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Abstract: Field studies were conducted in 2016 and 2017 to determine if multispectral imagery
collected from an unmanned aerial vehicle (UAV) equipped with a five-band sensor could successfully
identify Palmer amaranth (Amaranthus palmeri) infestations of various densities growing among
soybeans (Glycine max [L.] Merr.). The multispectral sensor captures imagery from five wavebands:
475 (blue), 560 (green), 668 (red), 840 (near infrared [NIR]), and 717 nm (red-edge). Image analysis
was performed to examine the spectral properties of discrete Palmer amaranth and soybean plants at
various weed densities using these wavebands. Additionally, imagery was subjected to supervised
classification to evaluate the usefulness of classification as a tool to differentiate the two species in a
field setting. Date was a significant factor influencing the spectral reflectance values of the Palmer
amaranth densities. The effects of altitude on reflectance were less clear and were dependent on
band and density being evaluated. The near infrared (NIR) waveband offered the best resolution in
separating Palmer amaranth densities. Spectral separability in the other wavebands was less defined,
although low weed densities were consistently able to be discriminated from high densities. Palmer
amaranth and soybean were found to be spectrally distinct regardless of imaging date, weed density,
or waveband. Soybean exhibited overall lower reflectance intensity than Palmer amaranth across
all wavebands. The reflectance of both species within blue, green, red, and red-edge wavebands
declined as the season progressed, while reflectance in NIR increased. Near infrared and red-edge
wavebands were shown to be the most useful for species discrimination and maintained their utility
at most weed densities. Palmer amaranth weed densities were found to be spectrally distinct from
one another in all wavebands, with greatest distinction when using the red, NIR and red-edge
wavebands. Supervised classification in a two-class system was consistently able to discriminate
between Palmer amaranth and soybean with at least 80% overall accuracy. The incorporation of a
weed density component into these classifications introduced an error of 65% or greater into these
classifications. Reducing the number of classes in a supervised classification system could improve
the accuracy of discriminating between Palmer amaranth and soybean.

Keywords: remote sensing; weed management; species discrimination; UAV; multispectral

1. Introduction

Weeds can reduce soybean (Glycine max [L.] Merr.) yield by ≥50% if not controlled [1].
The complexity of weed management in soybean has increased with the evolution of
herbicide-resistant weeds [2,3]. Palmer amaranth (Amaranthus palmeri S. Wats.) is a per-
vasive and ubiquitous weed in soybean and the difficulty in controlling the species is
exacerbated by the evolution of resistance to most herbicides labeled for soybean [4,5]. Due
to the already limited options for effective chemical control of Palmer amaranth and the
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potential for the evolution of additional herbicide resistance(s), site-specific weed manage-
ment strategies have become necessary to reduce the amount of selection pressure exerted
on weed populations [6–8].

Remote sensing research in soybean systems has been successful in identifying weed
species via spectral characterization and has proven to be useful in performing species-
based image classifications. Some of the earliest work involving remote sensing and
soybean involved discriminating weed species from a soybean crop. Medlin et al. [9]
was able to discriminate sicklepod (Senna obtusifolia L.) and pitted morningglory (Ipomoea
lacunose L.) growing among soybean at densities of 10 plants m−2 with at least 85% accuracy.
Additionally, Koger et al. [10] was able to discriminate with at least 90% accuracy weedy
soybean patches from weed-free soybean patches. Gray et al. [11] analyzed the spectral
properties of soybean along with six weed species and was able to perform a species-based
supervised classification with varying degrees of accuracy. In a two-class system involving
soybean and soil, a classification accuracy of 95% for soybean was achieved. When a
weed category was introduced to this system, soybean classification accuracy dropped to
between 77 and 80%, suggesting that spectral similarity between soybean and weed species
may introduce error into the classification process. Previous research conducted to identify
wavebands useful for weed species discrimination in soybean found that areas between 490
and 500 nm and 600 and 700 nm within the visible range of the electromagnetic spectrum
were proven to be useful for crop and weed discrimination [12–14].

Since remotely sensed imagery has proven useful in agronomic weed detection [6,15–17],
it may be possible to utilize unmanned aerial vehicles (UAV) equipped with sensors to
rapidly scout soybean fields to identify areas where Palmer amaranth is present. Unmanned
aerial vehicles afford many benefits compared to traditional means of acquiring aerial
imagery, due to their low cost, ease of use, and high spatial/temporal resolution [18,19].
Imagery acquired from these UAV platforms combined with image analysis tools may be
able to provide a decision aid to farmers that would encourage site-specific agricultural
practices. Such practices can reduce the total amount of herbicide being applied and
the selection pressure being exerted on the weed populations [20]. These practices can
also afford farmers diminished input and labor costs and provide sound environmental
stewardship [20,21].

