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Abstract: Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major
foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba).
Although chemical control of this disease is an option, it has serious economic and environmental
drawbacks that make resistant cultivars a more sensible choice. The molecular mechanisms behind
the defense against B. fabae are poorly understood. In this work, we studied the leave proteome in two
faba bean genotypes that respond differently to B. fabae in order to expand the available knowledge
on such mechanisms. For this purpose, we used two-dimensional gel electrophoresis (2DE) in
combination with Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF/TOF). Univariate
statistical analysis of the gels revealed 194 differential protein spots, 102 of which were identified by
mass spectrometry. Most of the spots belonged to proteins in the energy and primary metabolism,
degradation, redox or response to stress functional groups. The MS results were validated with
assays of protease activity in gels. Overall, they suggest that the two genotypes may respond to
B. fabae with a different PSII protein repair cycle mechanism in the chloroplast. The differences in
resistance to B. fabae may be the result of a metabolic imbalance in the susceptible genotype and
of a more efficient chloroplast detoxification system in the resistant genotype at the early stages
of infection.

Keywords: Botrytis fabae; faba bean; resistance; proteomic analysis; photosystem II repair cycle

1. Introduction

By virtue of its high nutritional value, faba bean (Vicia faba L.) is an important food
legume for human consumption and livestock feeding [1]. In fact, it is regarded as an excel-
lent protein crop on the basis of its ability to provide nitrogen inputs into temperate agricul-
tural systems, and also because of its increased yield potential and nitrogen-fixing capacity
relative to other grain legumes [2,3]. Faba bean is the fourth most widely grown cool season
grain legume (pulse) globally after pea (Pisum sativum), chickpea (Cicer arietinum) and lentil
(Lens culinaris) (FAOSTAT 2019; https://www.fao.org, accessed on 15 September 2021).
However, its yield is greatly affected by some environmental conditions, including biotic
and abiotic stresses [3,4].

The necrotrophic fungus Botrytis fabae Sard. (teleomorph: Botryotinia fabae Lu & Wu)
causes chocolate spot, which is one of the most destructive diseases for faba bean plants
worldwide [5,6]. Infected plants exhibit chocolate-colored lesions on aboveground parts
and, especially, on leaves. The disease, which starts in bean crops where inoculum is
present in residues from previous years or in contaminated seeds [7], may be especially
aggressive under high humidity and temperature conditions. Such conditions can lead to
extensive necrosis of plant tissues and severe damage, and can also favor the spread of the
pathogen to other plants [8]. Prolonged favorable conditions for B. fabae growth can result
in considerable economic crop losses through reduced grain yields and quality [9]. The
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severity of chocolate spot epidemics can be mitigated with integrated disease management
strategies, such as the use of clean seeds, crop rotations, lower planting densities, appli-
cation of fungicides and selection of more resistant plant varieties [6,10]. Although some
germplasm accessions have shown moderate to high levels of resistance [11], resistant
cultivars adapted to different cultivation areas are scarcely available.

As a necrotrophic pathogen, B. fabae must kill and decompose host cells in order to
feed on them. The fungus can infect plants via a variety of mechanisms mediated by lytic
enzymes, toxins, stress-induced reactive oxygen species (ROS), necrosis-secreted proteins
and a wide variety of secondary metabolites [12–16]. On the other hand, plants can stop
the progression of the fungus by using constitutive or infection-induced mechanisms.
Such mechanisms can be of the physical (cuticle and cell wall) [17,18] or chemical type
(phytoanticipins and phytoalexins) [19], but can also involve induction of pathogenesis-
related proteins or defensins, or accumulation of antimicrobial compounds [20,21].

Plants are known to accumulate ROS in response to necrotrophic fungi [22–27] and
faba bean cultivars have been found to respond to B. fabae with differential ROS accumula-
tion, lipid peroxidation and enzymatic ROS scavenging activity [28]. Recently, enhanced
functionality in photosystem II (PSII), probably resulting from ROS accumulation in re-
sponse to short-time exposure to B. cinerea, was reported in tomato plants [27]. However,
little is known about the specific molecular mechanisms by which plants respond to
B. fabae. A transcription factor (TF) analysis of the response of M. truncatula to B. fabae and
B. cinerea [29] revealed some TFs to be involved in differential responses and others to be
responsible for resistance to the two pathogens.

To our knowledge, few omics studies have focused on plant responses to Botrytis. As
confirmed by using mutants at the transcriptomic level, Arabidopsis thaliana and tomato
possess some genes whose expression is related to B. cinerea resistance. Such defense-
related genes include some encoding PR protein 1 (PR1), β-1,3-glucanase and subtilisin-like
protease, and other proteins involved in secondary metabolite synthesis (reviewed in [15]),
but still others are involved in responses to abiotic stresses, such as signaling hormone
pathways, which affect photosynthesis, and protein synthesis and transport [15,30,31].
Even fewer proteomics studies have addressed plant–Botrytis interactions [32,33] and most
have focused on the pathogen B. cinerea (reviewed in [15]). Thus, Marra et al. used 2DE
coupled to Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF) analysis [32] to
examine the interaction of beans with B. cinerea and Trichoderma. They found pathogenesis-
related proteins and other disease-related factors, such as potential resistance genes, to
be seemingly associated with interactions with both the pathogen and Trichoderma. In
addition, a shotgun proteomic study of B. cinerea-infected tomato fruit at different ripening
stages identified a substantial number of proteins responsible for pathogenicity (mainly PR
and disease resistance proteins, proteases and peroxidases), as well as others protecting the
fruit from the oxidative stress response by the host [33].

In the absence of a reference genome assembly for Vicia faba owing to its enormous size
(13 Gbp) and complexity (e.g., abundance of transposable elements), high-throughput meth-
ods, such as transcriptome analysis, have proved efficient for enriching genomic resources
(reviewed in [1]). However, only limited DNA sequence data from reported transcriptome
datasets have been made available on public databases [34]. Using high-throughput omic
technology can no doubt help expand existing knowledge of the plant–pathogen interaction
and provide a basis for developing improved crop breeding programs. The main aim of
this work was to go deeper into the knowledge of the molecular mechanisms underlying
the defense against B. fabae in faba bean. For this purpose, we studied the leave proteome
in two faba bean genotypes that respond differently to B. fabae by using two-dimensional
gel electrophoresis (2DE) in combination with (MALDI-TOF/TOF) mass spectrometry
(MS). Some results of the MS analysis were validated by assays of protease activity in gels.
Overall, the results suggest that the key to stopping the spread of the pathogen onto leaves
is mainly a regulatory ROS production mechanism occurring in the chloroplast.
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2. Materials and Methods
2.1. Plant Material and Sample Collection

Two faba bean genotypes known to exhibit a contrasting response to B. fabae were
used, namely: Baraca as susceptible genotype and BPL710 as resistant genotype [10,35].
Seeds of the two genotypes were grown in 1 L pots filled with a (1:1) sand–peat mixture
under controlled conditions: (20 ± 2) ◦C, 12 h dark/12 h light photoperiod and a photon
flux density of 150 µmol m−2 s−1.

