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Abstract: Some plant species are able to acquire non-exchangeable forms of K, which improve K
availability and cycling in cropping systems, and which may explain the lack of response to K.
However, this would not be expected in soils dominated by kaolinite. The aim of this study was
to assess non-exchangeable K (Kne) use by three selected plant species grown in a tropical Haplic
Plinthosol with low exchangeable K (Ke). A greenhouse experiment was conducted with soybean
(Glycine max L., Merr.), maize (Zea mays L.), and ruzigrass (Urochloa ruziziensis) with or without K
fertilization for three growing cycles. The crop treatments were compared with a control without
plants. In the absence of K fertilization, all the tested plants were able to use non-exchangeable
K and non-exchangeable K contributed more than 80% of the K demand of the plants in the first
growing cycle, even in this kaolinitic soil. In the first growing cycle, soybean and maize took up more
non-exchangeable K than ruzigrass, concomitant with higher dry matter yields. Over the three crop
cycles, as both biomass yield and K uptake decreased in the unfertilized systems, the dependence of
plants on non-exchangeable K decreased. Unfertilized ruzigrass showed a strong ability to acquire
non-exchangeable K from the soil. Over the course of three growing cycles, K application decreased
the absolute uptake of non-exchangeable K as well as its fractional contribution to total K uptake by
the crops.

Keywords: potassium balance; K in tropical soil; plant K availability; potassium cycle; exchangeable
K; non-exchangeable K

1. Introduction

The uptake of nutrient Potassium (K) is the second most, only behind nitrogen, and
between the essential nutrients required by plants. K is found in large concentrations
in the vacuoles and cytoplasm of plant cells and is a major enzyme activator, although
it is not strongly bound by any cellular molecules [1]. In soil, K is transported to roots
primarily by diffusion in the soil solution; however, under some conditions, mass flow
may also be an important transport mechanism [2,3]. The K concentration in soil solution
is primarily buffered by K ions adsorbed electrostatically at the surfaces of soil minerals
and organic colloids. When these ions move into the soil solution and are taken up by
plants, it is commonly assumed that they can be slowly replenished by K from interlayer
sites in secondary layer silicates and possibly by structural K in primary minerals (micas
and feldspars), where most soil K typically occurs [4–9]. Structural K in the minerals
of silt and sand fractions of soils is usually discounted as a significant source of plant-
available K during a growing season because of the slow K release and low surface area of
these particles.
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The potential bioavailability of soil K over a growing season is commonly estimated in
standardized soil tests by extraction with 1 M ammonium acetate or Na-saturated anionic
resin beads [10,11]. This fraction of soil K may include both ions electrostatically adsorbed
at mineral surfaces and an indeterminate fraction of interlayer K. This fraction is often
termed “exchangeable K,” although the extraction is strongly driven by the carboxylate
functional groups of the acetate or the resin, in addition to displacement of K by NH4

+ or
Na+ [12]. By contrast, most interlayer K and structural K in feldspars is not readily extracted
by typical soil tests and is often referred to as “non-exchangeable K”, although a preferred
term would be non-extractable K (since the soil test method involves more than simply
cation exchange reactions) [13]. In soils, the movement of K ions between surface-adsorbed
and interlayer fractions depends on coupled biological, chemical, and physical mechanisms
in the rhizosphere [14]. Plant uptake of K generates a strong concentration gradient in the
rhizosphere solution, leading to the release of electrostatically adsorbed K and some K from
the interlayers of 2:1-layer silicate minerals. Release of interlayer K may also be accelerated
by the presence of organic anions, root exudates and microorganisms that promote mineral
weathering, and K dissolution [15]. It is usually assumed that charged sites near mineral
edges (also called wedge sites) are the most likely locations of interlayer K release to the
soil solution [16,17].

