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Abstract: The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’
and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in
growth chamber with 25/15 ◦C day/night temperatures and a light intensity of 250 µmol·m–2·s–1

photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the
first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the sec-
ond experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 µmol·m–2·s–1PPFD
provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD).
The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod
was longer than 16 h, and the number of runners induced positively correlated with the length of
photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo
decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly
increased the number of runners and daughter plants induced per plant as compared with those in
the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light,
especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.

Keywords: day length; night interruption light; propagation

1. Introduction

Strawberry (Fragaria × ananassa Duch.) is an herbaceous perennial crop species in
the Rosaceae family. It is one of the most popular fruit crops all around the world for
their beautiful appearance, flavor, and health benefits [1]. Strawberries, mostly a June-
bearing type, were cultivated on 6,462 hectares and the annual yield was 234,225 tons
(KOSIS, 2020) in Korea in 2020. The commercial success of this crop is due in part to its
asexual propagation using runners because asexual production using daughter plants is
faster in making quality transplants than seed propagation and daughter plants retain the
characteristics of the mother plant [2]. Thus, commercially, almost all strawberry plants are
propagated through runners instead of seeds.

In strawberries, runner development is intimately connected with flowering. They
are oppositely influenced by the same environmental signal in most cases. Currently, most
of our understanding relates to photoperiods, even though temperature is also known to
play an important role. When strawberry plants were transferred from long day (LD) to
short day (SD) conditions, the production of new runners ceased after 3 weeks [3]. When
strawberries were treated with the same brief periods of SD, renewed runner formation
happened when plants were transferred back to LD [4]. In June-bearing wild-type strawber-
ries (Fragaria vesca), SD and low temperatures induce flowering and inhibit runners [5,6]. In
contrast, LD and high temperatures inhibit flowering and induce runners. In the everbear-
ing genotype, the number of induced runners increases in high-temperature conditions,
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while the photoperiodic condition gave various effects [7]. Everbearing genotypes produce
fewer runners than June-bearing genotypes. Many everbearing genotypes of F. vesca do
not produce runners in natural environmental conditions. However, Hawaii-4, an ever-
bearing genotype that also forms runners, was enhanced to produce runners under SD
treatment [8]. Some strawberry cultivars did not show any significant difference in runner
induction between LD and SD [9]. Thus, photoperiod and temperature have different
impacts on runner induction in various strawberry genotypes. The LD photoperiod was
found to be the most influential factor for runner induction in strawberries according to
our previous research [10]. However, the critical photoperiod for runner induction still
remains unknown.

The effect of light quantity on branching, leaf area, and biomass production was
intensively studied in recent years [11]. The growth and development of plants de-
pend on both light intensity and quality. The ‘Toyono’ strawberry grown under 110
to 122 µmol·m–2·s–1photosynthetic photon flux density (PPFD) provided by white fluores-
cent lamps promoted plant growth and the formation of daughter plants when compared
with plants under 50 to 55 µmol·m–2·s–1 PPFD [12]. Using filters to change the spectral
distribution of natural sunlight directly influences photosynthesis [13]. Early studies of
light quality on strawberry growth and flowering indicated that decreasing the ratio of
far-red to red light promoted flowering while blue and far-red light delayed flowering
and stimulated runner development [14,15]. Researchers also found that plants grown, by
photon flux density, under light with 30% blue and 70% red produced the greatest number
of runners whereas those grown under 20% blue, 10% green, and 70% red had the greatest
number of daughter plants per runner [16].

Night interruption (NI) light breaks a long dark period during the night to deliver
photoperiodic lighting to simulate modified LD conditions while saving in electrical energy
consumption. The NI light is effective for accelerating the growth and development of
plants [17]. The NI light was mostly used for flowering control, such as for preventing or
delaying flowering of SD plants and for accelerating flowering of LD plants [18–20]. The
NI effect on flowering promotion in LD plants and on flowering inhibition in SD plants
varies depending on application timing and intensity of NI during the night [21]. Since
flowering and runner initiation are mutually exclusive to each other [22,23], NI light may
also affect the runner induction in strawberries.