A total 27 plants per genotype were used, with leaves being sampled from
12 inoculated plants and 12 uninoculated (control) plants of each. Three other plants were
inoculated and were used to score disease symptoms. Plants were inoculated according to
Villegas-Fernandez et al. [35], with B. fabae local monosporic isolate (Bf-CO-05) being grown
on Petri dishes containing V8 medium and spores suspended at a 4.5 × 105 spores/mL
concentration in a glucose/water solution (1.2% w/v). Three-week-old plants were then
sprayed with the suspension at a rate of 1.5 mL/plant and incubated in a growth chamber
at a relative humidity above 95% in the dark. By contrast, control (uninoculated) plants
were sprayed with a glucose solution containing no spores. Disease symptoms were evalu-
ated after restoring the photoperiod 24 h later but keeping the relative humidity above 90%.
Evaluations were done two and six days after inoculation (dai). Disease severity (DS) was
calculated by visual estimation of the proportion of plant surface covered with chocolate
spots, with estimates being corrected by increasing the weight of the aggressive lesions by
50% with the formula DS = (% nonaggressive lesions) + 1.5 × (% aggressive lesions). The
results thus obtained were analyzed statistically with the software Statistix 8 (Analytical
Software, Tallahassee, FL, USA). Data were subjected to the arcsin

√
x transformation

in order to offset evaluation bias and to increase normality in their distribution prior to
analysis of variance (ANOVA).

Faba leaves for proteomic analyses were collected at two different times while both
control and inoculated plants were still under incubation in the dark [35]. Sampling was
done 6 h post-inoculation (hpi)—an early time at which no symptoms were apparent—
and then 12 hpi—when the earliest symptoms of chocolate spots became macroscopically
visible. All of the leaves from six individual plants (three biological replicates from two
plants each) per condition (treatment and sampling time) were collected, frozen in liquid
nitrogen and stored at −80 ◦C until protein extraction.

2.2. Protein Extraction and Gel Electrophoresis

Faba leaves samples (ca. 0.5 g fresh weight) from three independent replicates per
treatment, sampling time and genotype were crushed with liquid nitrogen in a precooled
mortar to obtain a fine powder. Proteins were extracted into TCA–phenol [36] and the
resulting pellets were resuspended in a solubilization buffer containing 7 M urea (Merck,
Kenilworth, NJ, USA), 2 M thiourea (Sigma–Aldrich, St. Louis, MI, USA), 2% (w/v) CHAPS
(Sigma–Aldrich), 2% (v/v) Bio-Lyte 3–10 carrier ampholytes (BioRad, Hercules, CA, USA),
2% (w/v) DTT (Sigma–Aldrich) and Bromophenol Blue traces (Sigma–Aldrich). Protein
concentrations were determined with the Bradford assay (BioRad) and proteins were then
separated in 2D electrophoresis gels.

For 2DE analysis, 18-cm IPG DryStrips (Amersham Biosciences, Amersham, UK) were
used with nonlinear pH gradients over the range 3–10. Strips were rehydrated passively
for 6 h and then actively at 50 V for a further 6 h with 300 µL of sample buffer containing
an amount of 400 µg of protein. Strips were loaded onto a PROTEAN IEF System (BioRad),
focused at 20 ◦C with an increasing linear voltage and equilibrated according to Castillejo
et al. [37]. They were then transferred onto vertical slabs of 10% SDS polyacrylamide gels.
Electrophoresis runs were done at 30 V at 15 ◦C for 30 min, and then at 60 V for about 14 h
until the dye front reached the bottom of the gel. The gels were loaded with broad-range
molecular markers (Bio-Rad) and, after electrophoresis, stained with Coomassie Brilliant
Blue G-250 [38].
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2.3. Image Acquisition and Statistical Analysis

Gels were scanned with the Molecular imager FX ProPlus Multi-imager system
(BioRad) and the images thus obtained (Supplementary Figure S1) were analyzed with the
software PDQuest Advanced v. 8.0.1 (BioRad), using 10 times the background signal as
the presence threshold for spots. The quantitative data gathered from the spots in each gel
(viz., normalized spot volumes given as individual spot intensity/normalization factor)
were used to designate differences when comparing gel images. A multivariate statistical
analysis of the entire data set was performed by using the web-based software tool NIA
array [39]. Those spots showing significant differences (p ≤ 0.05) in intensity, exhibiting a
minimum change of ±2 and being consistently present among replicates were selected for
further MS/MS analysis.

2.4. Protein Identification by Mass Spectrometry (MALDI-TOF/TOF)

Differential gel spots were excised for digestion with trypsin [40] and peptide frag-
ments from digested proteins were analyzed by mass spectrometry. For that purpose,
peptides were crystallized in an α-cyano-4-hydroxycinnamic acid matrix and subjected
to MALDI-TOF/TOF analysis over the m/z range 800–4000 by using a 4800 Proteomics
Analyzer (Applied Biosystems, Foster City, CA, USA) at an accelerating voltage of 20 kV.
Spectra were internally calibrated against peptides from trypsin autolysis (M + H+ = 842.509,
M + H+ = 2211.104) and the five most abundant peptide ions in each spectrum were used
for fragmentation analysis to elucidate peptide sequences. A combined peptide mass
fingerprinting (PMF)/tandem mass spectrometry (MS + MSMS) search was performed by
using the software GPS Explorer™.5 (Applied Biosystems) over the nonredundant NCBInr
database restricted to Viridiplantae taxonomy in combination with the MASCOT search
engine (Matrix Science, London; http://www.matrixscience.com accessed on 15 September
2019). The following parameters were allowed: a minimum of two peptides matches and a
single trypsin miscleavage, and peptide modifications by carbamidomethylcysteine and
methionine oxidation. The maximum tolerance for peptide mass matching was limited to
20 ppm. The score level and a minimum of four peptides per protein were chosen as PMF
confidence parameters. Proteins were characterized in functional terms against the NCBInr
database (https://www.ncbi.nlm.nih.gov/guide/proteins/, accessed on 15 October 2021).
In addition, BLAST analysis (tblastn) was performed for all the identified proteins using
the reference transcriptome Vicia faba RefTrans v2 (2017), with 37,378 sequences deposited
in Pulse Crops Database (https://www.pulsedb.org/, accessed on 15 October 2021). Only
matches with an expectation (E) value of ≤ 1 × 10−6 were considered. Mass spectrometry
analyses were conducted at the Proteomics Facility of the Central Research Support Service
(SCAI) of the University of Córdoba (Spain).

2.5. Zymography

Proteins from leaves (200 mg of frozen powdered tissue) were extracted with a mixture
of 200 mM TrisHCl at pH 7.4, 3% (w/v) insoluble polyvinylpolypyrrolidone (PVPP), 10%
(v/v) glycerol, 5 mM diethiothreitol (DTT) and 0.25% (v/v) Triton X-100. Samples were
allowed to stand on ice for at least 10 min and were then centrifuged at 16,000× g at 4 ◦C
for 30 min, with the proteins present in the supernatant then being quantified with the
Bradford assay [41].

SDS-PAGE slabs containing 0.1% gelatin and 9% acrylamide were analyzed according
to Heussen and Dowdle [42]. Thus, samples containing 100 µg of protein were diluted
with a nondenaturing Laemmli buffer [62.5 mM TrisHCl, 10% (v/v) glycerol, 0.001% (w/v)
Bromophenol Blue] and loaded onto 1 mm thick gel slabs for electrophoresis at 50 V at
4 ◦C for 30 min, with the voltage being raised to 80 V until the front reached the end of the
gel. The gels were loaded with Spectra Multicolor Broad Range Protein Ladder (Thermo
Scientific). After electrophoresis, gels were incubated in 2.5% (v/v) Triton X-100 at room
temperature under constant agitation for 30 min to remove SDS. They were then washed
with distilled water three times to remove Triton X-100 and incubated in a proteolysis

http://www.matrixscience.com
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buffer (100 mM citrate buffer, Na2HPO4/citric acid pH 6.8, 4 mM DTT and 10 mM cysteine)
under constant agitation at 35 ◦C overnight. Proteolysis was stopped by transferring the
gels to a solution containing 0.1% (w/v) Coomassie Brilliant Blue R-250 [43]. Finally, the
gels were destained in a solution containing 40% methanol and 10% acetic acid until clear
bands formed over a dark blue background.