Although most tropical soils are low in soil-test K [3,18,19], the crop response to
K fertilization can be inconsistent [20–24], perhaps because some added fertilizer K is
adsorbed at interlayer sites or because some interlayer K can be accessed by plants. When
surface-adsorbed K concentrations are very low, plants depend on interlayer K, and there
is often a concomitant yield penalty [25,26]. The dynamics of surface-adsorbed, interlayer,
and structural K in soil have primarily been studied in soils in temperate climates, where
2:1 clay minerals are often dominant. Potassium in tropical soils, often dominated by 1:1
clay minerals such as kaolinite as well as Fe or Al oxides, has received much less attention,
and the importance of non-exchangeable forms of K to plant uptake and growth in these
soils is not well understood.

Some plants, such as those of the genus Urochloa ssp. and pearl millet (Pennisetum
americanum, L.), are able to take up K from both the surface-adsorbed fraction and non-
exchangeable K [18,27]. Soybean is also able to take up non-exchangeable K [28], albeit
less efficiently than Urochloa ssp. [29]. Uptake of non-exchangeable K has been observed
mainly when fertilizer K is not applied, i.e., when exchangeable, surface-adsorbed K is
not present [18]. The drivers and mechanisms of non-exchangeable K uptake vary from
species to species and are related to root morphology [15], the composition of root exudates,
and the concentration of soluble K. Hence, plants such as ruzigrass (Urochloa ruziziensis),
maize, and soybean grown in soils with low soil-test K may exhibit different responses to
K fertilizer. Therefore, we hypothesize that the use of these species in rotation in a crop
system will affect the exploration of non-exchangeable soil K, affecting K cycling in the
system, which could explain the lack of response to K in some circumstances.

The objectives of this study were to (i) evaluate the growth of ruzigrass, maize, and
soybean in a highly weathered kaolinitic soil with low exchangeable K content and (ii)
measure the capacity of these plants to take up and deplete non-exchangeable K over three
successive crop cycles.

2. Materials and Methods

A pot experiment was carried out in a greenhouse in Botucatu, Sao Paulo, Brazil. The
soil material was collected at a depth of 20–40 cm of a Haplic Plinthosol (FAO, 2014) under
native forest in Nova Xavantina, Mato Grosso, Brazil. Samples were taken from this depth
to provide a sample with exchangeable K lower than in the uppermost soil layer due to
litter recycling. The soil was air-dried and passed through a 5-mm sieve. Selected initial
soil physical and chemical properties [12] are shown in Table 1. Using thermogravimetric
and x-ray diffraction analyses, we determined that the clay fraction in this material was
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dominated by kaolinite, with substantial amounts of goethite and biotite as well as a small
amount of vermiculite [30].

Table 1. Selected initial soil chemical characteristics (before liming amendment).

Soil Properts Value Units

Clay 275 g·kg−1

Silt 175 g·kg−1

Sand 550 g·kg−1

Initial pH 1
(CaCl2) 3.8 –

Soil organic carbon 5 7.0 g·kg−1

Available phosphorus (P resin) 7.2 mg·kg−1

Calcium (Ca2+
resin) 120 mg·kg−1

Mg (Mg2+
resin) 30 mg·kg−1

Potassium 2 (K+
resin) 72 mg·kg−1

Non-Exchangeable K 4 230 mg·kg−1

NAE K 3 (HNO3) 302 mg·kg−1

Cation exchange capacity (CEC pH 7.0) 8.3 cmolc kg−1

1 In 1:1 0.01 mol L−1 CaCl2; 2 extracted with pearl Na-saturated cation exchange resin coupled with bicarbonate
anion exchange resin, 1:1 volume ratio, 16 h shaking with a previously disaggregated sample [12]; 3 NAE–
nitric-acid-extractable K, extracted with boiling HNO3; 4 Non-exchangeable K = NAE K–Exchangeable K; 5 Soil
organic carbon. = Organic matter determined according to [31]. CEC = Cation exchange capacity at pH 7
(Ca + Mg + [H + Al] + Exch K) [32].