Detection of Palmer amaranth in soybean relies on an understanding of the spectral
reflectance of the two species, so research was conducted to determine if Palmer amaranth
was spectrally distinct from soybean and to evaluate the potential for supervised classifica-
tion for species discrimination. Furthermore, the spectral reflectance properties of Palmer
amaranth and soybean plants were examined as a function of weed density, date, and flight
altitude. In addition, the spectral behavior of different Palmer amaranth weed densities
was explored across the same metrics to see if discrimination between Palmer amaranth
densities was possible.

2. Materials and Methods

Experiments were established at three fields over two years at the Upper Coastal
Plan Research Station near Rocky Mount, NC (35.89 N, −77.68 W) in 2016 and 2017. All
experiments were planted with soybean (Asgrow AG5632) planted in rows 91.44 cm
apart at a population of 321,000 seeds ha−1. Soybeans were planted in one field on 20
May 2016 and on 10 May and 19 June 2017 in two separate fields hereafter referred to
as “B10” and “B8”, respectively. The experimental design was a randomized complete
block with four replications. Plots were 3.7 m × 9.1 m in size and treatments consisted
of different Palmer amaranth densities maintained throughout the season: 0, 1, 2, 4, and
8 plants m−2. Glyphosate (408 g ae ha−1) was applied to the experiments to remove any
weeds other than the natural population of glyphosate-resistant Palmer amaranth. The
herbicide application was made using a CO2-pressurized backpack sprayer calibrated to
a pressure of 207 kPa, delivering 140 L ha−1 with TeeJet flat fan XR11002 nozzles (TeeJet
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Technologies Inc., Wheaton, IL 60187, USA,). Following herbicide application, plots were
hand-weeded throughout the season to maintain the specific densities.

Aerial imagery was acquired over the study site across several dates using a UAV
equipped with a multispectral sensor. The UAV platform consisted of an ATI AgBot (Aerial
Technology International, Wilsonville, OR 97070, USA) fitted with a five-band multispectral
sensor (MicaSense, Seattle, WA 98103, USA). The multispectral sensor acquires imagery
from 20, 20, 10, 40, and 10 nm bandwidths centered on wavelengths of 475 (blue; band
1), 560 (green; band 2), 668 (red; band 3), 840 (near infrared [NIR]; band 4), and 717 nm
(red-edge; band 5), respectively (Table 1). The multispectral sensor has a focal length of
5.5 mm, a horizontal field of view of 47.2◦ and an image resolution of 1280 × 960 pixels.
Ground spatial resolution for the multispectral sensor is 8.2 cm per pixel at 120 m altitude
above ground level (AGL). Effort was made to only capture imagery on clear, cloudless
days at approximately solar noon which could influence the image resolution across the
different imaging dates.

Table 1. Wavebands captured by the multispectral sensor equipped on an unmanned aerial vehicle.

Band Number Band Name Center Wavelength (nm) Bandwidth (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near Infrared 840 40
5 Red-Edge 717 10

In 2016, imagery was obtained from the Rocky Mount location on three dates: 14 July,
28 July and 12 August 2016. In 2017, imagery was obtained from the Rocky Mount location
“B10” on 9 June, 27 June and 11 July 2017 and from the “B8” location on 6 July, 20 July, and
3 August 2017. On each date multispectral imagery was obtained at altitudes of 15, 30, and
45 m AGL. The sensor was calibrated via a reflectance panel before and after every flight to
ensure radiometric integrity of the imagery. Raw imagery from every location and at each
altitude was mosaicked using MicaSense ATLAS (MicaSense, Seattle, WA 98103, USA) and
converted into a georeferenced Tagged Image File Format image (GeoTIFF). All spectral
reflectance analysis and image classification was performed using ERDAS Imagine 2013
(Hexagon Geospatial US, Norcross, GA 30092, USA).

2.1. Spectral Reflectance Measurements for Soybean and Palmer Amaranth

Three samples of both soybean and Palmer amaranth were taken from each plot
in the image for every image acquired. This procedure provided 60 spectral reflectance
measurements per species for every image. Individual pixel measurements were favored
over pixel neighborhood means to maintain the integrity of the samples and eliminate any
effects of spectral mixing. The average of these three samples were used for analysis. These
sample means were transformed via a square root function and subjected to analysis of
variance using the MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and
means were separated using Tukey’s HSD (α = 0.10). Date, density, altitude and species
were considered fixed effects with altitude being considered a nested factor within date.
Replications were considered random effects. Preliminary analyses showed a significant
band effect, so analysis of these spectral measurements occurred on a band basis.