Above all, the critical photoperiod and optimal quality of NI light for runner induction
was investigated in the two most widely planted strawberries in Korea, ‘Sulhyang’ and
‘Maehyang’, to provide instructions for inducing runners in the large-scale commercial
propagation of strawberries.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

In the first experiment, about 20 cm long runner plants with three fully expanded
leaves of ‘Sulhyang’ and ‘Maehyang’ strawberries were purchased from a strawberry
farm (Sugok-myeon, Jinju, Korea) and stuck in 21-cell zigzag trays (21-Zigpot/21 cell tray,
Daeseung, Jeonju, Korea) filled with BVB Medium (Bas Van Buuren Substrates, EN-12580,
De Lier, The Netherlands) on November 1, 2019. They were then put into a fogged tunnel
for root development. Two weeks later, well-rooted daughter plants were taken out of the
fogged tunnel and transferred to a bench in a glasshouse and were supplied with a nutrient
solution (in mg·L–1) composed of 708.0 (Ca(NO3)2·4H2O, 246.0 MgSO4·7H2O, 505.0 KNO3,
230.0 NH4H2PO4, 1.24 H3BO3, 0.124 CuSO4·5H2O, 4.0 Fe-EDTA, 2.2 MnSO4·4H2O, 0.08
H2MoO4, and 1.15 ZnSO4·7H2O. The plants were transplanted into 10 cm pots on February
29, 2020 and moved into a semi-closed walk-in growth chamber with 25/15◦C day/night
and 70% relative humidity. They were grown there for one month under 12, 14, 16, 18, 20,
or 22 h photoperiods with 250 µmol·m–2·s–1 PPFD provided from white LEDs (MEF50120,
More Electronics Co., Ltd., Changwon, Korea). Each treatment contained three replicates
of three plants.
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In the second experiment, runnering of ‘Sulhyang’ and ‘Maehyang’ strawberries, as
affected by the quality of NI light, was assessed. Runner plants of similar sizes were
separated from the mother plants and planted in a 21-cell tray filled with the BVB (Bas
Van Buuren Substrates, De Lier, The Netherlands) substrate on June 28, 2019 and then put
into a fogged tunnel for rooting. Ten days later, well-rooted daughter plants were taken
out of the fogged tunnel, cultivated in a glasshouse for one month, and then transplanted
into 10 cm pots. The experiment was conducted in a semi-closed walk-in growth cham-
ber with 25/15◦C day/night and 70% relative humidity. The plants were grown under
250 µmol·m–2·s–1 PPFD provided by white LEDs (MEF50120, More Electronics Co., Ltd.,
Changwon, Korea) under a light treatment regime of either LD (15 h light/9 h dark), SD
(11 h light/13 h dark), or SD with a white, green, blue, red, or far-red NI lighting for a
total of 4 h (Figure 1). The spectral distribution of the LEDs was measured with a portable
spectroradiometer (Spectra Light ILT 950, International Light Technologies, Inc., Peabody,
MA, USA). The peak wavelengths of blue, green, red, and far-red light were 470, 515, 660,
and 740, respectively. The NI light intensity was 70 µmol·m–2·s–1 PPFD, and a timing
controller (SJP-CP16H, Seojun Ltd., Seoul, Korea) was used to control the entire circuit and
to make sure that the LEDs were lit at 8:00 a.m. every day in all treatments. Each treatment
contained three replicates of three plants. Data were collected one month later.

Figure 1. The light spectral distribution of the LEDs (a) and night interruption light (b) used in this
study: W, white; G, green; B, blue; R, red; FR, far-red; LD, long day; NI, night interruption; and SD,
short day.

