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Abstract: Due to a lack of water-quality studies compared with water-quantity studies, an investiga-
tion into the factors influencing the hydrochemical composition of the rivers in the Tianshan and
Altay Mountains was conducted with a model of multiple linear regression, while the suitability
of the water quality for irrigation and the health risks of arsenic (As) were assessed with classical
evaluation methods. The results suggest that 44.0% of the water samples from the Altay Mountains
fell into the Ca-HCO3 category type, 48.0% of the water samples were of the Ca-HCO3-Cl type, and
the remaining samples belonged to the Ca-Na-HCO3-Cl type. In the Tianshan Mountain area, 58.6%
of the water samples fell into the Ca-HCO3 hydrochemical category, 20.7% of the water samples
were of the Ca-HCO3-Cl type, and 20.7% of the water samples belonged to the Ca-Na-HCO3-Cl
type. The major ions in the water were dominated by the control of the water and rock interaction.
The interaction between water and rock in the Altay area controlled 69.2% of the overall variance in
the As content in the river waters, and it dominated 76.2% of the variance in the Tianshan region.
The river waters in the Altay and Tianshan Mountain regions are suitable for agricultural irrigation
with excellent-to-good water quality. The results also suggest that there is no non-carcinogenic risk
and that the carcinogenic risk is between the acceptable/tolerable risk range of 10−6–10−4, except
only one sample in Tianshan Mountain region. The research methodology provided a reference for
revealing the potential sources of toxic element pollution, and the results provided a scientific basis
for regional agricultural irrigation, as well as a reference for decision making on the environmental
protection of the watershed.

Keywords: water quality; agricultural irrigation; arsenic; human health risk; Altay and Tianshan
Mountains; Central Asia; China

1. Introduction

Water resources are important for human survival and development and are an im-
portant strategic resource to ensure sustainable social development, particularly for arid
regions [1]. For a long time, water shortages and water pollution have been the most
difficult issues in the management and protection of water-environment safety at home
and abroad, and in some areas, water safety has become a major problem limiting the sus-
tainable and healthy development of agriculture [2–4]. The mountain–oasis (basin) system
in arid Central Asia has obvious spatial distribution characteristics [5,6]. The mountain
system is the formation area for water resources in arid areas and is also an important
mineral nutrient reservoir. The oasis system is an area with relatively high agricultural and
industrial productivity and is the center of human survival and development. The river
becomes the link between the mountain system and the oasis system and is the foundation
for ecological construction and economic development in arid areas. The composition of
major ions in river water is one of the most important indicators of river water quality
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and contains important environmental information on things, such as climate, bedrock
type, and human activity in the watershed [7], and it is the most basic indicator for irriga-
tion evaluation and drinking-water-safety evaluation [8,9]. In recent years, scholars have
paid much attention to the water-resource and environmental problems in the western
part of the Tianshan [10,11] and Altay [12,13] Mountains (Mts.), and among these, the
soil problems [14–16] and overall water quantity of the rivers [17–19] in the regions of
the Tianshan and Altay Mts. have been studied; however, there is still a lack of basic
information on water quality. The study of the water chemistry of rivers and influencing
factors is not only of great practical significance for domestic and industrial water uses and
agricultural irrigation, but can also provide important support for ecological protection
and the sustainable use of water resources.

The issue of potentially toxic elements in river waters has received widespread atten-
tion worldwide due to the easy accumulation of these elements, environmental toxicity,
and persistence [20,21]. With rapid population growth and the expansion of industrial and
agricultural production scales, many hazardous substances, particularly potentially toxic
elements, are discharged into rivers, causing a direct or indirect threat to direct drinking
water and indirect irrigation [22,23]. Although trace amounts of potentially toxic elements
are necessary for organisms, higher concentrations are extremely toxic to the human body,
causing liver and kidney dysfunction, genetic toxicity, and carcinogenesis [24,25]. In view
of the arsenic (As) toxicity among the potentially toxic elements [26], As pollution has
always been a focus of concern [27–29]. From the existing research, the As content of
groundwater in Central Asia is at a global high level [30], and there are few studies on As
in surface water [31,32]. Studying the basic characteristics of the content, spatial distribu-
tion, and source of As in water bodies is of great significance to the proposal of effective
measures for regional-water-resources protection and pollution control. The unknown
As content in the surface waters of Central Asia affects the utilization of water resources,
agricultural irrigation, and aquaculture in the basin, and ultimately, human health.

