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Abstract: The classification and recognition of foliar diseases is an increasingly developing field
of research, where the concepts of machine and deep learning are used to support agricultural
stakeholders. Datasets are the fuel for the development of these technologies. In this paper, we release
and make publicly available the field dataset collected to diagnose and monitor plant symptoms,
called DiaMOS Plant, consisting of 3505 images of pear fruit and leaves affected by four diseases.
In addition, we perform a comparative analysis of existing literature datasets designed for the
classification and recognition of leaf diseases, highlighting the main features that maximize the value
and information content of the collected data. This study provides guidelines that will be useful to
the research community in the context of the selection and construction of datasets.

Keywords: plant disease prediction; classification; detection; dataset; survey; machine learning;
deep learning

1. Introduction

The direct visual analysis of leaves provides valuable information on plant health.
Leaf symptoms are the first warning signs of many diseases, infections, parasites and
deficiencies that occur during the development and life cycle of the plant. Biotic and abiotic
stresses represent the main factors limiting agricultural productivity, possibly causing huge
production losses.

Economic–environmental issues that are attracting increasing attention and becoming
hotspots in research [1] are the intensifying pressure from climate change and the estimated
increase in the global population of 70% by 2050, which will increase food demand [2].
These challenges may find their solutions in innovation and the development of sustainable
cultivation practices that make efficient use of available resources.

The promotion of qualitatively and quantitatively sustainable actions is made possible
by the adoption of recent information and communication technologies—so-called ICT.
The use of proximity sensors in the field of operational IT tools is capable of assisting
farmers in cultivation practices. Mobile and robotic applications are enabling solutions for
the digital innovation processes needed to safeguard the planet by assisting in monitoring
and treatment operations. The integration of Artificial Intelligence [3,4] in these systems is
indispensable to support the operator in making informed and thoughtful decisions on the
real state of the vigor of a plant. These tools are able to support stakeholders in both early
prediction and diagnosis by recognizing symptoms that are visible to the naked eye. In the
first task, the models are categorized into three categories [1]: (i) forecast models based on
weather data; (ii) forecast models based on image processing; and (iii) forecast models based
on distinct types of data coming from various heterogeneous sources. The second task,
diagnosis, is mainly performed by processing RGB, multispectral or remote sensing images.
In this context, Computer Vision [5] finds a relevant application; by using appropriate
networks trained on image samples, it can detect, recognize and identify situations of
crop risk and identify the various stages of fruit growth, which is useful for mechanical
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harvesting. Recent literature has addressed the problem by training single-output or multi-
output convolutional neural networks [5]—an approach known as multitask learning.

The accuracy and reliability of integrated artificial intelligence systems is greatly
influenced by the representativeness and completeness of the dataset used in training
the algorithm. The development of intelligent neural networks needs large quantities
of data to be able to learn, from known examples, the essential knowledge to obtain
the greater generalizability of the model. However, the realization of a dataset is not
a simple and immediate task due to the efforts and costs required, which include the
acquisition, annotation and categorization of the images, which often must be carried
out by professional figures that are expert in the sector. The availability of datasets in
Digital Agriculture (DA) has become a well-known problem in the literature, slowing
down scientific progress [6].

In recent years, several efforts have been made in the context of data collection.
Several datasets have been introduced. The best known in this field is PlantVillage [7],
which consists of 54,000 images portrayed on the ventral side of the leaf on a homogeneous
background. However, as observed in the literature [8], these configurations are not
sufficiently representative for the objectives of the final application. The datasets created
under controlled conditions—i.e., depicting the leaf on a homogeneous background—do
not realistically reproduce the possible environmental conditions in which the model
will operate.

In this context, the contribution of this paper is articulated on two levels. We introduce
a new dataset in the literature for the diagnosis and monitoring of plant symptoms, called
DiaMOS Plant. It is a dataset collected under realistic field conditions, composed of
3505 images depicting 4 leaf stresses and 3 stages of fruit development: fruit set, growth
and ripening. We conduct a survey dedicated to public image datasets built for the
classification and identification of leaf diseases. We focus on datasets released in open
format on data sharing platforms. Therefore, we do not deal with datasets released on
request to the authors. The development and release of publicly available datasets has a
twofold advantage: it allows researchers to save time and resources and devote more effort
to the objective evaluation and comparison of algorithms. A research work was conducted
for various tasks related to computer vision in the context of precision agriculture [9]. This
survey seeks to cover the lack of a complete description for this particular sub-field. We
believe that this survey will be a useful resource to guide the insightful selection of datasets
for future research.