3. Results
3.1. Disease Assessment

As can be seen in Figure 1, twelve hpi symptoms of B. fabae infection were already
visible in the susceptible genotype (Baraca), but not in the resistant genotype (BPL710).
Analyses of variance of the DS results revealed that the Baraca genotype was strongly
affected both 2 and 6 dpi (average DS 23.9 and 52.5, respectively). On the other hand, the
BPL710 genotype was highly resistant (ANOVA p ≤ 0.05) in both samplings (average DS
11.6 and 14.6, respectively) (Figure 1; Supplementary Figure S2).
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Figure 1. Contrasting response to B. fabae infection of three-week-old faba bean plants of Baraca
(susceptible genotype) and BPL710 (resistant genotype) 12 h after inoculation.

3.2. Two-Dimensional Gel Electrophoresis and MSMS Analysis

Image analysis with the software PDQuest allowed, on average, 224 individual protein
spots to be detected (Figure 2a; Supplementary Table S1). In addition, a hierarchical
clustering analysis clearly separated the genotypes into two clusters (Figure 2b), thus
confirming the reproducibility of the experiment. Principal component analysis (PCA)
allowed 194 differential protein spots from the entire dataset to be identified by comparing
genotypes (susceptible and resistant) and treatments (uninoculated and inoculated) in both
samplings (6 and 12 hpi) (Figure 2c). The first two principal components (PCs) jointly
explained 70% of the total variability in the data, PC1 separating genotypes. The PCs for
individual genotypes explained 74% and 86% of variability in the susceptible and resistant
genotype, respectively (Figure 2d,e). In both cases, samples clustered by sampling times.
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Figure 2. Typical Coomassie Brilliant Blue 2DE gel results for the susceptible genotype. (a) Den-
drogram showing hierarchical clustering of experimental conditions. (b) Two-dimensional biplots
showing associations between all experimental conditions in both genotypes (c), or independent
genotypes (d,e), as generated by principal component analysis (PCA). Dendrogram and PCA data
were obtained from average values under each set of experimental conditions: Susceptible (S) and
resistant (R) genotypes; control (C) and B. fabae inoculated (I); 6 hpi (1) and 12 hpi (2).

Spots were classified as variable if they met the following criteria: (a) being consis-
tently present or absent in the three replicates under each set of experimental conditions;
(b) exhibiting at least a two-fold change in abundance ratio; and (c) exhibiting statistically
significant differences (p ≤ 0.05) between genotypes or treatments. A total of 129 protein
spots were thus selected for MALDI-TOF/TOF analysis.

3.3. Protein Identification and Abundance Pattern Analysis

A protein search against the Viridiplantae index in the nonredundant NCBI database
was performed and a total of 102 proteins were thus identified with high confidence
(Table 1; Supplementary Figure S3), 70% of which matched legume species. Most of the
proteins met the confidence identification criteria [viz., a score higher than 70 and at least
four peptides per protein except for three spot proteins (viz., SSP 2802, 5002 and 11, which
should be considered with caution)]. The proteins thus identified belonged to the main
functional groups of energy and primary metabolism [photosynthesis (30) and other energy
metabolism (6), carbohydrate (12) and amino acid metabolism (9)], followed by proteins of
degradation (10), redox and response to stress groups (8) (Figure 3a).
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Table 1. Proteins identified by MALDI-TOF MS analysis.

SSP a Protein Name (% Identity to V. faba
Transcriptome Entry) b

NCBI
Accession Score c Species PM c/

Coverage %

Mr/pI
Experimental

(Theoretical) d
Functional Category

More/Less Abundance Change Ratio (FDR) e

S1 S2 R1 R2 R
S 1 R

S 2

3504 Enolase (93.3% Vf _0033189) gi|42521309 261 Glycine max 10/28 57.2/5.7 (48.0/5.3) Carbohydrate met. 3.0 6.3 1.0 1.0 0.0 0.0

6302 Isocitrate dehydrogenase [NADP],
chloroplastic (88.1% Vf _0028303) gi|2497259 153 Medicago sativa 17/40 44.9/6.2 (48.7/6.2) Carbohydrate met. 0.4 9.0 0.8 0.6 1.2 0.6

2204 Fructose-1,6-bisphosphatase (93.2%
Vf _0032848) gi|5305145 109 Pisum sativum 4/14 40.0/5.5 (36.3/6.3) Carbohydrate met. 16.4 6.7 1.7 0.2 0.4 0.9

6203
Fructose-bisphosphate aldolase,
cytoplasmic isozyme 1 (77.9%

Vf _0020212)
gi|1168408 352 Pisum sativum 15/54 39.4/6.5 (38.7/6.4) Carbohydrate met. 1.1 3.8 1.5 1.5 0.3 0.1

4104 Fructose-bisphosphate aldolase 2,
chloroplastic (80.6% Vf _0020212) gi|461501 183 Pisum sativum 10/37 38.4/5.8 (38.0/5.5) Carbohydrate met. 0.6 1.2 27.6 0.2 0.5 1.6

5103 Fructose-bisphosphate aldolase 2,
chloroplastic (80.6% Vf _0020212) gi|461501 474 Pisum sativum 17/51 36.8/6.3 (38.0/5.5) Carbohydrate met. 3.8 1.9 27.7 0.0 0.3 1.5

105
N-glyceraldehyde-2-

phosphotransferase-like (84.2%
Vf _0017868)

gi|8885622 133 Arabidopsis
thaliana 7/22 33.4/5.2 (32.0/5.1) Carbohydrate met. 6.4 0.8 0.5 1.0 0.2 0.0

1007 Triose-phosphate isomerase (75.1%
Vf _0012679) gi|15226479 205 Arabidopsis

thaliana 9/25 29.5/5.6 (33.6/7.7) Carbohydrate met. 3.6 2.3 1.1 1.2 0.5 0.2

2002 Triose-phosphate isomerase (75.1%
Vf _0012679) gi|15226479 292 Arabidopsis

thaliana 11/29 29.1/5.8 (33.6/7.7) Carbohydrate met. 10.4 5.1 1.9 1.1 0.5 0.2

3004 Triose-phosphate isomerase (89.1%
Vf _0024793) gi|57283985 165 Phaseolus vulgaris 7/31 21.9/5.6 (27.4/5.9) Carbohydrate met. 2.2 4.7 1.0 0.4 0.0 1.6

2705 Phosphoglucomutase, cytoplasmic
(97.9% Vf _0002214) gi|12585296 109 Pisum sativum 10/8 74.3/5.6 (63.5/5.5) Carbohydrate met. 9.5 0.0 1.0 1.0 0.0 0.0

3702 Phosphoglucomutase, cytoplasmic
(97.9% Vf _0002214) gi|12585296 222 Pisum sativum 10/23 70.8/5.7 (63.5/5.5) Carbohydrate met. 6.3 19.0 0.4 0.9 2.3 8.8