To reveal: (1) the spatial differences in the water chemistry of the rivers in the Altay
and Tianshan Mts.; (2) the main factors affecting the water-chemistry characteristics of
the rivers; and (3) the suitability of the rivers for agricultural irrigation and the risks to
human health from As, the water chemistry in the Altay and Tianshan Mts. region was
studied using statistical methods, hydrochemical diagrams, and evaluation methods for
agricultural irrigation and human health in this paper. The study provides a scientific basis
for the conservation and sustainable use of regional water resources.

2. Materials and Methods
2.1. Regional Setting

The Altay Mountains (Figure 1) stretch from northwest to southeast and stand in the
arid desert and arid semi-desert zone in the hinterland of Asia. The entire region has a
typical temperate continental climate. The Altay Mountains lie on the borders of China,
Russia, and Mongolia. The Altay Mountains are affected by a westerly airflow all year
round, which deepens along the Irtysh River valley and is blocked by the Altay Mountains
and uplifted, producing precipitation. There are two large rivers originating from the
southern slope of the mountain in China: the Irtysh River and the Ulungur River [33]. The
two rivers flow from southeast to northwest along the structural line. The Irtysh River
is the only river in China that flows into the Arctic Ocean. Its tributaries merge roughly
in parallel on the north side of the Irtysh River, forming a comb-like water system, with
the amount of water increasing along the way. The tributaries of the Ulungur River are
braided water systems. They have no tributaries below the site of A05 (Figure 2), and the
water volume decreases along the way. Ultimately, they flow into the Ulungur Lake and
become an inland river.
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Figure 1. The location of the Altay and Tianshan Mts. in Central Asia and the geographical location 
of Figure 2a,b). The topography was based on SRTM 90m Digital Elevation Database v4.1 
(http://srtm.csi.cgiar.org, accessed on 20 August 2021) 

 
Figure 2. The water-sample locations in the regions of the Tianshan (a) and Altay (b) Mts. The 
globe land cover map was based on GlobCover2009 from European Space Agency GlobCover Por-
tal (http://due.esrin.esa.int/page_globcover.php, accessed on 20 August 2021). 
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The Tianshan Mountains (Figure 1) lie across Central Asia. They are mainly distributed
in Xinjiang in China. The east-west length is about 2500 km, the north-south width is
approximately 250–300 km, and the average altitude is about 2 km. The total area is
5.7 × 104 km2 [34]. The Tianshan Mountains divide Xinjiang into two parts: the Tarim
Basin in the south and the Junggar Basin in the north. Due to its location in the westerly
zone and its enormous height and unique mountain orientation, the Tianshan Mountains
intercept a large amount of water vapor from the Atlantic and Arctic Oceans, which brings
a large amount of precipitation, making it a water tower in arid areas, with many inland
rivers originating here [35]. The Bortala River is in the Bortala Mongolian Autonomous
Prefecture in northwestern Xinjiang, China. It is the most important water source for Lake
Ebinur (Figure 2).

2.2. Sample Collection and Analysis

During the farmland irrigation period, in May 2020, 25 river water samples (A01–
A25) were collected in the Altay Mountains and 29 river water samples in the Tianshan
area (T01–T29) (Figure 2). The distribution of sample points is shown in Figure 2. A
multiparameter water-quality meter (Hana HI 9828, Hanna Instruments, Inc., Padova,
Italy) was used to measure the pH and electrical conductivity (EC) on site. All containers
for storing and processing the samples were soaked in 10% nitric acid for 24 h, then
washed with deionized water for use. They were then rinsed three times with raw water
onsite before sampling, and water samples were collected 0.5 m below the water surface
with an upright sampler. After that, the collected river water samples were stored in
a 1.5 L polyethylene terephthalate bottle, which was rinsed with sampling water three
times. After the water sample was collected, it was filtered through a 0.45 µm filter
(cellulose acetate) and collected in a high-density polyethylene tube for measuring the
ion content. The cations Ca2+, K+, Mg2+, and Na+, as well as the anions Cl− and SO4