2.2. Spectral Measurements for Palmer Amaranth Weed Densities

The spectral properties of soybean and Palmer amaranth were examined individually
as a function of weed density and to examine the spectral reflectance of discrete Palmer
amaranth population densities, mosaicked multispectral imagery was subjected to spectral
analysis and subsequent image classification. Five rectangular area of interest (AOI)
polygons were drawn within each of the experimental plots. These polygons were drawn
as to encompass the edges of crop rows and the row middles which contained varying
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densities of Palmer amaranth. Area of interest polygons were generally uniform and
covered at least 200 pixels. From within each of these AOI polygons, three mean reflectance
value samples were randomly taken which contain reflectance information across all 5
bands of the multispectral imagery using the “Spectral Profile” tool in ERDAS Imagine 2013.
These reflectance means included measurement for a user defined pixel neighborhood. For
imagery from the 45 m altitude, a 3 × 3 pixel neighborhood was used for each of these
samples, which represented a ground area of 150 cm2 per sample. This neighborhood size
was increased to a 6 × 6 pixel neighborhood and a 12 × 12 neighborhood for imagery
acquired from 30 and 15 m, respectively, so as to maintain the same ground sampling area
across every imaging altitude. As a result, 15 reflectance value means were acquired and
averaged per plot, representing a total sampling size of 540, 2160, and 8640 pixels per
treatment for imagery acquired at 45, 30, and 15 m, respectively. The spectral reflectance for
these pixel neighborhoods for the 5 bands was recorded and subjected to ANOVA using
the MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA) (α = 0.10); wherein
means were separated using Tukey’s Honest Significant Difference (α = 0.10). Treatment
replications were considered a random effect while weed density, imaging date and altitude
were considered fixed effects with altitude being considered a nested factor within date.
Reflectance values were subject to a square root transformation to improve normality and
reduce skewness in the data. Finally, because the bands of interest are highly disparate
by nature and preliminary analysis showed an effect of band on reflectance, bands were
analyzed separately for this procedure.

2.3. Supervised Image Classification Methods

Images were subjected to a two-class maximum likelihood supervised classification
to discriminate soybean from Palmer amaranth (Figure 1). Fifteen training samples from
throughout the image were gathered for both soybean and Palmer amaranth in addition
to five training samples meant to delineate bare soil from vegetation using a maximum
likelihood classification. Following classification, an accuracy assessment was performed
on the supervised image to determine the accuracy at which the classifier was able to
distinguish soybean and Palmer amaranth. A total of 100 test pixels, fifty for each species,
were randomly generated throughout the image and were manually validated to be either
soybean or Palmer amaranth. The manual validations were intended to either confirm or
deny how a particular test pixel was classified. A pixel was deemed “correct” if a pixel
was properly classified according to the species it represented in the pre-classified image;
while an “incorrect” was recorded when a pixel of one of the species was classified as the
other species. The accuracy assessment procedure was utilized to determine the producer’s
accuracy, user’s accuracy, overall accuracy and kappa statistic (K) for each classification.
User’s accuracy is the proportion of the map accuracy from the point of view of a map
user (i.e., the authors), producer’s accuracy is the proportion of the map accuracy from the
point of view of the map maker (i.e., the software), and overall accuracy is the proportion
of reference sites mapped correctly. Finally, the kappa statistic (K), a measure of agreement
between the reference image and the classifier, was computed for each classification.
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ology identical to that of the two-class accuracy analysis. 

  

Figure 1. Comparison of a raw (left) and two-class classified image (right) of Palmer amaranth and
soybeans growing in mixed stands. In the classified image, green represents soybean while red
represents Palmer amaranth.

The multispectral imagery acquired at 15 m from all three studies was also subjected to
an eight-class (soybean with the various Palmer amaranth densities) maximum likelihood
supervised classification to determine if different Palmer amaranth weed densities could
be discriminated among one another and soybean. The 15 m imagery from 28 July 2016
was not able to be used for this purpose as the original image file became corrupted.
One replicate of four was chosen from each image to utilize as a training block while
the remaining three were used as the test blocks to perform the supervised classification.
In each plot in the first replicate, excluding the plots with a weed density of 0 plants
m−2, seven samples each for Palmer amaranth and soybean were collected and grouped
according to the weed density treatment. These training samples were meant to capture
any effects of weed density on the spectral reflectance patterns of the two species and
to refine the image classification. An accuracy assessment was then performed on the
supervised imagery using 80 test points randomly generated throughout the image using a
methodology identical to that of the two-class accuracy analysis.
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3. Results and Discussion
3.1. Spectral Reflectance Patterns of Palmer Amaranth and Soybean
3.1.1. Rocky Mount 2016

All three experimental runs showed a significant date by species interaction across
all wavebands, which suggests species discrimination via spectral reflectance may be
influenced by temporal conditions. In addition, three-way interactions involving the main
effects were detected and demonstrate the complex nature by which these factors influence
spectral reflectance.