603 Beta-amylase (88.5% Vf _0019893) gi|3913031 149 Medicago sativa 7/17 61.3/5.0 (56.5/5.3) Major CHO met. 3.1 8.2 1.0 0.5 1.0 1.6

4808
Methionine synthase/Cobalamin-

independent synthase family protein
(94.5% Vf _0005324)

gi|219522337 104 Cicer arietinum 12/19 92.8/5.9 (84.6/6.0) Amino acid met. 6.9 190.5 1.5 0.7 3.4 20.1

5805
Methionine synthase/Cobalamin-

independent synthase family protein
(94.5% Vf _0005324)

gi|219522337 312 Cicer arietinum 15/26 93.2/6.0 (84.6/6.0) Amino acid met. 20.8 50.3 0.5 0.7 5.2 4.0

5808
Methionine synthase/Cobalamin-

independent synthase family protein
(94.5% Vf _0005324)

gi|219522337 344 Cicer arietinum 20/31 92.2/6.1 (84.6/6.0) Amino acid met. 3.2 25.4 0.3 2.3 3.9 1.0

2402 Alanine aminotransferase (82.2%
Vf _0008300) gi|29569153 140 Oryza sativa 8/17 54.1/5.6 (54.0/8.0) Amino acid met. 8.1 17.6 0.7 2.9 2.4 0.8

3402 Alanine aminotransferase 2 (82.2%
Vf _0008300) gi|29569153 104 Oryza sativa 4/9 54.1/5.7 (54.0/8.0) Amino acid met. 63.4 0.0 1.3 1.4 51.7 11.9

1402 5-enolpyruvylshikimate 3-phosphate
synthase (79.5% Vf _0032499) gi|55740769 73 Camptotheca

acuminate 8/14 52.1/5.2 (56.1/8.2) Amino acid met. 0.0 1.0 1.0 1.0 0.0 1.0

3613 Ketol-acid reductoisomerase
chloroplastic (97.3% Vf _0004275) gi|6225542 560 Pisum sativum 23/43 61.5/5.7 (63.2/6.6) Amino acid met. 12.0 0.5 0.7 0.4 2.2 0.4

7501 Serine hydroxymethyltransferase 2
(91.7% Vf_0037308) gi|222142531 203 Glycine max 13/29 57.1/6.9 (55.0/8.2) Amino acid met. 2.1 1.7 1.6 1.0 0.3 0.0
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1104 Putative lactoylglutathione lyase
(78.0% Vf _0028431) gi|15810219 183 Arabidopsis

thaliana 8/26 33.4/5.3 (32.0/5.1) Amino acid met. 3.7 1.2 0.6 0.4 0.5 0.4

7602 Chain A, Dihydrolipoamide
Dehydrogenase (99.6% Vf _0005095) gi|9955321 337 Pisum sativum 22/62 57.4/6.4 (50.0/6.1) Lipid metabolism 51.2 25.1 0.9 0.8 7.7 1.9

2102
Pyruvate dehydrogenase E1

component subunit beta, mitochondrial
(96.1% Vf _0005095)

gi|1709454 171 Pisum sativum 6/18 39.3/5.5 (39.0/5.9) Lipid metabolism 0.7 6.7 1.0 1.0 0.0 0.0

3705 Zeaxanthin epoxidase, chloroplastic
(72.1% Vf _0030326) gi|5902706 92 Solanum

lycopersicum 5/9 74.3/5.8 (73.6/6.2) Hormone met. 1.0 1.0 0.6 1.1 ∞ ∞

5601 Polyphenol oxidase A1, chloroplastic
(98.5% Vf_0006701) gi|1172586 254 Vicia faba 8/8 64.9/6.0 (68.9/7.0) Pigment biosynt. 0.0 1.0 1.0 1.0 0.0 1.0

5603 Polyphenol oxidase A1, chloroplastic
(98.5% Vf _0006701) gi|1172586 253 Vicia faba 9/13 64.7/6.0 (68.9/7.0) Pigment biosynt. 9.5 0.0 1.0 1.0 0.0 0.0

4607 Polyphenol oxidase A1, chloroplastic
(98.5% Vf _0006701) gi|1172586 274 Vicia faba 9/12 64.4/5.9 (68.9/7.0) Pigment biosynt. 1.0 1.0 0.0 1.0 ∞ 1.0

4605 Polyphenol oxidase A1, chloroplastic
(98.5% Vf _0006701) gi|1172586 151 Vicia faba 11/13 61.8/5.8 (68.9/7.0) Pigment biosynt. 8.7 0.6 1.0 1.0 0.0 0.0

2103 Coproporphyrinogen-III oxidase,
chloroplastic (70.9% Vf _0022525) gi|2493810 148 Nicotiana tabacum 4/11 38.6/5.6 (45.3/7.6) Co-factor and

vitamine met. 7.7 1.2 1.0 1.0 0.0 0.0

2601 ATP synthase CF1 alpha subunit (96.7%
Vf _0021629) gi|219673973 546 Trifolium

subterraneum 19/36 59.9/5.4 (55.7/5.1) Energy metabolism 2.1 2.7 28.2 0.0 1.5 4.6

1601 ATP synthase CF1 alpha subunit (95.3%
Vf _0021629) gi|139387459 126 Phaseolus vulgaris 9/20 57.0/5.3 (55.7/5.2) Energy metabolism 0.6 1.2 1.5 1.3 22.4 2.3

604
ATP synthase CF1 beta subunit ATP
synthase alpha/beta family protein

(97.6% Vf _0007913)
gi|295136979 572 Pisum sativum 18/48 58.9/5.2 (53.2/5.1) Energy metabolism 0.7 2.7 1.0 1.6 9.0 2.3

505
ATP synthase CF1 beta subunit ATP
synthase alpha/beta family protein

(97.6% Vf_0007913)
gi|295136979 882 Pisum sativum 26/65 57.9/5.2 (53.2/5.1) Energy metabolism 2.0 17.9 1.2 1.9 5.8 9.5

1503 ATP synthase CF1 alpha subunit (95.4%
Vf _0021629) gi|295137014 573 Pisum sativum 21/38 56.5/5.3 (54.7/5.7) Energy metabolism 4.5 3.2 1.2 0.9 3.9 2.7

1501
ATP synthase CF1 beta subunit ATP
synthase alpha/beta family protein

(97.6% Vf_0007913)
gi|295136979 755 Pisum sativum 21/51 56.2/5.2 (53.2/5.1) Energy metabolism 2.4 1.5 1.3 1.2 1.5 1.2

9701 Sulfite reductase (96.4% Vf _0029426) gi|119225844 129 Pisum sativum 17/25 75.6/8.8 (77.3/9.1) S metabolism ∞ 1.0 1.0 1.0 1.0 1.0
3704 Transketolase (95.5% Vf _0028016) gi|4586600 214 Cicer arietinum 3/30 82.8/5.8 (17.1/5.8) Photosynthesis 11.3 7.0 1.2 1.0 35.9 3.2
3706 Transketolase (95.5% Vf _0028016) gi|4586600 91 Cicer arietinum 4/44 82.7/5.8 (17.1/5.8) Photosynthesis 4.0 4.0 1.0 0.5 18.0 2.8
4704 Transketolase (95.5% Vf_0028016) gi|4586600 86 Cicer arietinum 4/44 82.5/5.9 (17.1/5.8) Photosynthesis 3.8 17.1 0.6 0.7 6.4 1.7
4702 Transketolase (95.5% Vf _0028016) gi|4586600 189 Cicer arietinum 5/48 81.6/5.8 (17.1/5.8) Photosynthesis 3.8 3.1 1.0 1.1 8.1 1.5