2−,
were determined with an ion chromatography system (Dionex ICS-5000, Thermo Fisher
Scientific Inc., Waltham, MA, USA). The concentration of the anions HCO3

− and CO3
2− was

measured by potentiometric titration with a Mettler G20 potentiometric titrator (Mettler
Toledo AG, Greifensee, Switzerland). The charge balance error percentage (CBE) [36] was
between 0.4 and 4.5, which is less than ±5%. After the water samples were filtered through
a 0.45 µm microporous membrane, 200 mL was acidified with a 0.6 mL nitric acid solution
(volume ratio 1:1), and the As content in the solution was analyzed with an Agilent 8800
inductively coupled plasma mass spectrometer (Agilent Technologies, Santa Clara, CA,
USA) [7,37].

To ensure the accuracy of the data during the experiment, national standard samples,
blank samples, and parallel samples were used in the analysis and determination for the
whole analytical quality control process, and the recovery rate was between 98.1% and
103.1%. The detection limit (LOD) of As was 0.0627 µg L−1. After all the samples were
tested, 15% of the total samples were taken for repeatability inspection. The test results
show that the relative error of this test was about 5%.

2.3. Risks of Aquatic As on Water Quality for Irrigation and Human Health

The human health risks for non-carcinogenic and carcinogenic elements were calcu-
lated using Equations (1)–(8) below [38–40].

ADDing = C × IngR × EF × ED
BW × AT

(1)

ADDderm = C ×
SA × Kp × ET × EF × ED × f1

BW × AT
(2)

HQing = ADDing/R f Ding (3)

HQderm = ADDderm/R f Dderm (4)

HI = HQing + HQderm (5)



Agronomy 2021, 11, 2270 5 of 18

CRing = ADDing × CSFing (6)

CRderm = ADDderm × CSFderm (7)

CI = CRing + CRderm (8)

The parameters used in the equations are defined in Table S1. HQ < 1 means no
significant risk, and HQ > 1 means non-carcinogenic effects may occur [41]. The accept-
able/tolerable risk range for CI is 10−6–10−4 [41].

2.4. Mathematical Methods and Classification Diagrams

In a Piper diagram, the relative content of cations is shown in the triangle on the left,
and the relative content of anions is shown in the triangle on the right. The diamond is
a comprehensive result of the relative content of all ions in the water sample [42]. Using
a United States salinity diagram (USSL) [43], the irrigation waters were divided into
16 categories according to the sodium adsorption ratio (SAR) [43] and conductivity. A
Wilcox diagram [44], reflecting the relationship between conductivity and Na% [45], was
used to evaluate the water quality of the irrigation water. Gibbs diagrams [46] and mixing
diagrams [47] were used to determine the influences of the river hydrochemistry.

Multiple linear regression [48] and correlation analysis [49] were used to reveal the
relationship among the major ions and As and to discuss the possible factors influencing
the content of As in the waters. The above-mentioned statistical methods were conducted
with OriginPro 2022 (64-bit) Beta4 (OriginLab, Northampton, MA, USA).

3. Results
3.1. Water Chemistry of Rivers in Tianshan and Altay Mts.

A descriptive statistical analysis of the river-water-chemistry variables in the regions
of the Tianshan and Altay Mts. are shown in Tables 1 and 2, respectively. pH was used
as the standard to measure the acidity and alkalinity of natural waters. The pH value of
the river waters in the Tianshan Mts. varied from 8.21 to 8.95, with an average value of
8.53. The pH value of the river waters in the Altay Mts. varied from 7.42 to 8.23, with an
average value of 7.83. The river water was generally alkaline, and the range of change
was not large; in addition, the pH characteristics were also in line with the environmental
quality standards for surface water in China (GB 3838–2002) (the standard for pH is 6–9).