2.2. Measurement of Growth Parameters

Growth parameters, such as the number of runners and daughter plants, runner
length and diameter, plant height, leaf length and width, and petiole length and diameter
were measured. The biggest young mature leaf was used to measure leaf and petiole size.
The diameters of runners and petioles were measured using a Vernier caliper (CD-20CPX,
Mitutoyo Korea Co., Gunpo, Korea).
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2.3. Chlorophyll Contents

The contents of chlorophyll a and b in both experiments were estimated according to
the method described by Wang et al. [24] with some modifications. To briefly describe, the
fresh leaves were ground into fine powder in liquid nitrogen, and 0.03 g of the powder from
each treatment was mixed with 2 mL extraction buffer (45% v/v ethanol, 45% v/v acetone,
and 10% distilled water). The mixtures were covered with tin foil and put into a 4 ◦C
refrigerator overnight. After centrifugation at 6000 rpm for 10 min, the supernatants were
transferred to a colorimeter tube for determination of the absorbance at 645 and 663 nm.
The contents of chlorophyll a and b were determined using the following formulae:

Chlorophyll a =
(12.72 × OD 663 – 2.59 × OD 645) × V

Sample fresh weight
Chlorophyll b =

(22.88 × OD 645 – 4.67 × OD 663) × V
Sample fresh weight

where OD is optical density and V is the volume of the extraction solution. The chlorophyll
content was presented milligrams of chlorophyll per gram of fresh leaf weight.

2.4. Soluble Sugar and Starch Contents

The contents of soluble sugar and starch in both experiments were measured according
to anthrone–sulfuric acid colorimetry as previously published [10].

2.5. Chlorophyll Fluorescence Parameters

The chlorophyll fluorescence parameter of Fv/Fm is the maximum/potential quantum
efficiency of photosystem II (PS II), and Fv/Fo is the maximum primary yield of PS II
photochemistry. These two parameters were measured in both experiments with a portable
fluorometer after one month of cultivation (Fluorpen FP110, Photon Systems Instruments,
Drásov, Czech Republic).

2.6. Statistical Analysis

Significant statistical differences among the treatments were determined by analysis
of variance (ANOVA), followed by Duncan’s multiple range test at a significance level of
p = 0.05 with the Statistical Analysis System (SAS, V. 9.2, Cary, NC, USA).

3. Results
3.1. Runner Growth as Affected by Long Day Photoperiod

The strawberry plants were kept in the growth chamber for one month. The mor-
phology of the strawberry plants at the end of the experiment is shown in Figure 2. Both
strawberries ‘Sulhyang’ and ‘Maehyang’ produced runners when the photoperiod was
longer than 16 h. Moreover, the number of runners was positively correlated with the
length of the photoperiod in both cultivars (Figure 2). The strawberries produced daughter
plants when photoperiod longer than 18 h in ‘Sulhyang’ and 20 h in ‘Maehyang’. The run-
ner length and diameter were significantly increased in 22 h photoperiod when compared
with 16 h photoperiod.

3.2. Plant Growth as Affected by Long Day Photoperiod

Although runner growth was increased under longer photoperiods, plant height and
petiole length were significantly decreased when the photoperiod was longer than 20 h
(Table 1). The petiole diameter was not affected by photoperiod. Strawberry ‘Maehyang’
treated with 20-h photoperiods produced the biggest leaves.
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Figure 2. The morphology of strawberry plants (a,b) and runner-related parameters (c–f) as affected by the photoperiod.
Lowercase letters indicate significant difference according to the Duncan’s multiple range test at a 0.05 level. Vertical bars
indicate standard errors.
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Table 1. The growth parameters of strawberries as affected by the photoperiod.

Cultivar
(A)

Photoperiod
(B, h)

Plant Height
(cm)

Petiole Leaf

Length
(cm) Diameter (mm) Length

(cm)
Width
(cm)

‘Sulhyang’

12 20.4 cdz 12.5 b 2.0 bcd 7.4 de 6.3 bcd
14 20.1 cd 11.7 bc 2.1 a-d 7.7 b-e 6.6 abcd
16 18.6 de 10.3 cde 2.0 bcd 7.8 bcde 6.8 abc
18 19.1 de 10.8 bcd 2.0 cd 7.9 bcd 6.9 ab
20 17.9 ef 9.8 de 2.1 bcd 7.7 b-e 7.0 a
22 17.3 f 9.2 e 1.9 d 7.1 e 6.8 a-d