In 2016, two-way interactions involving date and species as well as species and altitude
were significant across every waveband. Furthermore, a three-way interaction involving
density, altitude, and species was significant for red, NIR, and red-edge wavebands. Date
by species interaction influenced species reflectance values in 2016, with soybean reflectance
values significantly lower in every waveband, for each date except for NIR waveband on
the 28 July imaging date where the two species were spectrally similar. Reflectance values
for both Palmer amaranth and soybean were different between imaging dates (Table 2).

Table 2. Spectral reflectance values of Palmer amaranth and soybean across dates and fields from aerial imagery collected
from an altitude of 15 m at Rocky Mount, NC in 2016.

Date Species
Waveband

Blue Green Red Near Infrared Red-Edge

July (14, 6) Palmer amaranth 41 ba 73 b 44 b 160 b 107 a
Soybean 28 e 52 d 31 d 149 d 88 c

July (28, 20) Palmer amaranth 35 c 62 c 36 c 139 e 86 c
Soybean 25 f 43 e 25 e 137 e 72 e

August (10, 3) Palmer amaranth 44 a 76 e 47 e 168 a 102 b
Soybean 32 d 46 d 31 d 152 c 75 d

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10).

A significant species by altitude interaction demonstrated a decline in Palmer ama-
ranth reflectance as altitude increased (Table 2). On 14 July, Palmer amaranth and soybean
reflectance was significantly different across every waveband and at every altitude, with
exceptions occurring in the 30 and 45 m imagery at a weed density of 1 plant m2 and in
the 45 m imagery at weed densities of 2 plants m−2. In early season (June), the effect of
altitude was significant for Palmer amaranth reflectance for NIR and red-edge wavebands,
where a significant decrease in reflectance was observed with increasing altitude. By July
28, the altitude effect had diminished, and the two species remained spectrally distinct for
all wavebands except for the NIR waveband. On August 12, the effect of altitude became
more pronounced than in the previous imaging dates, with significant altitude effects being
observed for Palmer amaranth reflectance within green, red, NIR, and red-edge wavebands.
As was the case for the July 14 imagery, Palmer amaranth and soybean differed signifi-
cantly in their levels of reflectance at every altitude and waveband. The altitude effects
observed on this date manifested as a significant decrease in Palmer amaranth as altitude
increased for the NIR and red-edge wavebands. Soybean spectral reflectance significantly
differed with respect to altitude only within red and NIR wavebands. Reflectance in the
red waveband significantly increased with altitude while reflectance within NIR waveband
significantly decreased at higher altitudes.

The three-way interaction between weed density, altitude, and species within date
found for red, NIR, and red-edge wavebands demonstrated that the effect of weed density
did not become apparent until later in the season as there was an absence of significance
in weed density for the 14 July and 28 July imaging dates save for one instance. Addi-
tionally, any effects of weed density on species spectral reflectance appear to vary based
on the species being observed. Reflectance in the red waveband was unaffected by weed
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density at all three imaging dates, but on 12 August, weed density affected the spectral
reflectance values of Palmer amaranth and soybean in NIR and red-edge wavebands. Only
the reflectance of Palmer amaranth in the NIR waveband significantly decreased when
weed density increased. Reflectance within the red-edge waveband for both species was
affected by a date dependent influence of weed density. On 28 July, only the reflectance of
Palmer amaranth significantly increased when weed density increased. Soybean spectral
reflectance in the red-edge waveband was significantly affected by weed density on 12
August, with significant decreases in reflectance when density increased from 1 to 4 plants
m−2 at 15 m. In addition, density 8 m−2 had significantly higher reflectance than the other
weed densities at 30 and 45 m altitude on this date (Table 3).

Table 3. Influence of image date, Palmer amaranth density, and altitude on spectral reflectance values of Palmer amaranth
and soybean in 2016.