The rest of the paper is organized as follows. Section 2 describes the proposed DiaMOS
Plant dataset and summarizes the characteristics of the publicly available image datasets.
Section 3 provides a comparative analysis of the examined datasets. Section 4 provides
some recommendations on requirements for the future creation of datasets, and a brief
conclusion is drawn.

2. DiaMOS Plant Dataset

In this section, we describe the proposed dataset in detail.
Description. In this work, we introduce a field dataset to diagnose and monitor plant

symptoms called DiaMOS Plant—an extended dataset analyzed in [5]. DiaMOS Plant is a
pilot dataset containing images of an entire growing season of a pear tree, from February
to July, in order to build a representative sample that covers the main cultural aspects of
this plant. The dataset is suitable for performing machine and deep learning methods in
classification and detection tasks. A total of 3505 images were collected, including 499 fruit
images and 3006 leaves images, respectively. The fruit is portrayed in the following
four phases: fruit set, nut fruit, fruit growth and ripening. Similarly, biotic and abiotic
stresses fall into four categories: leaf spot, leaf curl, slug damage and healthy leaf. A
detailed summary is provided in Tables 1 and 2.
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Table 1. Dataset description.

DiaMOS Plant Dataset

Plant Pear
Cultivar Septoria Piricola
Data Source Location Sardegna, Italy
Type of data RGB Images
Annotation csv, YOLO
ROI (Region of Interest) captured leaf, fruit
Total size 3505 images (3006 leaves images + 499 fruit images)

Data Accessibility https://doi.org/10.5281/zenodo.5557313
accessed on 17 October 2021

Application
The images are suitable for different machine and
deep learning tasks
such as images detection and classification.

Table 2. DiaMOS Plant is a collection of 3505 images of fruits and leaves. The table illustrates the
distribution of classes belonging to the leaf images.

Leaves Images Leaf Symptoms Size

Healthy 43
Spot 884
Curl 54
Slug 2025

Severity Levels Size

0 43
1 682
2 1139
3 699
4 389

The images belong to three trees that are in the same plot located in Italy. Pictures
were gathered using different devices including a smartphone (Honor 6×) and DSRL
camera (Canon EOS 60D); thus, the images present two type of resolutions, at 2976 × 3968
and 3456 × 5184 respectively. Table 3 reports the set-up of each device. We employed
two different devices because many people were involved in collecting data and it was
not feasible for them to have the same devices. Furthermore, the different resolution
increases the complexity of the dataset and represents an added value for it. The choice
of using multiple devices is a widely used approach in this field of literature as it allows
heterogeneous and representative inputs to be provided to the models. In the real scenario,
agricultural and non-agricultural operators have smartphones that differ in terms of their
technical characteristics, including resolution.

Table 3. Acquisition device configurations.

Smartphone Camera DSRL Camera

Image size 2976 × 3968 3456 × 5184
Model device Honor 6× Canon EOS 60D
Focal length 3.83 mm 50 mm
Focal ratio f/2.2 f/4.5
Color space RGB RGB

The leaves were captured from the adaxial (upper) side of the leaf, in a real-life
scenario, where they were shot in various lighting (cloudy, sunny and windy days), angle,

https://doi.org/10.5281/zenodo.5557313
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background (other plants and weeds) and noise conditions, at different times of the day
throughout the entire growing season. This acquisition protocol made it possible to obtain
numerous advantages, such as (i) capturing leaves under realistic lighting conditions,
which can be classified as (a) indirect sunlight, (b) direct sunlight, (c) strong reflection and
(d) evenly distributed light (see Figure 1); (ii) capturing the evolution of visual symptoms
and (iii) capturing the fruit from the fruit set phase to the ripening phase.