Plastic pots with a height of 26 cm and a diameter of 28 cm (12 L) were each filled
with 14 kg of air-dried soil. pH (1:1 0.01 mol L−1 CaCl2) was raised to pH 5.4 by applying
dolomitic limestone [32]. Subsequently, the soil was fertilized with 175 mg kg−1 of P as
triple superphosphate, 13 mg kg−1 of S as calcium sulfate, 1.75 mg kg−1 of Cu as copper
sulfate, and 1.75 mg kg−1 Zn as zinc sulfate.

In this paper, we define exchangeable K as readily available, as K that is extractable
by a Na-saturated exchange resin, and non-exchangeable K as the difference between K
extracted by boiling 1 M HNO3 and exchangeable K. Exchangeable K roughly corresponds
to surface-adsorbed K, and non-exchangeable K is assumed to represent some but not
all interlayer K. Before starting the experiment, soil exchangeable K was 72 mg kg−1 and
non-exchangeable K 230 mg kg−1 (Table 1). To deplete soil K to a low level, ruzigrass was
grown in all pots for up to 45 days after plant emergence. Then, all pots were sampled, and
the samples were combined for analysis. The ruzigrass crop reduced the exchangeable K
to 21 mg kg−1 and non-exchangeable K to 223 mg kg−1, on average.

The experimental design was a randomized complete block with four replications.
The treatments included three crop species, soybean, maize and ruzigrass, grown with
or without K fertilization as described in Table 2. Control pots without plants but with
K (control + K) or without K (control) were also included. The experiment was run for
three successive growing cycles. Ruzigrass, a perennial forage crop, was chosen because it
has been widely used in integrated cropping systems in Brazil, has a fine root system that
allows for a higher exploration of the soil compared with maize [33] and is very efficient in
taking up soil K [34].

Nitrogen supply varied with crop species. For soybean, nitrogen was supplied via
biological fixation. Soybean seeds were inoculated with 5 mL kg−1 of Bradyrhizobium
japonicum (strains SEMINA 5079-CPAC 15 and SEMINA 5080-CPAC7). For maize, nitrogen
was applied as urea at a rate of 80 mg of N kg−1, divided into two applications 15 and
21 days after sowing [35]. For ruzigrass, 25 mg of N kg−1 were applied [34] as urea 15 days
after sowing.
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Table 2. Potassium (K) application rates for three crop cycles.

Treatments
Rates (mg K kg−1 Soil) *

First Crop Second Crop Third Crop

Ruzigrass + K 70 115 70
Ruzigrass 0 0 0
Soy + K 70 130 70

Soy 0 0 0
Maize+ K 70 200 140

Maize 0 0 0
Control Soil + K 140 140 140

Control Soil 0 0 0
* To determine the need for application of K, the level of K in soil and plants was determined after each harvest. The
rate applied was chosen to compensate for the K removed by the plants and to maintain the level of exchangeable
K in the soil above 70 mg kg−1. K applied (mg pot-1) = K exported in harvest (mg pot−1) + ((Ke in soil (mg
kg−1)–70 (mg kg−1)) * kg of soil pot−1).

In the +K treatment potassium was applied on the surface as potassium chloride
at the rates shown in Table 2 in each planting cycle 15 days after seeding. The total K
accumulated by the plants in each cycle was calculated and was applied before the next
crop cycle. This strategy ensured that the plants would not need to use K sources other
than the applied fertilizer.

Applied K can migrate directly to non-exchangeable forms [3]. Therefore, to monitor
the behavior of K among the soil fractions when plants were not extracting it, K was
applied to the pots without plants at 140 mg kg−1 as potassium chloride in each cycle
(control + K treatment).

Soil moisture was maintained at nearly 80% of field capacity by applying deion-
ized water every other day. To avoid water loss by percolation, the bottoms of the pots
were sealed. The greenhouse was maintained with 13 h of artificial light per day and a
temperature between 23 ◦C and 35 ◦C.