Date Weed Density
m−2

Altitude
(m)

Species
Band

Blue Green Red Near Infrared Red-Edge

14 July

1

15
Palmer amaranth 40 72 42 f-i 162 e-j 107 abc

Soybean 27 51 29 p-w 151 o-t 87 jkl

30
Palmer amaranth 41 74 44 b-f 159 g-n 107 abc

Soybean 28 51 30 o-u 153 l-r 88 jkl

45
Palmer amaranth 41 71 44 b-f 158 h-o 105 b-e

Soybean 28 52 31 o-t 151 o-t 88 jkl

2

15
Palmer amaranth 40 74 43 e-h 163 d-i 108 ab

Soybean 26 50 28 r-x 151 o-t 85 j-n

30
Palmer amaranth 40 71 43 def 158 h-o 105 bcd

Soybean 27 51 30 p-u 150 p-t 86 j-m

45
Palmer amaranth 39 68 42 e-i 156 i-p 101 c-g

Soybean 30 53 32 n-t 152 n-t 89 ijk

4

15
Palmer amaranth 40 74 44 b-f 160 f-l 109 ab

Soybean 30 54 31 o-t 148 q-u 88 jkl

30
Palmer amaranth 41 73 45 a-f 161 e-k 107 abc

Soybean 29 53 33 m-q 147 q-v 87 jkl

45
Palmer amaranth 41 72 44 c-f 161 e-k 106 bcd

Soybean 28 51 31 m-q 146 r-w 86 j-m

8

15
Palmer amaranth 40 76 43 efg 163 d-i 110 ab

Soybean 27 53 30 p-v 147 q-v 88 jkl

30
Palmer amaranth 43 79 48 a-d 161 e-k 113 a

Soybean 28 55 31 o-t 148 q-u 91 hij

45
Palmer amaranth 41 74 45 b-f 157 h-p 107 abc

Soybean 28 53 32 n-t 145 s-x 67 jkl

28 July

1
30

Palmer amaranth 34 58 34 l-q 138 xy 82 l-q
Soybean 25 42 25 x 140 v-y 71 uv

45
Palmer amaranth 34 60 35 j-o 139 wxy 84 k-o

Soybean 25 44 25 wx 138 xy 72 tuv

2
30

Palmer amaranth 34 60 35 j-o 137 xy 83 k-p
Soybean 25 43 25 vwx 137 xy 71 tuv

45
Palmer amaranth 36 62 37 j-m 140 u-y 86 j-m

Soybean 26 44 25 vwx 139 wxy 73 s-v

4
30

Palmer amaranth 35 63 36 j-n 141 u-y 87 jkl
Soybean 25 42 25 vwx 134 y 69 v

45
Palmer amaranth 37 65 38 i-l 141 u-y 89 ijk

Soybean 25 43 25 wx 136 y 72 tuv

8
30

Palmer amaranth 36 64 38 h-k 138 xy 88 jkl
Soybean 26 44 26 u-x 138 xy 72 tuv

45
Palmer amaranth 36 65 38 g-j 138 xy 89 ijk

Soybean 27 46 27 t-x 137 xy 74 r-v
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Table 3. Cont.

Date Weed Density
m−2

Altitude
(m)

Species
Band

Blue Green Red Near Infrared Red-Edge

12
August

1

15
Palmer amaranth 45 78 45 a-f 177 ab 106 bcd

Soybean 33 51 32 m-r 163 d-i 80 m-r

30
Palmer amaranth 44 74 47 a-e 171 b-d 101 c-g

Soybean 31 44 29 q-x 148 q-u 69 v

45
Palmer amaranth 41 71 43 def 164 c-i 96 gh

Soybean 32 47 31 o-u 148 q-u 72 s-v

2

15
Palmer amaranth 47 79 49 a 183 a 108 ab

Soybean 29 43 25 x 155 j-q 71 tuv

30
Palmer amaranth 43 72 46 a-f 166 c-g 98 efg

Soybean 33 49 32 n-s 157 h-p 77 p-t

45
Palmer amaranth 43 72 46 a-f 164 c-h 98 fg

Soybean 33 50 33 m-q 155 j-q 77 o-t

4

15
Palmer amaranth 46 79 48 abc 172 bc 107 abc

Soybean 34 49 34 k-p 154 j-r 76 q-u

30
Palmer amaranth 44 77 46 a-f 169 cde 104 b-f

Soybean 33 47 32 n-r 152 n-s 74 r-v

45
Palmer amaranth 40 70 43 e-h 160 g-m 95 ghi

Soybean 29 43 28 s-x 144 t-x 69 v

8

15
Palmer amaranth 45 82 48 ab 168 c-f 108 ab

Soybean 30 46 30 p-u 148 q-u 73 s-v

30
Palmer amaranth 45 79 48 abc 166 c-g 105 bcd

Soybean 34 50 32 n-s 152 m-r 78 o-t

45
Palmer amaranth 42 75 48 ab 155 j-q 99 d-g

Soybean 35 52 33 l-q 154 k-r 79 n-s

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10). Spectral reflectance values of Palmer
amaranth and soybean were not different in the blue and green wavebands.