Table 1. Descriptive statistical analysis of river-water-chemistry variables in Tianshan Mts. area
(n = 29). Parameters include: mean value, standard deviation (SD), standard error of mean (SE),
minimum (Min), median, and maximum (Max) value.

Variable Unit Mean SD SE Min Median Max

TDS mg L−1 246 115 21.5 86.1 209 450
pH / 8.53 0.160 0.03 8.21 8.50 8.95
EC µS cm−1 356 155 28.9 137 311 595
Cl− mg L−1 14.3 13.0 2.41 1.06 6.44 35.9

SO4
2− mg L−1 67.5 47.3 8.78 14.4 47.6 152

Ca2+ mg L−1 52.8 16.5 3.06 25.0 54.4 98.8
K+ mg L−1 2.32 0.760 0.141 1.30 2.02 3.60

Mg2+ mg L−1 7.83 4.73 0.878 1.72 6.94 22.7
Na+ mg L−1 21.4 16.5 3.06 2.48 13.8 46.8

CO3
2− mg L−1 1.52 0.810 0.150 0 1.30 2.94

HCO3
− mg L−1 157 45.1 8.38 79.4 168 240

As µg L−1 12.2 7.82 1.45 1.21 11.2 35.0
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Table 2. Descriptive statistical analysis of river-water-chemistry variables in Altay Mts. region
(n = 25). Parameters include: mean value, standard deviation (SD), standard error of mean (SE),
minimum (Min), median, and maximum (Max) value.

Variable Unit Mean SD SE Min Median Max

TDS mg L−1 126 89.9 18.0 31.0 148 405
pH / 7.83 0.210 0.0420 7.42 7.95 8.23
EC µS cm−1 202 120 24.0 65.9 233 573
Cl− mg L−1 7.06 7.72 1.54 1.07 8.22 33.4

SO4
2− mg L−1 35.0 34.4 6.88 4.18 40.3 144

Ca2+ mg L−1 32.4 17.9 3.57 11.7 34. 5 80.4
K+ mg L−1 1.50 0.560 0.112 0.630 1.89 2.52

Mg2+ mg L−1 4.26 3.64 0.728 0.930 4.86 17.3
Na+ mg L−1 12.6 12.2 2.44 2.600 12.0 54.0

CO3
2− mg L−1 0 0 0 0 0 0

HCO3
− mg L−1 65.7 31.7 6.35 18.6 75.7 147

As µg L−1 0.730 0.400 0.080 0.240 1.04 1.60

Electrical conductivity (EC) reflects the ionic strength of water and is an important
indicator of water chemical composition. The electrical conductivity of natural water has a
certain correlation with the total dissolved solids (TDS) in the water. The EC value of the
river waters in the Altay Mts. ranged from 65.9 to 573 µS cm−1, with an average value of
202 µS cm−1. The EC value of the river waters in the Tianshan Mts. ranged from 137 to
595 µS cm−1, with an average value of 356 µS cm−1.

Total dissolved solids (TDS) is one of the most important indicators for evaluating
basin-water quality. The content of TDS is comprehensively affected by the geological
conditions in the basin, the source of supply, climatic factors, human activities, and so on.
The TDS of the river waters in the Altay Mts. ranged from 31.0 to 405 mg L−1, with an
average of 126 mg L−1. The TDS of the river waters in the Tianshan Mts. ranged from 86.1
to 450 mg L−1, with an average value of 246 mg L−1.