‘Maehyang’

12 23.2 a 13.5 a 2.1 abcd 8.2 bc 6.3 bcd
14 22.4 abc 12.3 b 2.2 a-d 8.6 ab 6.2 cd
16 22.7 abc 11.9 bc 2.4 a 8.1 bcd 6.4 abcd
18 21.0 bc 11.6 bc 2.2 abcd 8.4 ab 6.7 a-d
20 21.4 bc 11.4 bcd 2.3 ab 9.0 a 6.9 ab
22 19.1 de 11.1 bcd 2.3 abc 7.6 cde 6.1 d

F-testy
A *** *** *** *** *
B *** *** NS ** *

A×B ** NS NS * NS
z Significant statistical differences calculated by the Duncan’s multiple range test at p ≤ 0.05. y NS, *, **, and *** represent non-significant
statistical difference or significant statistical difference by a two-way ANOVA F-test at p ≤ 0.05, 0.01, and 0.001, respectively.

3.3. Runner and Plant Growth as Affected by NI Lights

The morphology of the strawberries treated with NI light at 70 µmol·m–2·s–1 PPFD
for one month is shown in Figure 3. Plants treated with LD were significantly promoted
in runner induction compared with those in SD (Table 2). As the case with NI light, all
light treatments significantly increased the number of runners per plant induced in both
cultivars. Red NI light induced the largest number of runners in both cultivars. Far-red
light significantly enhanced the runner length in both cultivars. However, runner diameter
decreased by far-red NI light in both cultivars. Green, blue, and far-red NI lights increased
plant height and petiole length in ‘Sulhyang’, whereas all qualities of NI lights, except for
green light, increased plant height, petiole length, and leaf length in ‘Maehyang’ compared
with LD. All qualities of NI lights promoted leaf length and width in ‘Sulhyang’.

Figure 3. The morphology of ‘Sulhyang’ (a) and ‘Maehyang’ (b) strawberries as affected by night interruption (NI) light:
LD, long day; SD, short day; W, white; G, green; B, blue; R, red; and FR, far-red.
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Table 2. The growth of strawberries as affected by photoperiod and quality of night interruption light.

Cultivar
(A)

Light
Treatment

(B)

Runner Petiole Leaf Plant
Height

(cm)Number Length
(cm)

Diameter
(mm)

Length
(cm)

Diameter
(mm)

Length
(cm)

Width
(cm)

‘Sulhyang’

LD 2.56 abz 41.46 bcd 1.84 abc 3.63 e 2.36 e 5.08 d 4.82 ef 9.87 gh
NI-W 1.44 cd 27.93 e 1.70 bcd 4.42 e 2.32 e 6.07 c 5.57 cd 11.35 fg
NI-G 2.33 abc 43.83 bc 1.72 a–d 7.25 d 2.47 cde 7.20 ab 6.52 ab 15.42 cd
NI-B 2.33 abc 36.51 cde 1.90 ab 7.58 cd 2.64 a–e 7.63 a 6.43 ab 16.00 cd
NI-R 2.89 a 36.38 cde 1.90 ab 4.87 e 2.60 b–e 7.42 ab 6.72 a 12.93 ef

NI-FR 2.00 a–d 53.48 a 1.53 d 7.20 d 2.54 b–e 7.22 ab 6.22 abc 15.07 de
SD 0.67 f 35.50 cde 1.57 d 3.37 e 1.96 f 4.33 d 3.73 g 8.40 h

‘Maehyang’

LD 2.11 abc 41.17 bcd 1.79 abc 6.63 d 2.86 ab 6.17 c 5.32 de 13.78 de
NI-W 2.56 ab 35.33 cde 1.92 a 9.00 bc 2.80 abc 7.62 a 6.42 ab 17.53 bc
NI-G 1.78 bcd 42.33 bcd 1.73 a–d 6.68 d 2.81 abc 6.68 bc 5.55 cd 13.95 de
NI-B 1.32 cd 38.42 cd 1.84 abc 12.45 a 2.97 a 7.60 a 5.92 bcd 20.82 a
NI-R 2.56 ab 43.20 bc 1.79 abc 10.27 b 2.77 a–d 7.80 a 5.98 bcd 18.77 ab