1604
RuBisCO large subunit-binding protein
subunit beta chloroplastic/chaperonin

subunit beta (96.3% Vf _0035079)
gi|2506277 423 Pisum sativum 16/39 67.8/5.5 (63.3/5.8) Photosynthesis 19.1 30.5 0.9 0.4 11.5 9.4

2602
RuBisCO large subunit-binding protein
subunit beta chloroplastic/chaperonin

subunit beta (96.3% Vf _0035079)
gi|2506277 72 Pisum sativum 11/27 66.8/5.6 (63.3/5.8) Photosynthesis 1.8 2.4 2.2 0.5 1.9 1.5
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1606
RuBisCO large subunit-binding protein
subunit beta chloroplastic/chaperonin

subunit beta (96.3% Vf _0035079)
gi|2506277 257 Pisum sativum 10/26 65.7/5.5 (63.3/5.8) Photosynthesis 0.9 3.7 1.5 0.5 5.9 4.1

601

RuBisCO large subunit-binding protein
subunit alpha chloroplastic

/chaperonin-60alpha (98.4%
Vf_0031659)

gi|1710807 480 Pisum sativum 19/36 65.8/5.0 (62.0/5.2) Photosynthesis 2.4 5.2 0.7 0.2 1.0 3.3

4501
Ribulose-1,5-bisphosphate

carboxylase/oxygenase large subunit
(95.9% Vf_0007913)

gi|825737 556 Carya illinoinensis 20/40 57.1/5.8 (51.6/6.1) Photosynthesis 26.5 7.5 0.5 37.7 4.3 2.8

4505
Ribulose-1,5-bisphosphate

carboxylase/oxygenase large subunit
(96.5% Vf_0007913)

gi|33113311 584 Carya ovate 23/42 55.8/5.9 (51.4/6.1) Photosynthesis 5.1 1.7 6.2 1.4 41.3 3.3

4406
Ribulose-1,5-bisphosphate

carboxylase/oxygenase large subunit
(95.6% Vf _0007913)

gi|21634071 485 Cressa depressa 23/44 55.5/5.8 (50.6/6.7) Photosynthesis 3.3 4.3 0.1 17.6 38.4 17.3

5507
Ribulose-1,5-bisphosphate

carboxylase/oxygenase large subunit
(96.4% Vf_0007913)

gi|225544093 709 Caragana
camilli-schneideri 25/45 54.4/6.0 (52.8/6.3) Photosynthesis 1.9 1.4 0.8 2.4 41.8 2.0

5408
Ribulose-1,5-bisphosphate

carboxylase/ oxygenase (95.7%
Vf _0007913)

gi|74179244 619 Aristolochia arborea 23/44 52.5/6.1 (52.0/6.1) Photosynthesis 14.6 1.3 0.9 0.7 21.7 7.2

5407
Ribulose-1,5-bisphosphate

carboxylase/ oxygenase large subunit
(95.3% Vf _0007913)

gi|62861204 759 Paracroton
zeylanicus 25/50 50.8/6.2 (52.0/6.0) Photosynthesis 14.1 0.9 0.6 0.9 11.2 3.7

2304 Phosphoglycerate kinase chloroplastic
(86.1% Vf _0006851) gi|129915 192 Triticum aestivum 9/19 49.6/5.6 (50.0/6.6) Photosynthesis 96.2 2.6 1.0 1.0 0.0 0.0

2301 Phosphoglycerate kinase chloroplastic
(86.1% Vf _0006851) gi|129915 254 Triticum aestivum 7/16 46.1/5.6 (50.0/6.6) Photosynthesis 12.8 3.9 6.9 0.8 6.3 4.6

2303 Phosphoglycerate kinase chloroplastic
(85.6% Vf _0006851) gi|2499497 571 Nicotiana tabacum 15/33 44.5/5.6 (50.3/8.5) Photosynthesis 3.2 3.7 2.5 1.5 3.7 1.7

7503
Ribulose-1,5-bisphosphate

carboxylase/ oxygenase large (95.9%
Vf_0007913)

gi|825737 372 Carya illinoinensis 21/42 56.2/6.7 (51.6/6.1) Photosynthesis 3.5 6.8 0.9 1.8 98.3 3.2

6418
Ribulose-1,5-bisphosphate

carboxylase/ oxygenase (95.7%
Vf_0007913)

gi|74179244 589 Aristolochia arborea 24/42 53.7/6.3 (52.0/6.1) Photosynthesis 15.2 1.7 0.8 1.4 1.3 2.5

8308 Geranylgeranyl hydrogenase (91.3%
Vf _0032793) gi|19749359 267 Glycine max 18/38 48.6/8.7 (51.7/9.1) Photosynthesis 1.7 5.0 0.9 0.4 2.1 5.9

203 Sedoheptulose-1,7-bisphosphatase
(81.8% Vf _0007079) gi|229597543 230 Cucumis sativus 9/21 42.8/5.2 (42.5/5.9) Photosynthesis 2.4 3.2 1.0 0.7 1.6 1.4

3202 Sedoheptulose-1,7-bisphosphatase
(81.8% Vf _0007079) gi|229597543 215 Cucumis sativus 12/34 42.6/5.6 (42.5/5.9) Photosynthesis 5.5 11.2 1.5 3.3 1.7 1.5

1204 Phosphoribulokinase (99.1%
Vf _0003052) gi|1885326 350 Pisum sativum 14/46 41.4/5.4 (39.2/5.4) Photosynthesis 2.4 2.5 4.8 0.9 2.3 2.7
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2202 Phosphoribulokinase (99.1% _0003052) gi|1885326 160 Pisum sativum 7/27 41.1/5.5 (39.2/5.4) Photosynthesis 1.2 1.5 1.2 0.8 3.4 2.0

1201
Photosystem II stability/assembly

factor HCF136, chloroplast precursor
(78.8% Vf _0033934)

gi|255559812 237 Ricinus communis 8/20 41.1/5.3 (43.4/7.1) Photosynthesis 1.3 2.2 1.8 2.0 0.5 0.3

3107 Aldolase (80.8% Vf _0017749) gi|169039 137 Pisum sativum 9/27 38.5/5.6 (38.0/5.5) Photosynthesis 2.3 1.6 5.3 1.2 0.3 1.7
3105 Aldolase (80.8% Vf _0017749) gi|169039 88 Pisum sativum 8/29 38.0/5.6 (38.0/5.5) Photosynthesis 0.0 0.1 ∞ 0.8 0.0 0.1

1001 Chloroplast chlorophyll a/b binding
protein (99.2% Vf _0037012) gi|157786302 265 Pisum sativum 10/34 30.3/5.2 (28.4/5.5) Photosynthesis 0.9 0.8 6.8 0.9 0.3 1.4

4306 Transaminase mtnE, putative (80.9%
Vf _0021772) gi|255562088 159 Ricinus communis 5/11 46.2/5.9 (50.9/6.9) Photosynthesis 1.2 4.4 1.0 1.0 0.0 0.0