Figure 1. On the first row, from left to the right, images of pear leaves captured under different light
conditions: indirect sunlight, direct sunlight, strong sunlight reflection and distributed light. On the
second row, images of pear fruit in different stages of growth.

The disease recognition process for dataset labeling was assisted by an expert. The
dataset was annotated manually using the LabelImg software (available at the following
link: https://github.com/tzutalin/labelImg, accessed on 17 October 2021). Each original
image of the entire leaf is labeled with the predominant disease. For healthy, leaf spot and
slug damage classes, a severity level is assigned, where each level is set according to the
percentage of affected leaf area. The stress severity was calculated, identifying five classes
expressed as no risk (0%), very low (1–5%), low (6–20%), medium (21–25%) and high
(>50%) in a range from 0 to 4 (see Table 2. The annotated labels are released in a csv format,
while the bounding boxes are released in YOLO format. The dataset is freely available for
academic purposes from a repository at https://doi.org/10.5281/zenodo.5557313 (accessed
on 17 October 2021), where the folder has the following structure:

DiaMOS Plant

description

pear

annotation

csv

YOLO

leaves

spot

curl

slug

healthy

fruits

https://github.com/tzutalin/labelImg
https://doi.org/10.5281/zenodo.5557313
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• Description contains the data description;
• Pear contains the data related to the pear tree;
• Annotation contains the annotation files;
• Leaves contains the leaf images;
• Fruits contains the fruit images.

News regarding dataset updates will be posted on the following site https://francesc
amalloci.com/category/projects/, accessed on 17 October 2021, as we plan to continue to
extend the dataset with additional fruit plants.

Benchmark dataset. In this section, we provide a benchmark dataset with the aim of
providing a baseline for the classification task. In this regard, we compared the perfor-
mances of five well-known convolutional neural network architectures—VGG19, ResNet50,
InceptionV3, MobileNetV2 and EfficientNetB0—as they are widely adopted in different
classification tasks and have shown good generalization skills in the literature under review.

The experiment described here was conducted with the LeafBox toolbox developed
and released in an open format, more purely for educational purposes and intended to
facilitate the reproduction of our results and further research in this direction. It can be
reached at the following link: https://github.com/mallociFrancesca/leaf-disease-toolbox
.git (accessed on 17 October 2021). The experimental framework written in Python language
exploits the Keras deep learning 2.4.3 library based on TensorFlow 2.2.1 environment,
executed on a server machine with a 3.000 GHz Intel Xeon Gold, and 64 Gb of memory [5].

The classification task involved four ground truths: “healthy”, “slug”, “curl” and
“spot”. The dataset was divided into training, validation and test datasets with a ratio of
7:2:1, respectively. To preserve the percentage of samples for each class, the dataset was
split using the ShuffleSplit strategy provided by the scikit-learn 0.23.2 library. All images
were resized to 224 × 224 × 3. In the training phase, to better manage the unbalance of
the classes and minimize overfitting situations, the augmentation technique was applied,
including horizontal and vertical mirroring, rotation and color variation. To avoid a long
training time, the transfer learning method was applied. The training was performed by
adapting CNN networks trained using the ImageNet dataset [10] with a cross-entropy
function. Furthermore, we monitored the model’s validation loss to reduce the learning
rate when it stopped improving to avoid the plateau phenomenon. A learning-rate of
2 × 10−5 and a momentum of 0.9 were set. The settings were identified by carrying out
various tests, and on the basis of the results, the settings were chosen that allowed us to
obtain models that were more robust and less affected by overfitting problems. The test
was repeated twice to record the model’s performance with the RMSprop optimizer and
the Adam optimizer.

Table 4a shows the training, validation and test accuracy obtained with the RMSprop
optimizer, while Table 4b shows the results achieved with the Adam optimizer.

Comparing Table 4a,b, we observe similar performances for both optimizers, but there
is a slight improvement with the Adam optimizer. However, this improvement is at the
expense of the robustness of the results. Indeed, comparing the accuracy obtained in the
three data sets, there is a more marked gap in the latter.