The effect of species plays a prominent role in these interactions, as Palmer amaranth
and soybean remain spectrally distinct across all dates, weed densities and altitudes for the
red and NIR wavebands. Across all main effects, the species remained spectrally distinct in
the NIR waveband. Reflectance value differences between the two species was insignificant
at weed densities between 1 and 4 plants m−2 in the 14 July imagery. In the later season
imagery from 28 July and 12 August, spectral separation of the species was diminished at
the highest weed density of 8 plants m−2 (Table 3).

3.1.2. Rocky Mount 2017

At the “B8” location in 2017 a two-way interaction involving species and date was
significant for all wavebands. In addition, a three-way interaction involving date, density
and species was significant for the NIR and red-edge bands. Palmer amaranth and soybean
remained spectrally distinct, with soybean exhibiting lower reflectance than Palmer ama-
ranth across every imaging date and waveband, excluding the NIR and red-edge waveband
on 3 August and 6 July, respectively (Table 4). Reflectance of Palmer amaranth gradually
declined throughout the season in blue and red wavebands but increased significantly
between dates in the NIR waveband. Palmer amaranth reflectance in the green waveband
increased in the mid-season imagery and remained at this intensity in the late season
imagery. Palmer amaranth reflectance in the green waveband differed at every imaging
date, while reflectance in red-edge waveband remained similar in early and late season
imagery and the highest reflectance was observed in these bands on 20 July (Table 4).
Soybean spectral reflectance was highest on the first imaging date of 6 July for blue, green,
red, and red-edge wavebands. Soybean reflectance in blue and green wavebands decreased
significantly between each imaging date. Soybean reflectance in the blue waveband was
higher in the 6 July and 20 July imagery. Soybean reflectance in band two increased mid-
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season (20 July), but decreased by late-season (3 August) to levels significantly lower than
those observed in the early-season imagery. As with Palmer amaranth, soybean spectral
reflectance in the NIR waveband significantly increased through the season and reflectance
values were highest on 3 August.

Table 4. Spectral reflectance values of Palmer amaranth and soybean across dates and weed densities from aerial imagery
collected from an unmanned aerial vehicle at an altitude of 15 m at Rocky Mount, NC in 2017 (B8).

Date Weed Density
m−2 Species

Band

Blue Green Red Near Infrared Red-Edge

6 July

1
Palmer amaranth 51 76 65 121 i 51 ab

Soybean 41 71 49 128 gh 41 de

2
Palmer amaranth 51 77 65 122 i 51 a

Soybean 41 70 50 128 gh 41 de

4
Palmer amaranth 52 77 64 125 hi 52 a

Soybean 40 70 49 129 gh 40 de

8
Palmer amaranth 52 80 62 134 f 52 a

Soybean 40 70 48 129 gh 40 e

20 July

1
Palmer amaranth 48 80 56 148 d 48 c

Soybean 34 59 38 140 e 43 fg

2
Palmer amaranth 49 79 55 148 d 49 bc

Soybean 34 59 37 142 e 34 f

4
Palmer amaranth 48 79 56 153 c 48 c

Soybean 33 57 37 140 e 33 fg

8
Palmer amaranth 49 81 53 160 b 49 bc

Soybean 30 51 33 130 fg 30 h

3 August

1
Palmer amaranth 42 72 43 162 ab 42 de

Soybean 34 57 34 164 ab 34 fg

2
Palmer amaranth 42 72 44 161 ab 42 d

Soybean 34 56 34 165 a 34 fg

4
Palmer amaranth 42 73 44 163 ab 42 d

Soybean 33 57 34 165 a 33 fg

8
Palmer amaranth 42 73 43 163 ab 42 de

Soybean 32 56 32 163 ab 32 g

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10). Spectral reflectance values of Palmer
amaranth and soybean were not different in the blue, green, and red wavebands.

The three-way interaction between date, Palmer amaranth density and species ob-
served in the NIR and red-edge waveband further elucidates the effect of temporal con-
ditions. Regarding the NIR waveband, Palmer amaranth and soybean were spectrally
distinct at each date and weed density except for 6 July and 3 August, when the two species
were inseparable at every density (Table 5). On 6 July, Palmer amaranth reflectance in band
4 increased at a density of 8 plants m−2 compared to 1 plant and 4 plants m−2 densities
(Table 5). Reflectance of soybean in the NIR waveband was unaffected by Palmer ama-
ranth density on this date. On 20 July, Palmer amaranth reflectance in the NIR waveband
increased with Palmer amaranth density, with reflectance significantly increasing between
density groupings of 1, 2, 4, and 8 plants m−2. Palmer amaranth density began affecting
soybean reflectance at this date; reflectance in the NIR waveband significantly decreased at
the highest weed density of 8 plants m2 compared to every lower density. The 3 August
imaging date revealed no effect of weed density on either Palmer amaranth or soybean
spectral reflectance.
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Table 5. Spectral reflectance values of Palmer amaranth and soybean across dates from aerial imagery collected from an
altitude of 15 m at Rocky Mount, NC in 2017 (B8).