401

Chloroplast ribulose-1,5-bisphosphate
carboxylase activase (81.0%

Vf _0005564) gi|115392208 122 Triticum aestivum 6/21 51.7/5.1 (40.3/6.5) Photosynthesis 0.9 0.0 1.0 1.0 0.0 0.0

1502 UDP-glucose pyrophosphorylase
(89.7% Vf _0034269) gi|12585472 271 Astragalus

penduliflorus 12/29 54.1/5.3 (51.6/5.9) Protein synthesis 1.1 2.3 1.0 1.0 0.0 0.0

2801 ClpC protease (92.1% Vf _0007069) gi|4105131 70 Spinacia oleracea 12/16 96.6/5.6 (99.6/8.8) Protein degrad. 6.7 8.8 0.5 0.4 8.9 2.7

2804 ClpC protease (98.5% Vf _0007069) gi|461753 145 Pisum sativum 19/26 96.1/5.6
(102.8/6.6) Protein degrad. 5.3 1.6 0.3 1.4 20.0 1.2

1802 ATP-dependent Clp protease (98.5%
Vf _0007069) gi|461753 383 Pisum sativum 26/33 95.3/5.3

(102.8/6.6) Protein degrad. 2.3 6.4 1.5 1.2 1.1 1.7

2703 Cell division protease ftsH homolog,
chloroplastic (91.1% Vf _0034616) gi|17865463 262 Medicago sativa 16/30 75.4/5.6 (75.8/5.6) Protein degrad. 5.9 7.0 1.1 1.6 0.9 0.2

2707 Cell division protease ftsH homolog
chloroplastic (91.1% Vf _0034616) gi|17865463 140 Medicago sativa 10/19 74.8/5.7 (75.8/5.6) Protein degrad. 14.1 60.9 0.6 0.8 4.0 3.5

2706 Cell division protease ftsH homolog,
chloroplastic (91.1% Vf _0034616) gi|17865463 315 Medicago sativa 21/38 70.9/5.7 (75.8/5.6) Protein degrad. 2.9 6.0 0.6 1.2 2.7 0.9

1702
Putative zinc dependent

protease/FTSH protease 8 (87.0%
Vf _0002195)

gi|84468324 206 Trifolium pretense 11/22 74.5/5.3 (75.4/5.5) Protein degrad. ∞ 8.0 0.7 1.6 ∞ 1.2

2101 Serine-type endopeptidase (96.5%
Vf _0035526) gi|270342123 70 Phaseolus vulgaris 5/15 39.5/5.4 (45.2/7.7) Protein degrad. ∞ 1.0 1.0 1.0 1.0 1.0

2802 Ubiquitin-specific-processing protease
8 (62.7% Vf _0023012) gi|257050978 61 Arabidopsis

thaliana 13/27 99.1/5.2 (90.7/5.5) Protein degrad. 1.0 10.4 1.0 1.0 1.0 0.0

3803 ATP-dependent Clp protease/CLPC
homologue 1 (98.5% Vf _0007069) gi|461753 308 Pisum sativum 19/26 83.8/5.7

(102.8/6.6) Protein degrad. 7.3 13.4 1.7 1.6 8.2 3.0

702
Chaperone DnaK (stromal 70 kDa heat

shock-related protein, chloroplastic)
(93.7% Vf _0024557)

gi|92870233 955 Medicago
truncatula 27/38 81.5/5.0 (75.8/5.2) Stress response 3.5 4.5 1.6 0.6 4.2 3.0

1701 Heat shock protein 70 (92.1%
Vf _0006213) gi|56554972 562 Medicago sativa 23/40 81.8/5.3 (71.4/5.1) Stress response 3.6 4.5 2.1 0.8 1.7 5.3

2701 Heat shock 70 kDa protein
mitochondrial (93.1% Vf _0016658) gi|585272 216 Pisum sativum 14/26 76.2/5.6 (72.4/5.8) Stress response 13.1 11.1 1.0 1.0 0.0 0.0

4302 Monodehydroascorbate reductase I
(92.0% Vf _0006284) gi|51860738 167 Pisum sativum 10/24 47.9/5.8 (47.4/5.8) Stress response 3.7 2.2 6.4 1.0 1.4 0.3

3001 L-ascorbate peroxidase, cytosolic
(60.9% Vf _0035596) gi|1351963 171 Pisum sativum 8/34 31.0/6.1 (27.2/5.5) Stress response 1.9 0.5 1.1 0.6 0.5 2.1
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3103
CDSP32 protein (Chloroplast

Drought-induced Stress Protein of 32
kDa) (69.4% Vf _0033087)

gi|2582822 133 Solanum tuberosum 4/14 33.8/6.0 (33.8/8.1) Stress response 0.9 0.8 0.3 0.2 0.4 0.7

1206
NADPH-dependent alkenal/one

oxidoreductase, chloroplastic (85.3%
Vf _0022282)

XP_003532009.1 190 Glycine max 6/28 40.6/5.4 (31.2/9.2) Redox 1.0 1.0 1.0 ∞ 1.0 1.0

11 Thioredoxin peroxidase (80.1%
Vf _0034677) gi|21912927 108 Nicotiana tabacum 3/16 21.6/5.2 (30.1/8.2) Redox 2.4 0.3 16.3 0.6 0.0 0.7

5305 GDP-D-Mannose 3′ ,5′-Epimerase
(90.2% Vf _0021019) gi|15241945 108 Arabidopsis

thaliana 8/26 49.6/6.0 (43.1/5.8) Cell wall 8.0 19.0 1.0 1.0 0.0 0.0

502 Hydroxyproline-rich glycoprotein
family protein gi|18411523 147 Arabidopsis

thaliana 9/13 60.7/4.8 (49.4/5.2) Cell wall 3.8 2.0 0.8 0.7 0.8 0.6

4404 Gdp-Mannose-3′ , 5′-Epimerase (89.9%
Vf _0021019) gi|83754656 112 Arabidopsis

thaliana 9/22 50.6/5.9 (43.2/5.8) Cell wall 0.5 3.7 1.0 1.0 0.0 0.0

101 PAP fibrillin (84.1% Vf _0025094) gi|87240799 268 Medicago
truncatula 8/18 34.4/4.9 (34.1/4.9) Cell organization 1.4 1.7 1.8 0.5 0.2 1.5

1308 Actin (99.7% Vf _0005527) gi|34541966 560 Trifolium pretense 16/51 47.9/5.5 (41.9/5.3) Cell organization 0.7 12.9 0.4 7.7 3.1 0.5
1404 Actin (99.1% Vf _0028038) gi|1498334 113 Glycine max 8/39 49.3/5.3 (37.3/5.5) Cell organization 2.6 11.5 1.0 1.0 0.0 0.0
1304 Actin (99.7% Vf _0005527) gi|34541966 431 Trifolium pretense 16/53 49.0/5.3 (41.9/5.3) Cell organization 0.8 8.7 1.0 1.8 0.5 0.6
3205 Actin (94.3% Vf _0008358) gi|1498384 172 Zea mays 5/19 39.7/5.6 (37.3/5.5) Cell organization 0.0 6.4 1.0 1.0 0.0 0.0