Before planting, seeds of soybean and maize were germinated for 48 h on paper towels
moistened with distilled water and then transplanted into the soil. For ruzigrass, sowing
was performed only once, and the plants were allowed to regrow after cutting. Considering
the size of the plant of each species, we based on previous studies and used these same
species in pots, so, seven days after emergence soybean was thinned to two plants per
pot [28], three ruzigrass plants [36], or one maize plant [35]. The peak accumulation of
K occurs at approximately 90 days for soybean [37] and maize [38], and thus these crops
were grown for 90 days in each of the three successive cycles. By contrast, ruzigrass was
grown for three successive cycles of 45 days each [36].

The entire aboveground portions of the plants in each pot were harvested by cutting
at the soil surface and dried to constant weight in a forced-air oven at 60 ◦C for 72 h. The
dry plant tissues were digested using a double-acid solution (HNO3 + HClO4 at a ratio of
2:1, v/v) [39].

After shoot harvest, the soil in each pot was sampled with a small-core auger (1.27 cm
diameter) of sufficient length to reach the bottom of the pot. Old roots were not taken out
of the pots. Three soil samples were taken per pot and combined into one replication. Soil
samples were air-dried and ground to pass a 2-mm mesh screen. Resin-extractable (i.e.,
exchangeable) K was extracted with an ion-exchange resin saturated with Na [12], and
non-exchangeable K was calculated as the difference between the amount of K extracted
with boiling 1.0 mol L−1 HNO3 [40] and exchangeable K (extracted with resin).

The net changes in soil exchangeable and non-exchangeable K during each crop cycle
were calculated using the following equations after transforming soil K concentrations
(mg kg−1) to K stocks (g pot−1), as in [3,34]:

∆Ke = Kf − Ki (1)
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∆Kne = Kf − Ki, (2)

where Ke represents exchangeable K, Kne represents non-exchangeable K, ∆K is the change
in the amount of each fraction of soil K, Kf is the final Ke or Kne in the soil, and Ki is the
initial Ke or Kne in the soil before starting the experiment. Kne was determined as the
difference of K extracted with boiling 1.0 mol L−1 HNO3 and K extracted with resin.

To estimate the K balance in the soil-plant system, Equation (3) was used, considering
the total K accumulated in plants (g pot−1):

Kbal = Kfert − Kabs − ∆Ke, (3)

where Kbal is the K balance, Kfert is the mass of fertilizer K applied per pot, and Kabs is the
total mass of K absorbed by the plants per pot. A negative value was interpreted as release
and uptake of non-exchangeable K (depletion of Kne or other sources that were not soluble
in the nitric acid extraction), whereas a positive value indicated that K was retained by the
soil and root residues. To estimate the contribution of nonexchangeable K to total plant
uptake, we used Equation (4):

ContribKne (%) = |Kbal-neg/Kabs| × 100 (4)

where ContribKne represents the fractional contribution and Kbal-neg represents those values
of Equation (3) that were negative.

The data were subjected to homogeneity of variance (Levene test) and normality
(Shapiro–Wilk) testing, and if appropriate, ANOVA was performed. When the effects were
significant, means were compared by the least significant difference method (LSD, p < 0.05)
using the statistical package SISVAR [41].

3. Results
3.1. Potassium in Soil and Plants

Without K application, the three species accumulated more K in the first crop cycle
than in the second and third crop cycles (Figure 1A). In the presence of K fertilizer, the plants
absorbed larger quantities of K, as expected. When K fertilizer was applied, potassium
uptake was less in the third crop cycle than in the first for soybean and ruzigrass but not
for maize.

When no K was added, maize and soybean aboveground dry matter yield (DMY)
decreased from the first through third crop cycles, whereas for ruzigrass the decrease in
DMY was significant only in the third crop (Figure 1B). Maize and soybean suffered greater
decreases in DMY after successive cultivations without K than did ruzigrass; the DMY
decreased 87%, 88%, and 41% respectively. After the second crop, ruzigrass without K was
still able to maintain its DMY similar to the first crop, while maize and soybean showed a
significant decrease.