Date Species
Band

Blue Green Red Near Infrared Red-Edge

6 July Palmer amaranth 51 a 78 b 64 a 126 e 102 b
Soybean 40 d 70 d 49 c 128 d 101 b

20 July Palmer amaranth 48 b 80 a 55 b 152 b 111 a
Soybean 33 e 57 e 36 e 138 c 91 d

3 August Palmer amaranth 42 c 73 c 43 d 162 a 102 b
Soybean 33 e 56 e 34 f 164 a 94 c

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10).

The influence of the date, density and species interaction on reflectance in the red-
edge waveband demonstrated fewer differences than the NIR waveband. Soybean and
Palmer amaranth remained spectrally distinct across each date and weed density, and
soybean featured lower levels of reflectance compared to Palmer amaranth (Table 5). At
the “B8” location, 20 July was the only imaging date where weed density effects on spectral
reflectance were observed and only soybean reflectance was influenced. Reflectance of
soybean in the red-edge waveband decreased significantly only at a weed density of
8 plants m−2 compared to densities of 1, 2, and 4 plants m−2.

At the ‘B10” location in 2017, an interaction between date and species was significant
in all wavebands. For green and red-edge wavebands, an additional interaction between
date, Palmer amaranth density and species was found to be significant. Regardless of
date effects, soybean and Palmer amaranth remained spectrally distinct in all wavebands
for every date excluding band 4 on 9 June 2017 (Table 6). Palmer amaranth reflectance
in the blue waveband significantly decreased in the mid-season imagery (27 June) and
remained at this level in the season-end imagery (11 July) (Table 6). The reflectance of both
species in the red waveband significantly declined throughout the season while reflectance
in the NIR waveband increased significantly between each imaging date. Reflectance
of Palmer amaranth in the red-edge waveband increased throughout the season while
soybean reflectance was statistically greatest in the mid-season imagery from 27 June.

Table 6. Spectral reflectance values of Palmer amaranth and soybean across dates and Palmer amaranth densities from
aerial imagery collected from an unmanned aerial vehicle at an altitude of 15 m at Rocky Mount, NC in 2017 (B10).

Date Species
Band

Blue Green Red Near Infrared Red-Edge

9 June
Palmer amaranth 45 a 69 b 55 a 106 e 89 c

Soybean 35 c 58 d 42 c 108 e 83 d

27 June
Palmer amaranth 43 b 79 a 48 b 151 d 109 a

Soybean 34 c 64 c 37 d 159 c 103 b

11 July Palmer amaranth 44 b 78 a 42 c 173 a 112 a
Soybean 29 d 50 e 27 e 164 b 88 c

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10).

A significant interaction among date, density, and species within the green and red-
edge wavebands was observed for spectral reflectance levels of Palmer amaranth and
soybean at various Palmer amaranth densities. Soybean reflectance was not significantly
affected by changes in Palmer amaranth density, but Palmer amaranth reflectance values
did begin to change with respect to weed density from mid-season (27 June) forward. On
the 9 June imaging date, soybean had significantly lower reflectance in the green waveband
compared to Palmer amaranth at every Palmer amaranth density (Table 7). On June 27,
soybean continued to feature significantly lower reflectance than Palmer amaranth and
density effects on Palmer amaranth reflectance began to become apparent with Palmer
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amaranth reflectance in the green waveband increasing at a weed density of 8 plants m−2

compared to 2 and 4 plants m−2. The 11 July imaging date featured a similar pattern-
soybean reflectance was significantly less than Palmer amaranth in the green waveband,
and Palmer amaranth reflectance increased with increasing weed density. Reflectance
of Palmer amaranth was significantly higher at densities of 4–8 plants m−2 compared to
1–2 plants m−2. Palmer amaranth and soybean were spectrally distinct in the red-edge
waveband at every imaging date and weed density except for a density of 1 plant m−2

on June 9 and densities of 2 and 4 plants m−2 on 27 June. In the red-edge waveband,
reflectance of soybean was unaffected by weed density regardless of imaging date, but for
all three imaging dates, Palmer amaranth reflectance did increase with increasing weed
density.

Table 7. Spectral reflectance values of Palmer amaranth and soybean across dates and Palmer amaranth densities from
aerial imagery collected from an unmanned aerial vehicle at an altitude of 15 m at Rocky Mount, NC in 2017 (B10).