3302 Elongation factor Tu (97.5%
Vf _0005994) gi|6015084 284 Pisum sativum 17/35 48.1/5.6 (53.1/6.6) Transcription/

Translation ∞ 2.8 2.5 1.2 ∞ 0.8

3309 Elongation factor Tu (97.5%
Vf _0005994) gi|6015084 480 Pisum sativum 22/43 47.9/5.7 (53.1/6.6) Transcription/

Translation 0.3 13.0 11.7 2.2 1.7 1.4

3307 Elongation factor Tu (97.5%
Vf _0005994) gi|6015084 584 Pisum sativum 22/46 47.7/5.7 (53.1/6.6) Transcription/

Translation 7.6 7.5 1.0 0.9 11.6 8.2

9401 Elongation factor 1 alpha (96.9%
Vf _0022300) gi|61741088 201 Actinidia deliciosa 16/37 54.0/9.0 (49.6/9.2) Transcription/

Translation 4.4 4.8 1.3 2.4 7.0 4.9

3603 Tic62 protein (89.8% Vf _0007594) gi|21616072 99 Pisum sativum 7/24 61.8/5.7 (57.1/8.8) Signaling 1.0 0.0 1.0 1.0 1.0 0.0

1708 V-type proton ATPase catalytic subunit
A (95.9% Vf _0002956) gi|12585490 146 Citrus unshiu 17/42 74.4/5.5 (68.9/5.3) Transport 8.9 54.4 0.7 1.2 3.8 5.3

5002 Carbonate dehydratase (64.2%
Vf _0022150) gi|47606728 105 Flaveria bidentis 3/17 30.3/6.2 (35.9/5.8) Miscellaneous 1.3 5.8 1.3 0.6 0.5 3.1

6003 Carbonic anhydrase (85.8%
Vf _0022150) gi|270342124 153 Phaseolus vulgaris 7/34 29.0/6.5 (35.9/8.1) Miscellaneous 0.9 0.5 3.3 ∞ 0.2 0.0

a Standard spot number assigned to each spot protein (SSP) by PDQuest software (BioRad). b Percentages of identity to V. faba transcriptome entries [Vicia faba RefTrans V2 (2017) (https://www.pulsedb.org/,
accessed on 15 October 2021)] obtained by Blast (tblastn) analysis are displayed in brackets. The coding “v.faba_CSFL_reftransV2_number” has been simplified by “Vf _number” for each transcript. c PM: number
of peptides matched (from peptide mass fingerprinting) with the homologous protein from the database. Some of these peptides were automatically MSMS fragmented. d Experimental mass (Mr, kDa) and pI
were calculated with PDQuest software and standard molecular mass markers. Theoretical values were retrieved from the protein database (NCBInr). e Values are given as normalized volume (calculated with
PDQuest software) and represent change ratios in response to B. fabae inoculation of each genotype (S: Baraca; R: BPL710), and between uninoculated genotypes (R/S) at both sampling times (1: 6 hpi; 2: 12 hpi).

https://www.pulsedb.org/
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Figure 3b compares treatments, genotypes and sampling times. The susceptible genotype
(S) showed the largest number of changes in proteins in response to inoculation, but mainly
in those of the primary and energy metabolism groups (Figure 3b). In fact, a strikingly large
number of degradation proteins showed changes in S genotype in response to inoculation that
were not observed in the resistant genotype (R). The group of degradation proteins comprised
ten proteases, namely: three cell division proteases ftsH chloroplastic (gi|17865463), two
ATP-dependent Clp proteases (gi|461753), two Clp proteases (gi|4105131, gi|461753), one
ubiquitin-specific protease 5 (gi|257050978), one zinc dependent protease/FTSH protease
8 (gi|84468324) and one serine-type endopeptidase (gi|270342123). Interestingly, most of the
identified proteases were significantly increased in response to inoculation in the susceptible
genotype but, as revealed by the heat map (Figure 4a, Table 1), none was in the resistant
genotype. A comparison of the uninoculated leaf proteome revealed a much greater number
of proteins of the energy metabolism and protein degradation groups in R than in S, mainly
in the first sampling (Figures 3b and 4a). In addition, these functional groups were increased
in control S plants in the second sampling.
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3.4. Protease Gel Activity

The results of the protease gel activity assay confirmed those previously obtained
by MS. Protease bands corresponding to high molecular weights (~90 to 120 kDa) were
stronger in inoculated plants of the susceptible genotype in both samplings, coinciding with
the molecular weight of some proteases identified by MALDI-TOF (viz., Clp proteases, SSPs
1802, 2801, 2804, 3803; and Ubiquitin-specific-processing protease 8, SSP 2802) (Figure 4b;
Supplementary Figure S4). Gel activity assay also exposed a strong band at 40 kDa not
changing substantially with the specific conditions and potentially corresponded to the
serine-type endopeptidase identified by MS analysis (SSP 2101). In any case, the most strik-
ing result was the presence of two well-defined protease bands at high molecular weights
(140–250 kDa) that were especially strong in the resistant genotype (and, particularly, in
the second sampling). The area of the protease activity bands were estimated using Im-
ageJ software (ImageJ.JS (imjoy.io)), and the data are presented in Supplemental Figure S5.
Since activity gels were used under native conditions and 2DE-MS analyses conducted
under denaturing conditions, these bands may well correspond to protein complexes not
identified with the denaturing gels.

4. Discussion

Botrytis fabae is a necrotrophic plant pathogen causing chocolate spot, which is one of
the most devastating diseases for faba bean production worldwide [5,6]. The mechanism
by which plants counteract infection by this pathogen is of great agronomic interest. ROS
production (especially H2O2 induction by Botrytis) is known to occur in a wide variety of
plants [23,25–27] and to be one of the earliest plant responses to fungal infection [22,24].
Botrytis fabae reportedly increases lipid peroxidation, and the levels of ROS and antioxidant
enzymes (superoxide dismutase, catalase and ascorbate peroxidase), substantially in faba
bean [28]. In fact, ROS were found to accumulate rapidly in leaf tissue of a resistant cultivar
at early stages of infection, but more markedly and over longer periods at later stages in its
susceptible counterpart [28].

4.1. The Role of Chloroplasts as Redox Sensors Eliciting an Acclimatory Response to
Stressing Conditions

ROS accumulation at an early stage of infection is triggered by plasma membrane-
bound NADPH oxidases and typically occurs in the apoplast [44]. However, chloroplastic
and peroxisomal ROS production have been reported to contribute to plant immunity as
well [45,46]. Although ROS can also be produced by other organelles (notably peroxisomes
and mitochondria), the chloroplast is possibly a major source. Some proteins in the
chloroplast are involved in cross-talk with the cytosol and nucleus to govern the outcome
of defense signaling [47]. Besides triggering ROS signals, chloroplasts can perceive, mediate
or even amplify ROS signals originating in the apoplast [48]. In addition, there is evidence
that the role of chloroplastic ROS production in coordinating cell death or modulating
defense outputs is highly specific in targeting various types of invading pathogens. Thus,
some chloroplastic components may be specific targets for microbial effector molecules,
which suggest that chloroplasts communicate through these target molecules to elicit ROS
production in the apoplast, presumably to contain spread of the lesion [49].

Chloroplast-derived ROS has been shown to play a role in plant resistance against
B. cinerea [27,50]. Thus, histochemical analysis revealed ROS accumulation in tomato
leaves 24 h after application of B. cinerea spores. A defense response accompanied by an
improvement in photosystem II (PSII), possibly triggered by ROS upon short-time exposure,
was observed. However, the relatively increased time of exposure to these molecules made
them harmful to PSII functionality [27,51]. In addition, H2O2 levels in strawberry leaves
were found to correlate positively with disease severity, and to be influenced by both leaf
age and light quality [52].