After the first cycle, exchangeable K was 21 mg kg−1 in the unfertilized control without
plants (Figure 2A). In the fertilized treatment without plants (control + K), soil exchangeable
K increased after the first fertilizer amendment, decreased after the second amendment,
and increased again after the third amendment. In contrast, non-exchangeable K in the
control + K pots continued to increase with successive applications of K (Figure 2B). In the
cropped pots, successive crops depleted soil exchangeable K in the absence of K application,
leading to an exchangeable K concentration lower than the unfertilized control (Figure 2A).
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Figure 1. K uptake (A) and plant dry matter production (B) in three successive ruzigrass, maize, and
soybean crop growth cycles, with and without application of K fertilizer. The absence of overlap
by vertical bars shows significant differences among cycles in the same crop and fertility treatment.
Lowercase letters indicate differences among species when crop cycle and fertility treatment were
held constant (LSD, p ≤ 0.05).
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Figure 2. Soil exchangeable K (A), and nonexchangeable K (B), in three successive ruzigrass, maize,
and soybean crop growth cycles with or without application of K fertilizer. The absence of overlap
by vertical bars shows significant differences among cycles in the same crop and fertility treatment.
Lowercase letters indicate differences among species when crop cycle and fertility treatment were
held constant (LSD, p ≤ 0.05).
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Regardless of K application, non-exchangeable K decreased from the first to the second
crop for all species. By the end of the first crop cycle, the non-exchangeable K concentration
was similar to that of the non-fertilized control in all treatments (Figure 2B). After the first
crop cycle, the largest decrease in soil non-exchangeable K occurred in the treatments with
unfertilized ruzigrass. After the second crop cycle, non-exchangeable K concentrations
were lower in all treatments without K than in the fertilized treatments. From the second
to the third crop, the soil non-exchangeable K concentration did not change, except for an
increase in the treatments with both K-fertilized and unfertilized soybean. By the end of the
third cycle, depletion of non-exchangeable K was observed in most of the crop treatments,
although in the fertilized soybean treatment non-exchangeable K had increased to its level
after the first cycle. Non-exchangeable K increased over time in the control + K (Figure 2B).

Overall, even where fertilizer K was applied, there was a net decrease in both ex-
changeable and non-exchangeable K (as measured by extractions) over the three crop cycles
of this study (Figure 3). Both ∆Ke and the ∆Kne were negative where plants were grown,
and they were positive with no plants in the control + K treatment. The three unfertil-
ized species and the fertilized ruzigrass led to greater net loss of soil-test exchangeable
K, whereas the changes for fertilized maize and soybeans were statistically equivalent
to that of the unfertilized control treatment (Figure 3A). The net change in soil-test, non-
exchangeable K (∆Kne) over the three cycles was least in the fertilized soybean treatment,
followed by the fertilized maize treatment. Unfertilized ruzigrass led to the greatest net
loss of soil-test, non-exchangeable K (Figure 3B).
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Figure 3. Net changes in soil-test, exchangeable K, ∆Ke (A) and soil-test, non-exchangeable K, ∆Kne
(B) contents from before the first crop growth cycle to after the third crop growth cycle. The vertical
bars represent standard error, and lowercase letters indicate difference among species (LSD, p ≤ 0.05).
Exchangeable K was extractable by a Na-saturated exchange resin, and non-exchangeable K is the
difference between K extracted by boiling 1 M HNO3 and exchangeable K.