Analyzing the cation content in the water samples from the Altay Mts. (Table 2), it
was found that the concentration of each cation in the river water was Ca2+ > Na+ > Mg2+

> K+, and the average values of Ca2+, Na+, Mg2+, and K+ were 32.4 mg L−1, 12.6 mg L−1,
4.26 mg L−1, and 1.50 mg L−1, respectively. The highest content of Ca2+ was between 11.7
and 80.4 mg L−1, accounting for a total mass concentration of cations of 52.2–73.7%, while
K+ only accounted for 1.63–3.98% of the total mass cation concentration. The order of the
anion concentration was HCO3

− > SO4
2− > Cl−, and the average ion content for HCO3

−,
SO4

2−, and Cl− was 65.7 mg L−1, 35.2 mg L−1, and 7.06 mg L−1, respectively. The highest
content of HCO3

− fell in between 18.6 and 147 mg L−1, accounting for 45.3–78.0% of the
total mass concentration of anions.

For the cation content in the water samples from the Tianshan Mts. (Table 1), it was
found that the concentration of each cation in the river water was also Ca2+ > Na+ > Mg2+

>K+, and the average values of Ca2+, Na+, Mg2+, and K+ were 52.8 mg L−1, 21.4 mg L−1,
7.83 mg L−1, and 2.32 mg L−1, respectively. The highest content of Ca2+ was between 25.0
and 98.8 mg L−1, accounting for a total mass cation concentration of 57.5–82.0%, while
K+ only accounted for 2.95% of the total mass cation concentration. The order of the
anion concentration was HCO3

− > SO4
2− > Cl− > CO3

2−, and the average ion content
for HCO3

−, SO4
2−, Cl−, and CO3

2− was 157.3 mg L−1, 67.5 mg L−1, 14.3 mg L−1, and
1.52 mg L−1, respectively. The highest content of HCO3

− fell between 79.4 and 240 mg L−1,
accounting for 55.8–83.7% of the total mass concentration of anions, while SO4

2− accounted
for 15.1–35.2% of the total anion concentration. In addition, Cl− accounted for 1.12–8.33%
and CO3

2− for 0–0.680% of the total anion concentration. There were obvious differences
in As content in the two regions. The average level of As in the rivers in the Tianshan
Mountains was 12.2 µg L−1, which exceeds the safety limit of 10 µg L−1 [50].



Agronomy 2021, 11, 2270 7 of 18

Piper diagrams were produced based on the equivalent concentrations of anions and
cations (milliequivalents per liter, mEq L−1) in the water samples. In the cation triangle
diagram (Figure 3), the distribution of water samples in the Altay Mts. was relatively
concentrated, mainly in the lower left corner. Ca2+ was the main cation, accounting
for 28.3–37.9% of the total ions in milliequivalents per liter, with Mg2+ accounting for
6.04–10.02%, and Na+ + K+ accounting for 6.65–17.2%. In the anion triangle diagram, the
sample points mainly fell in the left line. The HCO3

− with the highest anion content
accounted for 17.0–36.8% of the total ions in milliequivalents; the second was SO4

2−, which
accounted for 4.63–21.1%, and the Cl− content was the lowest, 1.87–7.84%. Regarding the
classification types [51], 11 water samples fell under the Ca-HCO3 category type (A01,
A02, A03, A05, A09, A10, A11, A18, A21, A22, and A24), 12 water samples were of the
Ca-HCO3-Cl type (A04, A06, A07, A12, A13, A14, A15, A16, A17, A19, A20, and A23), and
2 water samples belonged to the Ca-Na-HCO3-Cl type (A08 and A25).
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In the cation triangle diagram for the river waters in the Tianshan Mts (Figure 4), the
distribution of water samples was relatively scattered compared with the water samples
in the Altay Mts. Ca2+ was also the main cation, accounting for 15.5–28.7% of the total
ions in milliequivalents per liter, with Mg2+ accounting for 3.15–10.7% and Na+ + K+

accounting for 3.20–13.6%. Compared with the river waters in the Altay Mountains, the
relative equivalent content of calcium was significantly lower. The HCO3

− + CO3
2− with

the highest anion content accounted for 18.5–29.2% of the total ions in milliequivalents.
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Regarding the classification type, 17 water samples fell under the Ca-HCO3 category type,
6 water samples were of the Ca-HCO3-Cl (T18, T19, T21, T25, T27, and T29) type, and
6 water samples belonged to the Ca-Na-HCO3-Cl type (T20, T22, T23, T24, T26, and T28).
According to the distribution of sample points in Figure 1, the latter two types of water
bodies were mainly distributed in the lower reaches of the river.
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3.2. Applicability for Irrigation and Human Health Risk Evaluation