NI-FR 2.33 abc 49.33 ab 1.66 cd 10.60 b 2.76 a–d 7.20 ab 5.60 cd 18.80 ab
SD 0.89 ef 32.75 de 1.82 abc 4.62 e 2.42 de 4.88 d 4.37 f 10.55 gh

F-test y
A NS NS NS *** *** ** NS ***
B *** *** *** *** *** *** *** ***

A × B *** *** *** *** *** *** *** ***

**, and *** represent non-significant statistical difference or significant statistical difference by a two-way ANOVA F-test at p ≤ 0.01, and
0.001, respectively.

3.4. Chlorophyll Contents

The contents of chlorophyll were the highest and lowest in 12 and 22 h photoperiods,
respectively (Figure 4a,b). Blue, red, and far-red NI lights significantly increased the
chlorophyll content in ‘Sulhyang’, and blue NI light increased the chlorophyll content in
‘Maehyang’ (Figure 4c,d). Green NI light significantly decreased the chlorophyll content in
both cultivars.

3.5. Soluble Sugar and Starch Content

The sugar and starch contents increased with the increase in day length when the
photoperiod was less than 20 h, and these carbohydrates decreased in 22-h photoperiods
in both cultivars (Figure 5a,b). Red and far-red NI lights significantly promoted the sugar
content in both cultivars, compared with that in SD (Figure 5c). All of the NI lights, except
for Blue light, increased the starch content compared with SD in ‘Maehyang’ (Figure 5d).

Figure 4. Cont.
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Figure 4. Chlorophyll contents as affected by photoperiod and quality of night interruption (NI) light: (a,b), the effect of
photoperiod on chlorophyll contents in ‘Sulhyang’ and ‘Maehyang’, respectively; (c,d), the effect of NI light on chlorophyll
contents in ‘Sulhyang’ and ‘Maehyang’, respectively: LD, long day; SD, short day; W, white; G, green; B, blue; R, red; and
FR, far-red. Lowercase letters indicate significant difference according to the Duncan’s multiple range test at a 0.05 level.
Vertical bars indicate standard errors.

Figure 5. Contents of sugar and starch as affected by photoperiod (a,b) and quality of night interruption (NI) light (c,d): LD,
long day; SD, short day; W, white; G, green; B, blue; R, red; and FR, far-red. Lowercase letters indicate significant difference
according to the Duncan’s multiple range test at a 0.05 level. Vertical bars indicate standard errors.
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3.6. Chlorophyll Fluorescence Parameters

Although the value of Fv/Fm was not affected by photoperiod, the value of Fv/Fo
decreased in 22-h photoperiods in both cultivars (Figure 6). The Fv/Fm and Fv/Fo did not
show any significant difference in strawberries treated with different qualities of NI lights
(data not shown).

Figure 6. The Fv/Fo (a) and Fv/Fm (b) as affected by photoperiod. Lowercase letters indicate significant difference
according to the Duncan’s multiple range test at a 0.05 level. Vertical bars indicate standard errors.

4. Discussion

Light is essential for strawberry runner induction. The optimal light intensity for the
vegetative growth of strawberries is 180–270 µmol·m–2·s–1 [25]. Thus, the light intensity
used in those two experiments was suitable for runner growth. The LD photoperiod is well
known for inducing runners in strawberries [26–28]. Researchers found that the growth
of runners was enhanced as the photoperiod increased from 10 to 16 h [29]. However,
the photoperiod that increases vegetative growth varies with cultivar. Both ‘Sulhyang’
and ‘Maehyang’ started to produce runners at a photoperiod longer than 16 h in this
study. The light intensity in the growth chamber was lower than that for natural light.
Thus, strawberries may need longer photoperiods to produce enough photosynthate for
runner initiation in growth chambers. The LD photoperiods were reported to be conducive
of vegetative growth, including plant height, and fresh and dry weights in some plant
species. However, the LD photoperiods used in those cases were generally even less than
18 h [30,31]. The growth of runners, which is also considered a vegetative growth, increased,
while the growth of plants decreased when a photoperiod was longer than 20 h in this
study. Thus, it was more conducive to the growth of runners than when the photoperiod
was longer than 20 h.