In the first crop cycle all the unfertilized crops showed considerable uptake of non-
exchangeable K (Figure 4A), but it decreased as the experiment progressed, following the
decrease in total K uptake and dry matter yield (Figure 1A). In the first crop of fertilized
maize, the uptake of non-exchangeable K was statistically equivalent to that of the unfertil-
ized maize. The unfertilized maize and soybean took up more non-exchangeable K than
did unfertilized ruzigrass only in the first cycle. From the first to the third cycle, the uptake
of non-exchangeable K by unfertilized maize and soybean decreased around 80%, while
non-exchangeable K uptake by unfertilized ruzigrass declined around 50% (Figure 4A).
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Figure 4. Nonexchangeable K uptake by plants (Kbal-neg) during each crop growth cycle (A), and 

the contribution of nonexchangeable K to total K uptake (B). Maize and soybean were grown for 90 

Figure 4. Nonexchangeable K uptake by plants (Kbal-neg) during each crop growth cycle (A), and the
contribution of nonexchangeable K to total K uptake (B). Maize and soybean were grown for 90 days,
and ruzigrass was grown for 45 days. The absence of overlap by vertical bars shows significant
differences among the cycles, and lowercase letters indicate differences among species within given
a fertility treatment and cycle (LSD, p ≤ 0.05). Exchangeable K was extractable by a Na-saturated
exchange resin, and non-exchangeable K is the difference between K extracted by boiling 1 M HNO3

and exchangeable K.

Across all three species and crop cycles, the contribution of non-exchangeable K to the
total uptake of K was greatest in the unfertilized treatments (Figure 4B). For soybeans and
ruzigrass, the contribution of non-exchangeable K to plant demand decreased from the first
to the second cycle, but there was no decrease from the second to the third cycle (Figure 4B).
In contrast, there were successive decreases in the non-exchangeable contribution to uptake
in each cycle of the unfertilized maize (Figure 4B).

3.2. Potassium Balance in the System

After three crop growth cycles without K application, the soil K balance was negative
for all three species, and no difference was found between species. Conversely, when K
was applied, a positive balance was always observed (Figure 5). The control + K treatment,
where no crop was grown, showed the highest positive value. When maize and ruzigrass
were fertilized, the balance was more positive than for fertilized soybean, which was similar
to the unfertilized control.
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Figure 5. Potassium balance in the soil–plant system ((Kbal = Kfert − Kabs − ∆Ke) in relation to total K uptake after three
crop growth cycles. Vertical bars represent standard error, and lowercase letters indicate difference between species (LSD,
p ≤ 0.05).

4. Discussion

In general, even when K fertilizer was applied, K uptake and DMY decreased as the
experiment progressed, with the exceptions of the K uptake by maize and the DMY of
ruzigrass (Figure 1B). Some studies have shown that successive monocropping, even with
fertilizer application, can lead to a decrease in nutrient availability, including K, eventually
compromising yields [42]. However, in this study, except for unfertilized pots, diagnostic
leaf analysis did not reveal insufficient levels of any nutrient (data not shown) that could
explain the decrease in dry matter production. Despite plant uptake of K from fractions
that are less soluble than exchangeable K, uptake and removal of soil K over successive
crop cycles can eventually lead to a decrease in K and dry matter production [43–45]. The
use of ruzigrass to deplete soil exchangeable K was very effective (Figure 2A), as observed
in previous studies [34]. Considering that exchangeable K had been significantly reduced
before the first cropping cycle, it may be hypothesized that as plants extracted more native
soil K with successive cycles, they had to scavenge for K that was bound more strongly
to the soil minerals. For example, this K could be bound at interlayer sites near the edges
of layer silicate minerals. It has been previously shown that K can be solubilized from
minerals by the action of organic acids released in the plant rhizosphere, [17,46] found
evidence of K deprivation decreasing the crystallinity of 2:1 phyllosilicates in a tropical
soil. After depletion of this fraction the plants may have had more difficulty taking up
non-exchangeable K from those interlayer or other structural positions where K is more
tightly bound.