In general, it can be seen that the three networks EfficientNetB0, InceptionV3 and
MobileNetV2 have a better generalization capacity than the VGG19 and ResNet50 networks.
In fact, with reference to Table 4, EfficientNetB0, InceptionV3 and MobileNetV2 obtained
accuracies for the test set of 83.38%, 82.72% and 83.06% respectively, while ResNet50
achieved an accuracy of 56.67% and VGG19 achieved an accuracy of 71.76%. Comparing
the scores recorded between the training, validation and test sets, it is not excluded that
the models may suffer from a slight overfitting bias. All things being equal, MobileNetV2
tends to converge faster. In Table 5, the precision, recall and F1-score obtained in the test set
are shown. In this case, the F1-score ratio does not show notable differences in performance,
exhibiting a high value for EfficientNetB0, InceptionV3 and MobileNetV2.

https://francescamalloci.com/category/projects/
https://francescamalloci.com/category/projects/
https://github.com/mallociFrancesca/leaf-disease-toolbox.git
https://github.com/mallociFrancesca/leaf-disease-toolbox.git
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Table 4. Accuracies obtained with RMSprop (a) and Adam (b) optimizers, respectively, in the training
set, validation set and test set in the task of classifying the “healthy”, “slug”, “curl” and “spot” classes.

RMSprop (a)

CNN Train
Acc (%)

Validation
Acc (%)

Test
Acc (%)

EfficientNetB0 81.13 82.82 83.38

InceptionV3 81.96 79.66 82.72

MobileNetV 85.38 81.12 83.06

ResNet50 68.49 67.16 68.44

VGG19 72.42 71.68 73.75

Adam (b)

CNN Train
Acc(%)

Validation
Acc (%)

Test
Acc (%)

EfficientNetB0 89.02 86.33 86.05

InceptionV3 84.44 80.29 83.39

MobileNetV2 87.70 83.83 84.05

ResNet50 68.38 68.47 69.10

VGG19 76.66 76.53 75.75

Table 5. Precision, recall and F1-score obtained with RMSprop (a) and Adam (b) optimizers on the
test set in the task of classifying the “healthy”, “slug”, “curl” and “spot” classes.

RMSprop (a)

CNN Precision
(%)

Recall
(%)

F1-Score
(%)

EfficientNetB0 81.14 83.38 82.23

InceptionV3 80.21 82.72 81.45

MobileNetV2 81.35 83.05 82.07

ResNet50 68.27 68.43 56.67

VGG19 70.47 73.75 71.76

Adam (b)

CNN Precision
(%)

Recall
(%)

F1-Score
(%)

EfficientNetB0 84.42 86.04 85.03

InceptionV3 81.14 83.38 82.23

MobileNetV2 82.37 84.05 83.06

ResNet50 66.38 69.10 59.51

VGG19 72.71 75.74 74.05

3. Open Dataset for Plant Disease Classification and Detection

In this section, we provide a brief description of the datasets presented in the literature.
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3.1. RoCoLe Dataset

RoCoLe is the acronym for the Robusta Coffee Leaf image dataset [11], containing
1560 leaf pictures divided into six classes: healthy, red spider mite presence, rust level 1,
rust level 2, rust level 3 and rust level 4. The photos were captured from the adaxial
(upper) and abaxial (lower) leaf side, under a natural uncontrolled environment, using a
smartphone camera at a working distance of 200 and 300 mm without zoom. In addition,
the dataset includes annotations regarding the segmentation object, processed with the
web-tool called Labelbox.

3.2. BRACOL Dataset

BRACOL is a Brazilian arabica coffee leaf image dataset used for the identification
and quantification of coffee diseases and pests [12]. It contains 1747 images of arabica
coffee leaves affected by the following biotic stresses: leaf miner, leaf rust, brown leaf spot
and cercospora leaf spot. The images were collected at different times of the year in Santa
Maria of Marechal Floreano in the mountain regions of the state of Espirito Santo, Brazil.
Obtained using five different smartphones, the leaves were depicted from the abaxial
(lower) side under partially controlled conditions and placed on a white background. The
acquisition of the images was conducted without much criteria to make the dataset more
heterogeneous. The process of biotic stress recognition for dataset labeling was assisted by
an expert.