The contents of chlorophyll, sugar, and starch were significantly decreased under 22-h
photoperiods in both cultivars. The chlorophyll fluorescence parameters reflect the activity
of the PS II reaction center. Both Fv/Fm and Fv/Fo are important parameters that reflect
the activity of PS II [32,33]. Although the value of Fv/Fm did not show any difference
among different photoperiods, the value of Fv/Fo was decreased in 22-h photoperiods.
The Fv/Fm is a relatively inert ratio, while the ratio of Fv/Fo is more sensitive and a better
indicator than Fv/Fm [34,35]. These data indicated that the photosynthesis decreased due
to the low activity of the PS II. These results suggested that a photoperiod longer than 20 h
was not suitable for runner induction.

NI lighting, which breaks the dark period, is useful to deliver photoperiodic lighting
and to create LD-like conditions [36]. Vegetative growth increased by NI light through
enhanced photosynthesis [37]. Some researchers found that NI light significantly increased
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the number of runners in everbearing strawberries [38]. The number of runners was also
significantly increased by some NI light qualities in this study. Although the NI light
used was only 70 µmol·m–2·s–1 PPFD, a similar number of runners as strawberries treated
with LD was found in those treatments, which means less electrical energy was spent
to induce the same number of runners when compared with those in LD. Red NI light
was found to be the best light for runner induction in both cultivars. Red and blue lights
have great effects on plant growth because these lights contain the main light spectra for
photosynthetic CO2 fixation in plants [39]. Moreover, red light led to larger increases in the
accumulation of photosynthate than blue light [40–42]. Red light also plays an important
role in inducing starch degradation in many plants [43,44], which is very important for
plant growth [45]. The soluble sugar content was increased by red NI light in this study.
Thus, red light may have promoted runner induction by increasing photosynthesis and
promoting starch degradation to provide more sugar and energy for growth of runners [10].
In addition, far-red NI light was found to increase plant height in some plants [46,47], since
far-red light increases GA levels in plants [48,49], which may have been a reason for the
elongated runners by far-red NI light in this study.

The genetic control of runner formation in cultivated strawberries is quite intricate
due to their large number of chromosomes (2n = 8× = 56). Although several quantitative
trait loci were reported to be related to runner formation in cultivated strawberries [50,51],
the exact mechanism of runner induction still remains unknown. Previous work found the
photoperiod to be the most influential factor for runner induction [10], and photosynthates
such as sugar and starch are crucial for initiation of runners. However, the contents of
sugar and starch were not always positively correlated with the number of runners in
this study, indicating that the accumulation of photosynthates was not the only factor
that affected the runner induction in cultivated strawberries. Some researchers also found
that plant hormones are essential for the induction of axillary meristems and growth of
runners. GA is widely recognized as playing an important role in runner induction in wild
strawberries [52]. Moreover, recent research found that a high cytokinin to auxin ratio in
the axillary bud triggers runner formation [53]. Thus, to help understand the mechanism
of runner induction in cultivated strawberries, future work should focus on detecting
the contents of hormones in different tissues of strawberry plants and on finding out the
regulatory pathways involved.

5. Conclusions

‘Sulhyang’ and ‘Maehyang’ strawberries started to produce runners when a photope-
riod longer than 16 h was provided, and the number of runners induced was positively
correlated with the length of the photoperiod. However, plant growth and the contents
of chlorophyll, sugar, and starch were significantly decreased in the 22-h photoperiod.
Thus, a photoperiod between 16 and 20 h is suggested to induce runners in ‘Sulhyang’ and
‘Maehyang’. Moreover, red NI light at an intensity of 70 µmol·m–2·s–1 PPFD promoted
more runner induction in both cultivars in this study.
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