First, as can be seen from the USSL diagram (Figure 5), the degree of salinity risk and
sodium hazard was divided into: C1 (low salinity risk) in the range of
<250 µS cm−1, C2 (medium salinity risk) of 250 µS cm−1–750 µS cm−1, C3 (high salinity
risk) of 750 µS cm−1–2250 µS cm−1, and C4 (high salinity risk) of >2250 µS cm−1. Subse-
quently, according to the degree of hazard, waters were divided into S1 (low), S2 (medium),
S3 (high), and S4 (very high). It can be seen from the USSL diagram (Figure 5) that the
range of EC varied from 65.90 to 573.00 µS cm−1 for the water in the Altay Mts. The
range of EC for the rivers in the Tianshan Mts. region was 137 µS cm−1–595 µS cm−1. The
samples all fell under the C1 and C2 categories. Among those, 84% of the water samples
from the Altay Mts. rivers and 27.6% of the Tianshan Mts. river water samples belonged to
the C1–S1 category, with a low salinity risk and a low sodium hazard. In addition, 16% of
the water samples from the Altay Mts. rivers and 72.4% of the Tianshan Mts. river water
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samples belonged to the C1–S2 category, with a low salinity risk and a medium sodium
hazard. In general, the water quality of the rivers is suitable for irrigation.

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. The irrigation assessment for the water samples from the regions of the Tianshan and Altay 
Mts. using a United States salinity diagram (USSL). 

Generally, the water quality in the Wilcox diagram is divided into five types (Figure 6): 
excellent-to-good water quality, good-to-permissible water quality, permissible-to-doubt-
ful water quality, doubtful-to-unsuitable water quality, and unsuitable water quality cat-
egories. If the water-sample points fall in a category with excellent-to-good water quality, 
this agricultural irrigation water will not cause soil alkalization. However, if they fall in 
the category where the water quality is good-to-permissible, irrigation may cause the risk 
of soil alkalization, but the risk is relatively small and appropriate measures can be taken 
to prevent the occurrence of soil alkalization. From the water samples in the Wilcox dia-
gram (Figure 6), 100% of the water samples from the rivers in the Altay and Tianshan Mts. 
fell in the irrigation water category with excellent-to-good water quality. 
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States salinity diagram (USSL).

Generally, the water quality in the Wilcox diagram is divided into five types (Figure 6):
excellent-to-good water quality, good-to-permissible water quality, permissible-to-doubtful
water quality, doubtful-to-unsuitable water quality, and unsuitable water quality categories.
If the water-sample points fall in a category with excellent-to-good water quality, this
agricultural irrigation water will not cause soil alkalization. However, if they fall in the
category where the water quality is good-to-permissible, irrigation may cause the risk of
soil alkalization, but the risk is relatively small and appropriate measures can be taken to
prevent the occurrence of soil alkalization. From the water samples in the Wilcox diagram
(Figure 6), 100% of the water samples from the rivers in the Altay and Tianshan Mts. fell in
the irrigation water category with excellent-to-good water quality.

From the perspective of non-carcinogenic risk (Figure 7), the risk of As in the water in
the two regions was less than 1, reflecting that there was no non-carcinogenic risk. For river
water in the Altay Mts., the maximum non-carcinogenic risk from ingestion and dermal
contact was 3.31 × 10−3 and the minimum was 4.88 × 10−4. For the Tianshan area, the
maximum value was 7.26 × 10−2 and the minimum value was 2.50 × 10−3.

For river water in the Altay Mts., the minimum carcinogenic risk from ingestion and
dermal contact was 9.78 × 10−6 and the maximum was 6.65 × 10−5. For the Tianshan area,
the maximum value was 1.46 × 10−3 and the minimum value was 5.01 × 10−5.
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4. Discussion
4.1. The Sources of Major Ions for the Waters in the Altay and Tianshan Mts.