The responses of the three species to soil Ke and Kne depletion clearly demonstrated
the differences in K usability among them and the importance of Kne for K supply in ruzi-
grass. Ruzigrass DMY responded to K application only in the third crop cycle and seemed
not to be affected by the low exchangeable K levels in the first and second crop cycles
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(Figures 1B and 2A). We infer that ruzigrass without added K was able to acquire K from
soil pools less available than those utilized by soybean and maize [29,36,47]. The release of
K from non-exchangeable pools by plants has been attributed to root exudates [48], but soil
microbiota [49], including fungi [50], may also have a role. Soil K can be solubilized by a
range of microbes such as Acidithiobacillus, Agrobacterium, Arthrobacter, Aspergillus, Bacillus,
Burkholderia, Enterobacter Pantoea, Flectobacillus, Klebsiella, Microbacterium, Myroides,
Paenibacillus, Pseudomonas, and Stenotrophomonas [51]. Several mechanisms of K solubi-
lization have been reported so far, such as acidification, acidolysis, complexation, organic
acids, auxins, siderophres, organic ligands, chelation, and exchange reactions [50,51].
Despite the increasing interest in K-solubilizing microbes, we could not find studies specif-
ically with soybean or ruzigrass, and the plant species affects microbe colonization and
efficiency [50,52]. Furthermore, in reports with a significant response to these microbes, the
plants were inoculated, which was not the case in this experiment. Another uncertainty
in assessing the actual importance of microbes in soil K solubilization is the survival of
these microorganisms in unfavorable environments [50]. However, organic acid exudates
may have had a considerable effect in the present experiment, since ruzigrass roots have
been shown to release significant amounts of organic acids such as citrate, isocitrate, and
oxalate [53]. Therefore, we infer that the ruzigrass DM yields without K fertilizer were, pro-
portionally, less affected by successive crops than those of maize and soybean (Figure 1B)
due to exudation of organic acids that promoted soil K release. Further, the contribution of
non-exchangeable K to total K uptake by unfertilized ruzigrass was maintained over the
three crop cycles, whereas it dropped for maize and soybean (Figure 4B).

Plant demand for K is an important driver of the uptake of non-exchangeable K [36,54].
Because the soil initially had low exchangeable K, i.e., below the minimal critical level [55],
the unfertilized treatments had to rely on the release of non-exchangeable K to meet
the demand in the first cropping cycle. Even when K fertilizer was applied, some non-
exchangeable K may have been taken up, only to be replenished by added fertilizer K. The
decrease in exchangeable K and the increase in soil non-exchangeable K between the second
and third cycles of fertilized soybean may have been due to the conversion of exchangeable
K to non-exchangeable K (Figure 2A,B). This suggests that not all exchangeable K was
utilized by the plants, with conversion of the surplus to non-exchangeable K.

Recent works, to deplete the K fractions, show an increase in Ke through the ap-
plication of K [42] which did not occur in our work, that even with the application of
K, the Ke contents remained lesser the critical level. On the other hand, Kne decreases,
over successive cultivations, by about 46% [42], our results also showed a decrease in this
fraction even with K application (Figure 2).

Even after the three successive crops of maize and soybean cropping, K fertilization
was sufficient to maintain soil-test Ke at levels similar to that of the control treatment with
no fertilizer (Figure 3A). Over the entire experiment, ruzigrass depleted soil-test Ke, even
with K fertilizer application. Furthermore, without K application, maize, and ruzigrass
depleted soil-test Ke more than did soybean.

Depletion of Kne (negative ∆Kne) was observed in all crop treatments except the
fertilized soybean treatment (Figure 3B). Increased Kne was observed in the control + K
treatment. The greatest depletion of Kne throughout the experiment was observed for the
unfertilized treatments (Figure 3B).

In K-fertilized maize, which did not deplete Ke, Kne still decreased, perhaps due to
the high K demand by maize. For fertilized soybean, however, the applied K was sufficient,
and there was no need to use Kne. By contrast, ruzigrass depleted both soil Ke and Kne
(Figure 3), even when fertilized with K, certainly due to its high cycling capacity [29].
Plants with more prolific root systems are more efficient in absorbing K from less soluble
fractions, and root systems with a larger surface area, such as those of grasses [56], may
exude organic anions into a larger volume of the soil [15,57] and thus remove more K from
these fractions.
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For maize and soybean, in the first cycle, there was a contribution of the soil non-
exchangeable K fraction even with K application (Figure 4B). These crops showed higher
DMY than ruzigrass (Figure 1A). High K demand of plants forces the use of non-exchangeable
K [34,54], and maize and soybean have higher demand for K than does ruzigrass.