3.3. Rice Leaf Disease Dataset

The Rice Leaf dataset [13] consists of 120 images collected from a village called Shertha
near Gandhinagar, Gujarat, India, captured with a white background using a Nikon
D90 digital SRL camera with 12.3 megapixels in November 2015. The authors collected
leaves with varying degrees of disease spread, where all images have a resolution of
2848 × 4288 pixels.

3.4. Plant Pathology Dataset

The Plant Pathology dataset [14] is a collection of 3651 RGB images of multiple apple
foliar disease symptoms captured during the 2019 growing season from commercially
grown cultivars in an unsprayed apple orchard at Cornell AgriTech (Geneva, NY, USA). Of
the 3651 RGB images, there are 1200 images of apple scab, 1399 of cedar apple rust, 187 of
complex disease symptoms (i.e., more than one disease on the same leaf) and 865 of healthy
leaves. Photos were taken using a Canon Rebel T5i DSLR and smartphones under various
illumination, angle, surface and noise conditions, directly from the field. The dataset was
manually annotated into three classes: cedar apple rust, apple scab, multiple diseases and
healthy leaves. An expert plant pathologist confirmed the annotations.

3.5. Citrus Dataset

The Citrus dataset [15] contains 759 images of healthy and unhealthy citrus fruits and
leaves, manually acquired using a DSLR with the help of a domain expert. The infected
images are classified into four different diseases of citrus fruits and leaves, respectively.
The diseases present in the datasets are black spot, canker, scab, greening and melanose.
All images are resized to a dimension of 256 * 256 with a 72 dpi resolution. The fruit images
were collected directly from the plant, while leaf images were acquired under laboratory
conditions with a homogeneous gray background.

3.6. APDA Dataset

The APDA dataset [16] collected by Tea Research Institute, Mansehra contains 40 im-
ages, divided into healthy and unhealthy images. The diseased subset contains samples of
two types of diseases: anthracnose and black spots. Acquired with a Nikon camera D90,
the leaves are depicted in indoor lighting, maintaining a constant distance of the object
from the lens of approximately 9–12 inches.
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3.7. PlantVillage Dataset

The Plant Village is an image-based dataset of 54,309 samples in which foliar diseases
are portrayed on the ventral side of the leaf, on a homogeneous background (black or
gray). For each leaf, the authors took four to seven images with a standard point-and-shoot
camera, Sony DSC—Rx100/13, with 20.2 megapixels using the automatic mode. The
images span 14 crop species: apple, blueberry, cherry, corn, grape, orange, peach, bell
pepper, potato, raspberry, soybean, squash, strawberry and tomato. It contains images of
17 fungal diseases, 4 bacterial diseases, 2 mold (oomycete) diseases, 2 viral disease and
1 disease caused by a mite. Twelve crop species also include images of healthy leaves that
are not visibly affected by a disease.

4. Comparative Analysis

In this section, we provide a comparative analysis of the examined datasets, including
the proposed DiaMOS Plant dataset, organized into three sections: (i) dataset acquisition,
(ii) symptoms and diseases and (iii) technical dataset settings. A summary scheme is shown
in the Table 6.

4.1. Dataset Acquisistion

The place and mode of dataset acquisition influences how the algorithms learn and
make predictions. In total, 62% of the datasets were collected under controlled conditions,
using a mobile phone camera or DSRL camera. The remainder acquired the images directly
in the field. The acquisition protocol followed by the laboratory datasets in some studies
was not characterized by certain criteria; others kept both the distance of the object of
interest from the camera and the lighting conditions constant, portraying the leaf in the
centre of the frame on a homogeneous background—mainly white.

With regard to the field datasets, the common goal was to maximize variability by
adopting different techniques. Several acquisition tools were used. The leaf portrayed
directly on the plant was acquired several times with different angles and illumination
scenarios. The majority of cases portrayed the leaf on the upper side, also called the adaxial
side. Two exceptions are represented by BRACOL and RoCole, where RoCole portrayed
both sides of the leaf (abaxial and adaxial) while BRACOL only portrayed the abaxial side.

