the second phase of adjustments, meteorological variables difficult to obtain in
some meteorological stations were excluded, so that the formulas could use data collected
from simpler systems or less sophisticated stations. It is even expected in the future to be
collected on mobile devices such as smartphones. Thus, in the second phase of the model
adjustments, new equations were obtained, two of which are under evaluation and serving
to make predictions 15 days before the visualization of the disease signs in all counties
where the experimental crops are located.

The selected models recorded coefficients of determination above 0.50 with lower
values of errors, average errors, standard deviation and mean squared deviations; such
coefficients of variation defined these disease forecasting models [33,74].

Yet in the second phase of the modeling, the meteorological variables temperature
and precipitation were used to elaborate the averages and sums of temperatures and leaf
moisture from 6 p.m. to 9 a.m. of the following day, with 6 h of free water or leaf wetness
period as the minimum time required for infection [15].

In this phase of adjustments for some variables, one day was considered the interval
from 12 h of one day to 11:59 h of the next day, as periods of leaf wetness occur between
one day and another, especially at night, with no light and milder temperatures, ideal for
germination and infection of H. vastatrix. Thus, due to its importance for urediniospore
germination and pathogen penetration, the temperatures and leaf wetness period were
collected and calculated daily [15]. These models were implemented for validation.

The meteorological and biological variables, by regression analysis, were considered
to explain coffee leaf rust epidemics [75]. In this work, the most significant meteorological
variables were identified using the Stepwise selection technique. Therefore, the model
adjusted for Carmo do Rio Claro used the maximum and minimum temperature, precipita-
tion, and minimum humidity as meteorological variables, whereas the model adjusted for
Nova Resende used the average and minimum temperature, time of insolation and relative
humidity. In each location, the weather condition is different, that is, there is variation
in the environment. With this condition, there is variation in the intensity of the disease.
Therefore, to explain the disease, for the model adjusted for Carmo do Rio Claro, the
meteorological variables are different compared to the model adjusted for Nova Resende.

In both models, they were the meteorological variables with the best correlation with
the incidence over time to explain and predict coffee rust 15 days in advance. Thus, these
models were used to start the third phase or the expansion stage of the forecast system to
15 more counties where the climatological stations were located.

In this work, the period considered to obtain the meteorological variables to model
the forecast of the coffee rust incidence was 15 to 30 days before the disease assessments or
the visualization of the disease signs. This period was considered because it is related to
the incubation period of coffee rust, ranging from 25 to 30 days [43,73] when the variables
related to leaf moisture and temperature are crucial for the infection [75].

According to Campbell and Madden [33], phytosanitary forecasting or warning sys-
tems must be built with biological and environmental data to ensure criteria of reliability,
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precision and accuracy. Based on meteorological and biological variables, the models
adjusted in this work can estimate the coffee rust incidence in the field 15 days in advance.
This period will allow better management to make decisions about the planning and lo-
gistics for disease control, thus issuing warnings when the coffee crop reaches 5% of rust
incidence [43].

Another criterion highlighted by Campbell and Madden [33] is the usefulness of
forecasting systems for crops where the diseases can be monitored and have effective
control measures, which are met by coffee rust disease. Even more, when this extreme
weather scenario is considered [3], with changes in moments of greatest incidence, espe-
cially at the beginning and end of the disease epidemic. The two best fitted models are
easy to understand and interpret. This is an important aspect for their adoption or use by
producers [76–78].

Phytosanitary forecasting or warning systems to aid decision-making for the control
of coffee diseases were developed mainly for rust [18,43,44,51,55,56]. In works involving
only regression modeling for this pathosystem, the best MLRM adjusted by Pinto et al. [18]
and Hinnah et al. [44] obtained a R2 of 80 and 86%, respectively, for the best models.
In this work, the two models under validation developed for Carmo do Rio Claro and
Nova Resende obtained a R2 of 67 and 56% in these locations, respectively. However,
both Pinto et al. [18] and Hinnah et al. [44] validated the selected models on the same data
platform used to adjust the equations. However, in this work, the variables obtained from
the meteorological stations over time are being used to forecast future disease intensity
15 days in advance, which is different from the dataset used in the elaboration of the
models. In other words, the probability of error is greater since there is no vice or repetition
of values already used in the calculation of equations.

The models adjusted for the counties of Carmo do Rio Claro and Nova Resende can
be used for other regions, as they are based only on temperature and humidity. These
meteorological variables have good spatial correlation and can be estimated, therefore, for
other regions or areas of the same county using data from the meteorological stations [79].
This same model has precipitation as one of its parameters, this meteorological variable is
limited to the place where it was obtained since it presents a significant spatial variabil-
ity [79]. Thus, it is necessary to have rain gauges or stations distributed in the intended
area so that the model’s accuracy can be increased to emit the disease control warnings, in
this case, of thousands of square kilometers, referring to the south and north of the state of
Minas Gerais, the largest Arabica coffee producing region in the world.

These models, at present, are being validated in regions where they were adjusted,
besides other locations where the meteorological variables can be obtained from already
implemented stations. According to Campbell and Madden [33], it is essential to validate
the warning system in other regions to make it credible. The results of forecasting models
based on meteorological variables can be used in different regions from where the model
was developed, but they must be tested over time. Validating these models, especially
where the rust inoculum is abundant and the variability of both coffee cultivation methods
and the pathogen biology is a reality, can adjust the parameter coefficients of regression
equations to the meteorological conditions of those regions and make the model reliable.

5. Conclusions

In Brazil, forecasting systems to support the decision-making to control coffee rust are
practically non-existent. This is probably because most of the models developed do not
meet the criterion of simplicity [33], that is, anyone with a minimum knowledge should be
able to interpret the results provided. The forecast system for rust based on meteorological
variables applied in this study is simple.

Such variables are obtained at any meteorological station and can be calculated up to
15 days in advance, enough time for planning and managing fungicide spraying in small
and large properties These were proven to be efficient in hitting the ideal time for spraying,
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mitigating application risks in a less favorable infection time by the pathogen and thus
optimizing control and increasing the sustainability of coffee growing.

The adjusted models for Carmo do Rio Claro and Nova Resende, Minas Gerais, Brazil,
were the best at predicting the disease 15 days in advance.

The meteorological variables maximum, average and minimum temperature, hours
of sunlight, precipitation, average and minimum relative air humidity were the main
variables used to model the forecast of coffee rust.

The coffee rust forecast models showed great promise for issuing coffee plantation
spraying warnings to the main producing regions of the state of Minas Gerais. However,
the performance of these models for other coffee regions, with different climatic situations
from those where they were adjusted, is being evaluated.

6. Final Considerations

Nowadays, the global concern regarding the presence of agrochemical residues in
food has been reflected in the consumers’ preferences for the trading and purchase of
agricultural products. Allied to the growing increase in certifiers for the coffee production
chain due to the concern and demand of the global population with the environment.
Therefore, researchers share a common concern to use forecasting systems or phytosanitary
alerts to optimize and even reduce fungicide applications.

The adjusted models for coffee rust forecast obtained as a function of meteorological
variables can be used to issue phytosanitary warnings and minimize the economic, social
and environmental impacts arising from the coffee rust incidence.

All models adjusted in this work that displayed good performance in the field will be
implemented in the integrated meteorology and geographic information system (GIS) at
the Cooxupé interface, with an expansion process through geoprocessing tools for the main
coffee producing regions in Minas Gerais, Brazil. With this, all producers will have access
to information from the phytosanitary alerts issued in the forecast system developed.

In the future, the results obtained in this work may serve as a basis for further coffee-
growing research focused on economically and environmentally sustainable production.
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