Through photosynthesis, chloroplasts play a central role as redox sensors of environ-
mental conditions by eliciting acclimatory or stress-defense responses [53,54]. In chloro-
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plasts, chaperone systems refold proteins after stress, while proteases degrade misfolded
and aggregated proteins that cannot be refolded [55]. A study on Arabidopsis thaliana
demonstrated a major role of Hsp70 chaperones and Clp proteases in the folding and
degradation of misfolded or damaged proteins under variable stress conditions in the
chloroplast [55]. Caseinolytic proteases (Clps) function as molecular chaperones and confer
thermotolerance to plants. The results of a differential gene expression analysis of Clps
in wheat suggest a potential role in cold, salt and biotic stresses, and confirm the previ-
ously reported role in thermotolerance [56]. ClpATPases class I (ClpB/HSP100 and ClpC)
function in assembly and disassembly with protein complexes, acting together with the
HSP70/DnaK chaperone system to remodel denatured protein aggregates [57]. On the
other hand, plant ClpC proteins act as stromal molecular chaperones in importing and
protecting unfolded newly synthesized proteins, which are responsible for maintaining
homeostasis [58–61].

In the present work two ATP-dependent Clp, two ClpC proteases and three Hsp70
(one as Chaperone DnaK) were found to be considerably increased in the susceptible
genotype in response to inoculation. This result suggests that the chloroplast may respond
to B. fabae inoculation by triggering a mechanism to repair damaged proteins. The previous
proteins were highly represented at the constitutive level in resistant uninoculated plants,
which may represent a temporary advantage in response to the pathogen.

4.2. Homeostatic Control as a Dynamic Regulation Mechanism for Energy and Redox Status in
Response to Botrytis fabae

Enhanced photosystem II (PSII) functionality at the early stages of pathogen infection
may be responsible for the increased sugar production required to strengthen the response
by inducing defense genes [27,62]. However, B. cinerea has been reported to use large
amounts of soluble sugars to grow on tomato leaves [63].

Nonphotochemical chlorophyll fluorescence quenching (NPQ) is the key photoprotec-
tive process used by plants to dissipate excess light energy as heat and preserve photosyn-
thesis as a result [64–67]. A substantial increase in NPQ was observed in tomato leaflets
up to 6 h after application of a B. cinerea spore suspension; the increase, however, was
followed by a decrease down to control levels [27]. This outcome suggests an imbalance
between energy supply and demand, resulting in increased ROS production similarly as in
photoinhibition, causing damage in chloroplast and eventual cell death (necrosis) [68].

On physiological grounds, Clp and FtsH proteases are believed to play major roles
in chloroplast protein homeostasis. Thus, FtsH (filamentation temperature sensitive H)
proteases are membrane-bound ATP-dependent zinc metalloproteases involved in the
biogenesis of thylakoid membranes and quality control in the PSII repair cycle [69]. ROS
production and PSII photodamage are linked to the high turnover rate of the D1 reaction
center protein, which is degraded and replaced with de novo synthesized protein in the so-
called “PSII repair cycle” [70]. FtsH proteases are among the many components mediating
coordinated turnover in D1. In addition, there is evidence that programmed inhibition
of the PSII repair cycle through specific downregulation of protease activity may provide
plants with a mechanism to elicit ROS production and cell death upon infection [71].

In parallel to the recognition of ROS as key signaling molecules, antioxidant enzymes
and ROS scavenging, scientists have accepted their potential involvement in fine-tuning
defense reactions. In chloroplasts, the antioxidants ascorbate and glutathione contribute
chemically to ROS quenching. In addition, H2O2 can be detoxified by ascorbate perox-
idases (APX), peroxiredoxine (PRX) or glutathione peroxidase (GPX), reviewed in [72],
as confirmed by a study on Gentiana triflora which suggested that PRXQ plays a role in
mediating responses against the necrotrophic fungus B. cinerea [73].

The proteomic analysis conducted in this work revealed that three proteins identified
as chloroplastic cell division protease FtsH, and a zinc dependent protease/FTSH protease
8, were highly represented in the susceptible genotype in response to B. fabae inoculation.
The same proteins were better represented constitutively in the resistant genotype in the
first sampling. In addition, a monodehydroascorbate reductase I, an L-ascorbate peroxidase
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and a thioredoxin peroxidase were also better represented in both genotypes in response
to inoculation in the first sampling. Zymogram analysis confirmed the results of the MS
analysis, where differences in the activity bands at the molecular weights of the proteins
identified by 2DE-MS were observed. In addition, inoculated and uninoculated plants
of the resistant genotype exhibited some activity bands at very high molecular weights
(140–250 kDa) that were not clearly observed in the susceptible genotype. This result can be
ascribed to differences in the experimental conditions, which were native in the zymograms
and denaturing in the 2DE-MS analysis.

Consistent with the results obtained in this work, a recent study on tomato plants re-
vealed H2O2 production and enhanced photosystem II functionality 30 min after
B. cinerea inoculation. The effect, which lasted 4 h, was suggestive of a tolerant response;
however, increasing the length of exposure led to plant damage [27] by fully inhibiting
PSII functionality at the application spot and nearby. This was probably a time-dependent
hormetic response, suggesting a positive biological response whose effect might be reversed
upon extended exposure [27,67].

5. Conclusions

Based on the proteins identified in this study (Clp and Hsp70, together with FstH
proteases and ROS proteins) and their increased levels upon inoculation with B. fabae,
a signaling response mechanism based on ROS production in the chloroplast may be
elicited by the fungus. This mechanism appears to be harmful to PSII in the susceptible
genotype by effect of its being associated with lengthy exposures to high ROS levels. The
differential response of the two genotypes can be ascribed to a metabolic imbalance in the
susceptible genotype not observed in the resistant genotype and confirming that the latter
retains normal metabolism under stress. On the other hand, there is evidence that the two
genotypes differ in chloroplast detoxification system, the resistant genotype exhibiting
a more efficient PSII repair mechanism at the early stages of infection. Further research
is required in any case to ascertain whether the ROS dose or exposure time (hormesis) is
associated with the differential V. faba phenotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11112247/s1, Figure S1: Coomassie-stained 2DE gels images of all experimental
conditions throughout the experiment: susceptible (S) and resistant (R) genotypes; control (C) and
B. fabae inoculated (I); 6 hpi (T1) and 12 hpi (T2) and three repetitions (R1-R3), Figure S2: Chocolate
spot disease severity (DS) values in the genotypes Baraca and BPL710, 2 and 6 days after B. fabae
inoculation, Figure S3: Location of 102 identified protein spots on a virtual 2DE gel. (a) Representative
Coomassie stained 2DE gel of the susceptible (left) and the resistant (right) genotypes, (b) Figure S4:
Zymographic detection of proteases in faba bean leaves separated by SDS-PAGE bearing gelatin
under nondenaturing conditions, control (A) and B. fabae-inoculated (B). Susceptible (S) and resistant
genotype (R); 6 hpi (1) and 12 hpi (2). Numbers following dashes designate the particular replicates,
Figure S5: Quantification of the area of protease activity bands detected by zymogram analysis
corresponding to the molecular weights 40, 70, 90, 100, 140 and 250 kDa, Table S1: Dataset of the 224
protein spots detected by PDQuest image analysis.
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