4.2. Symptoms and Diseases

In the plant world, there are many different stressful events that can give rise to the
same or very similar visual symptoms. These events can also overlap and follow each
other, making it even more complicated to arrive at an accurate and reliable diagnosis of
the plant’s condition [1]. Some researchers have taken into account the temporal variability
in the evolution of a symptom from the first to the last stage. During a growing season,
symptoms show different morphology, texture and coloration depending on the extent of
the damage. For this purpose, for DiaMOS Plant, we collected images at different times
of the day for an entire growing season. This approach was also followed for the Plant
Pathology dataset, which further enriched the dataset by annotating the presence of several
diseases on the same leaf surface. Finally, DiaMOS Plant, BRACOL and RoCole labeled
four levels of severity, which is useful to train models that are able to recognize a disease at
different stages.
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Table 6. Details of examined datasets.

Dataset DiaMOSPlant
[5]

BRACOL [12] RoCoLe [11] Plant Pathology
[14]

Rice Leaf Diseases
[13]

Citrus [15] APDA [16] PlantVillage [7]

Plant/Crop Pear Coffee Coffee Apple Rice Citrus Rose Multiple
Dataset size 3505 (3006 leaf

images + 499
fruit images)

4407 1560 3651 120 759 (609 leaf im-
ages + 150 fruit
images)

40 54.309

No. of symptoms 4 4 2 3 3 5 2 26
Acquisition device Smarthphone e

DSRL
Smartphone Smartphone DSLR Camera,

Smartphone
DSLR camera DSLR camera Smartphone Smartphone

Color RGB RGB RGB RGB RGB RGB RGB RGB
Image resolution Multiple 2048 × 1024 Multiple 2048 × 1365 2848 × 4288 256 × 256 N.d. Multiple
Annotation Polygon, Label Polygon, Label Polygon, Label Label Label Label Label Label
Annotation format csv, YOLO csv csv, COCO,

JSON, Pascal
VOC

csv Folder structure Folder struc-
ture

N.d. Folder structure

Data sharing plat-
form

Zenodo GitHub Mendeley Data Kaggle UCI Machine
Learning Reposi-
tory

Mendeley Data MathWorks Github

Acquisition place Field Laboratory Field Field Laboratory Laboratory Laboratory Laboratory
Side of the leaf Adaxial Abaxial Adaxial, Abax-

ial
Adaxial Adaxial Adaxial Adaxial Adaxial

Object of interest Fruit, leaf Leaf Leaf Leaf Leaf Fruit, leaf Leaf Leaf
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4.3. Technical Dataset Settings

Having a large dataset greatly affects the performance of machine and deep learning
models. The datasets in this field are all small-scale datasets in terms of the number of
images. Figure 2 shows the graphical distribution of the examined datasets according to
size. PlantVillage is a large-scale dataset. However, certain classes contain few instances. As
shown in Table 6, the RGB format was adopted in all studies, and the acquisition approach
involved the camera of a smartphone or DSRL. No datasets made use of drones. The
acquired images can be used for the classification task, as they are appropriately annotated
with labels. DiaMOS Plant, RoCole and BRACOL also feature bounding-box annotation,
which allows the datasets to be used for the detection task right from the start. The most
commonly used annotation format is csv. Finally, the data sharing methods were different
(see Table 7. The prevailing methodology used external services. According to Lu and
Young [9], this good practice allows data availability to be guaranteed over time.

Figure 2. Graphical size distribution of the examined datasets.

Table 7. Public image datasets with the related on-line repository.

Dataset Online Repository

DiaMOSPlant https://doi.org/10.5281/zenodo.5557313
BRACOL [12] https://data.mendeley.com/datasets/yy2k5y8mxg/1
RoCoLe [11] https://data.mendeley.com/datasets/c5yvn32dzg/2
Plant Pathology [14] https://www.kaggle.com/c/plant-pathology-2020-fgvc7
Rice Leaf Diseases [13] https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
Citrus [15] https://data.mendeley.com/datasets/3f83gxmv57/2
APDA [16] https://it.mathworks.com/matlabcentral/fileexchange/55098
PlantVillage [7] https://github.com/spMohanty/PlantVillage-Dataset

5. Discussion

This analysis suggests that the most widely adopted image acquisition set-up in the
state-of-the-art is based on collecting data under controlled, laboratory conditions. The
analysis of current datasets has revealed some limitations including size, representativeness
and completeness.