The hydrochemical type of water chemistry is a direct reflection of the ion composition
in the water. The ions in river water mainly come from inputs from rock weathering,
atmospheric precipitation, and human activity. They are a comprehensive manifestation of
the influence of climatic conditions, evaporation, the dissolved salt cycle from atmospheric
precipitation, rock composition, and human activity. A Gibbs diagram can intuitively
express three water-chemistry control modes in a watershed. The process of water-chemical
composition is atmospheric precipitation control, rock weathering control, and evaporation
and crystallization control [47,52–54]. As shown in Figure 8, the Cl−/(Cl− + HCO3

−)
values of most of the river water samples were between 0.05 and 0.28, and the value of
Na+/(Na+ + Ca2+) was between 0.12 and 0.37 in the Altay Mts. The Cl−/(Cl− + HCO3

−)
value of the river water samples in the Tianshan Mts. was between 0.02 and 0.26, and the
value of Na+/(Na+ + Ca2+) was between 0.08 and 0.40. Therefore, in general, almost all
the sampling data of the Tianshan and Altay Mts. rivers fall within the rock weathering
control. The main components of the water from the two watersheds basically belong
to “rock dominance”. From the mixing diagram [55,56] with end-members of carbonate,
granite/silicate, and evaporites, the ionic components of the river water bodies in the two
regions come from a mixture of three rock types.
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For a single ion component, if the Ca2+ originated from gypsum dissolution, the
Ca2+/SO4

2− ratio would be close to 1 [57]. However, in the present study, the Ca2+/SO4
2−

ratio was much greater than 1 (Figure 9), indicating that the excess Ca2+ came from
the dissolution of carbonate or silicate minerals. When the basin water is mainly af-
fected by carbonate weathering, due to the subsequent chemical weathering process, the
(Ca2+ + Mg2+)/HCO3

− equivalent concentration ratio is about 0.5 [37,58]. From the water
equivalent ratio diagram of the Tianshan and Altay Mts. (Figure 9), the points of the
samples all fell above the 1:1 ratio line. The slope for the Tianshan Mts. was 1.0, and the
slope for the Altay Mts. was 1.6, indicating that the water ions in the two basins were
only affected by carbonate weathering. If the Ca2+/Mg2+ ion ratio is higher than 2, the
natural process is silicate weathering [57]. Similarly, in this region, Ca2+/Mg2+ ratios were
much higher than 2, suggesting that the main Ca2+ ions were mainly influenced by silicate
weathering processes. This is consistent with the fact that the sample point in the mixed
diagram was closer to the silicate end-member.
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Generally, the Na+ in river water comes from the weathering of evaporite and silicate.
If the equivalent concentration ratio is 1:1, this indicates that the Na+ in the water body in
the basin mainly comes from the dissolution of evaporite. The ratio points of river water
samples all fell on the 1:1 relationship line, which is above the 1:2 line. It can be inferred
that the amount of Na+ from the weathering of silicate was slightly more than the amount
from the dissolution of evaporite.

For the arid regions of Central Asia, rivers are the lifeblood of agriculture. Through
analysis, it was found that the river water in the Tianshan and Altay Mts. is suitable for
agricultural irrigation. However, there is a certain feedback effect. With the increase in
the intensity of oasis development, and while a large amount of river water is used for
irrigation, the river will bring a large amount of salt into it through the interaction with
the soil, and it will be used for irrigation again. Thus, the irrigation water will become too
alkaline or too salty. The growth of crops has an impact. Therefore, oasis development
must be controlled at an appropriate scale to achieve a harmonious coexistence of the river
environment with the oasis environment.