Although soil exchangeable K was low at the beginning of the experiment, the plants
were able to take up K. Ruzigrass has been reported to have a higher capacity to acquire
non-exchangeable K than maize or soybean [29]. Therefore, maize and soybean were able
to access some of the K that is considered non-exchangeable according to routine chemical
extractions, whereas ruzigrass root exudates may have been able to solubilize additional
non-exchangeable K that was bound more tightly to soil minerals. We can speculate that
most of the non-exchangeable K taken up initially came from the fraction with intermediate
solubility and bound near layer silicate edges.

With the sequential application of K in the absence of plants (control + K), exchange-
able K increased after the first application (first cycle), decreased in the second cycle, and
increased again in the third cycle (Figure 2). Some of the K from the fertilizer applications
was apparently converted to non-exchangeable K, which increased after each fertilization
(Figure 2B). Conversion of applied K to non-exchangeable K is possible and may occur
quickly [41,58]. This conversion may explain the decrease in exchangeable K (Figure 2A)
and corresponding increase in non-exchangeable K between the first and second cycle of
the K-amended control (Figure 2B). Increased non-exchangeable K after K application to
soils without plants has been observed in tropical soils [4,41]. In soil with low exchangeable
K, an equilibrium will be reached in the soil solution after K application, after which further
K application may result in a linear increase in non-exchangeable K [59].

The uptake of non-exchangeable K was highest when K was not applied (Figure 4A).
However, in the first cycle, even when K was applied, non-exchangeable K contributed
considerably to the total K uptake of maize and soybean (Figure 4B). In that cycle, both dry
matter production and K uptake were promoted by K fertilization, and they were higher for
maize and soybean than for ruzigrass (Figure 1). Apparently, the high demand exceeded
the supply of both added K and exchangeable K, leading to uptake of non-exchangeable K.
As K is taken across root cell membranes, the rhizosphere becomes more acid due to the
release of H+ by roots [1]. We speculate that K was released from non-exchangeable pools
in response to this acidification.

The K balance in soil/plant systems depends on the different pools of soil K that
plants may access as well as on the inputs, removals, and losses of K from the system. This
balance will tend to be negative when K fertilizer is not applied and will be increasingly
positive as the amount of applied K increases [42]. A negative balance implies that non-
exchangeable K has been taken up, and a positive balance suggests that applied K has been
converted to non-exchangeable K (including both K that is assessed in HNO3- extraction as
well as other forms of structural K). Non-exchangeable K may originate from trioctahedral
phyllosilicates, such as biotite, or it may occur in hydroxy-interlayered vermiculite. While x-
ray diffraction and thermal analysis studies of the soil in this study showed a predominance
of kaolinite in the clay fraction (~65%), goethite, biotite, and vermiculite were also present
(~15%, ~16%, and ~3%, respectively) [30]. Biotite is likely to have been a significant source
of non-exchangeable K in this soil.

5. Conclusions

In a tropical kaolinitic soil with limited exchangeable K and in the absence of K
fertilization, non-exchangeable K (HNO3-extractable) contributed more than 80% of the K
taken up by ruzigrass, maize, and soybean. Over three crop cycles, the proportion of total
K taken up from non-exchangeable sources was greater for ruzigrass than for maize and
soybean. The results of this study show that non-exchangeable K can be used by plants
at the same time that the exchangeable K fraction is being used, therefore, soil nutrient
pools determined by chemical extractions do not separate strictly into plant-available and
plant-unavailable pools that are consistent for multiple plant species. This is an important
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point to be considered in developing K fertilizer recommendations for cropping systems
where ruzigrass, maize, and soybean are included.
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