• Dataset size: The greatest limitation of the current datasets is the small number of
disease classes and the sample sizes. Even our proposed dataset, DiaMOS Plant,
contains few samples for the “healthy” class. Inevitably, a strong imbalance of classes
leads to the model not generalizing well in practical applications. This confirms
and demonstrates, in agreement with Lu and Young [9], that although the need for
larger datasets is recognized, this task is challenging due to the manual effort and cost
required, which in some cases is further exacerbated as very few occurrences in the
field can be found for some classes. This technical problem can be mitigated by data
augmentation, transfer learning, and fine tuning techniques.

https://doi.org/10.5281/zenodo.5557313
https://data.mendeley.com/datasets/yy2k5y8mxg/1
https://data.mendeley.com/datasets/c5yvn32dzg/2
https://www.kaggle.com/c/plant-pathology-2020-fgvc7
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://data.mendeley.com/datasets/3f83gxmv57/2
https://it.mathworks.com/matlabcentral/fileexchange/55098
https://github.com/spMohanty/PlantVillage-Dataset
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• Representativeness: The most widely adopted acquisition protocol is based on data
collection under controlled, laboratory conditions. The representativeness of the
dataset is limited by two factors: the place of acquisition and mode of acquisition.
Controlled conditions are not able to reflect the spectrum of variability detectable in
the field. Algorithms tend to achieve near-perfect accuracy when trained on laboratory
datasets, but performance degrades significantly when trained on field datasets [5]. In
addition, few datasets took into account the evolution of symptoms during an entire
growing season. More efforts should focus on capturing symptoms at an early stage
of emergency. In fact, at these stages, digital aids are essential to take timely action to
stop the disease proliferation.

• Completeness: In Strong et al. [17], completeness is defined as “the level of breadth,
depth, and appropriateness of a datum according to its purpose”. Although some
datasets are well constructed, in some cases, we found a lack of completeness in
providing ground truth labels. The annotation of multiple symptoms present in the
leaf maximizes and completes the informative capacity of the data. Similarly, the
presence of bounding-boxes and segmentation masks would extend usability.

• Performance baseline: The availability of a performance baseline can help in the
development and validation of new methods that can be applied.

Based on the limitations identified above, we provide some recommendations for
creating future datasets. The number of samples and variety of diseases need to be
increased so that a learning algorithm may generalize on the problem domain. Algorithms
are destined for inclusion in field applications, which can be categorized as follows:

• Disease recognition mobile applications;
• Robotic applications that recognize and identify a disease and spray chemical or

natural inputs based on the extent of the damage.

To maximize the information content that the data can express and the completeness
and representativeness of the samples, we suggest portraying the leaf using different
configurations, as follows:

• Defer the angle, focus and position of the leaf in individual frames;
• Portray the disease for an entire growing season, identifying different levels of severity;
• Collect the samples at different times of the day—that is, with different climatic

conditions (sunny, cloudy, direct light).

Finally, the dataset should be published on data sharing platforms, which allow the
integrity and availability of data to be preserved over time [9].

6. Conclusions

In this paper, we released an open dataset in the literature, called DiaMOS Plant—a
self-collected dataset in the field, consisting of 3505 images, depicting 4 leaf diseases
with 4 level of severity and 4 fruit stages, reachable at the following link https://do
i.org/10.5281/zenodo.5557313, accessed on 17 October 2021. Simultaneously with the
release of the dataset, we provided a performance baseline and we reviewed the datasets
present in the literature built for the classification and recognition of leaf diseases. The
conducted analysis has highlighted the good practices for the construction of field data sets,
impacting the information content that the data can express, as functional with regard to
its ability to describe the environment from which it was drawn or observed. These factors
were taken into consideration when constructing the proposed dataset. In this regard, for
future works, we plan to expand the released dataset to enrich its representativeness and
completeness, which currently is limited by the small number of samples for the “healthy”
and “curled” classes.
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