4.2. The Influencing Factors on As and Health Risk Assessment in the Altay and Tianshan
Mts. Waters

There was a certain correlation between As and the single major ion, but the correlation
was not significant (Figure 10). Does the inconsistency with the single major ion indicate a
difference in chemical origin? In this paper, through the establishment of a multivariate
review model (the units for the major ion are mEq L−1), it was found that As did not
originate from a single rock, but was a mixed product of multiple types. The model for
the river waters in the Altay Mts. was As = −0.94 × Ca − 4.61 × (Na + K) − 1.69 × Mg
+ 3.91 × Cl + 3.33 × SO4 + 1.16 × (HCO3 + CO3) + 0.770 (R2 = 0.692). The model for the
Tianshan Mts. was As = –1.49 × Ca + 26.8 × (Na + K) + 31.8 × Mg − 3.76 × Cl − 24.7 ×
SO4 + 1.25 × (HCO3 + CO3) + 2.0 (R2 = 0.762) (Figure 11). Since the ion composition is
mainly affected by the interaction between water and rock, the interaction between water
and rock in the river water in the Altay area controlled 69.2% of the overall variance of the
As content. Furthermore, it reflected 76.2% of variance in the Tianshan Mts. The difference
in As content reflected the difference in regional geological background. However, the As
content in the river waters of the Tianshan Mountains was much higher than that in the
Altay region, but this did not indicate that the former was more strongly affected by human
activity. However, we also need to realize that the As content in 58.6% of the sampling
points in the Tianshan Mountains exceeded the safety limit in this study, even if the safety
limit was set at 10 µg L−1 [50].

From the perspective of the factors that control the As level in the water, although
As is mainly affected by the interaction of water and rock, the influence of human activity
is also a factor that cannot be ignored. From the perspective of carcinogenic risk, the
risk of As in the water in Altay Mts. was within the acceptable/tolerable risk range of
10−6–10−4 [41,59,60]. However, the carcinogenic risks of As in the rivers of the Tianshan
area were significantly higher than that in the Altay region. Except for one sample point
(TS25) that exceeded the acceptable range, the rest of the sample points were within the
acceptable range. It is necessary to strengthen the analysis of the source of As pollutants
and environmental controls. The above mentioned was based on the results of health
risks caused by direct contact between the human body and water bodies. However, river
waters in arid areas are used as direct sources of irrigation water, and arsenic in water
bodies accumulates in the soil through irrigation, then transfers to food crops, which has
an impact on humans [61–63]. Research in the geochemical study of As in the whole chain
of river–soil–crop–human also needs to be strengthened in the future, especially in the
Tianshan oasis area with its high As content in the river water bodies.
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5. Conclusions

In this study, the influencing factors on the water-chemical characteristics of the two
main rivers in the Tianshan and Altay Mountains were discussed, and the suitability of the
water quality for irrigation and the health risks of As were evaluated. The main conclusions
of the discussion are as follows.

(1). In the area of the Altay Mts., following the Piper diagram classification type, 44.0% of
the water samples fell into the Ca-HCO3 category, 48.0% of the water samples were
of the Ca-HCO3-Cl type, and the remainder belonged to the Ca-Na-HCO3-Cl type.
In the area of the Tianshan Mts., 58.6% of the water samples fell into the Ca-HCO3
hydrochemical type, 20.7% of the water samples were of the Ca-HCO3-Cl type, and
20.7% of the water samples belonged to the Ca-Na-HCO3-Cl type. The major ions in
the water were dominated by the control of the water and rock interaction.

(2). The interaction between the water and the rock in the Altay Mts. area controlled 69%
of the overall variance in the As content in the river waters, and it dominated 76% of
the variance in the Tianshan Mts. The difference in As content reflected the difference
in regional geological background.

(3). Of the water samples from the rivers in the Altay and Tianshan Mts., 100% were
suitable for agricultural irrigation with excellent-to-good water quality. From the
perspective of non-carcinogenic/carcinogenic risks, it was found that there was no
non-carcinogenic risk and the carcinogenic risk was within the acceptable/tolerable
range of 10−6–10−4. However, the non-carcinogenic/carcinogenic risks of As in rivers
in the Tianshan area were significantly higher at 1.66 times the risks in the Altay area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11112270/s1, Table S1: Definitions and values of parameters used in Equations (1)–(8)
for human health risk calculations.
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