Date
Weed Density
(Plants m−2)

Species
Band

Blue Green Red Near
Infrared Red-Edge

9 June

1
Palmer amaranth 45 66 def 56 101 85 fgh

Soybean 35 58 g 42 108 84 gh

2
Palmer amaranth 46 70 def 56 106 90 ef

Soybean 36 59 g 44 107 83 h

4
Palmer amaranth 46 69 de 56 107 89 efg

Soybean 34 58 g 41 106 82 h

8
Palmer amaranth 45 70 cd 54 111 92 e

Soybean 34 58 g 40 111 85 fgh

27 June

1
Palmer amaranth 44 78 ab 49 151 109 bc

Soybean 35 64 f 38 159 102 d

2
Palmer amaranth 42 77 b 48 149 107 cd

Soybean 35 64 ef 38 157 103 d

4
Palmer amaranth 42 77 b 46 150 108 bcd

Soybean 34 64 f 37 150 103 d

8
Palmer amaranth 44 82 a 48 156 113 ab

Soybean 34 63 f 36 161 103 d

11 July

1
Palmer amaranth 42 74 bc 40 171 108 bcd

Soybean 29 49 h 27 163 87 efgh

2
Palmer amaranth 43 74 b 41 170 107 cd

Soybean 30 52 h 29 166 90 ef

4
Palmer amaranth 46 82 a 43 178 116 a

Soybean 29 50 h 26 164 87 efgh

8
Palmer amaranth 45 82 a 43 174 117 a

Soybean 29 50 h 27 165 88 efgh

Similar letters within a column are not significantly different according to Tukey’s HSD (α = 0.10). Spectral reflectance values of Palmer
amaranth and soybean were not different in the blue, red, and near infrared wavebands.

Regarding the date by species interaction present across all these studies, several
conclusions can be made. The first is that reflectance significantly changes as the season
progresses for both species across all bands. This trend is supported by the fact that
reflectance in the NIR waveband continuously increased throughout the season while the
reflectance levels of the blue, green, red, and red-edge wavebands were lower in later
imaging dates than they were in early imaging dates for both species. This finding is
rather unsurprising, given that the NIR waveband occupies a range of the electromagnetic
spectrum known for its usefulness as an indicator of vegetative vigor. Thorp and Tian [22]
discuss the ability of NIR light to quantify vegetative vigor and biomass with good accuracy.
The marked increase in band 4 reflectance observed through these studies is a continuation
of a long-held belief that light from within this region of the electromagnetic spectrum
confers information regarding vegetative biomass and vigor. What remains to be concluded
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is if the declines in reflectance observed for the blue, green, red, and red-edge bands are
the result of a real numerical decrease in reflectance from within these wavebands, or a
decrease in each constituent proportion of overall reflected light represented by a particular
waveband.

In examining the three-way interaction involving date, density and species, it can
be concluded that Palmer amaranth and soybean remain spectrally distinct regardless of
imaging date, weed density and waveband, with rare exception. The spectral differences
between the species can be suggested that the internal physiology and architecture of
Palmer amaranth and soybean could enable spectral separability [22]. While all wavebands
were useful for discrimination between Palmer amaranth and soybean, the NIR and red-
edge wavebands were the most descriptive when reflectance changes in Palmer amaranth
and soybean occurred due to surrounding Palmer amaranth density.

3.2. Supervised Classification for Palmer Amaranth and Soybean Discrimination

The two-class supervised classification system was successful in discriminating be-
tween Palmer amaranth and soybean from the multispectral imagery collected in 2016.
Overall classification accuracies ranged from 69 to 90% and were able to classify the im-
agery with ≥80% overall accuracy in 2016 (Table 8). Imaging date or altitude did not
demonstrate a consistent influence on overall classification accuracy, but by late season
(August), some altitude effects were evident (Table 8). Altitude did not influence overall
classification accuracy for 2016 imaging dates. Overall classification accuracies were the
highest on the first imaging date (14 July) where accuracy was at least 78%. As the season
progressed, declines in accuracy were observed with the July 28 and August 12 imaging
dates conferring accuracies ≥74% and ≥72%, respectively.

Table 8. Summary of the two-class supervised classification accuracies for Palmer amaranth and soybean detection growing
in mixed stands from aerial imagery collected from different altitudes at two separate fields at Rocky Mount, NC in 2016
and 2017.

Field Date Altitude (m)
Palmer Amaranth Soybean Overall Accuracy

(%) Kc
UA a PA UA PA

B8

14-July-16
15 76 88 90 79 83 0.66
30 64 89 92 72 78 0.56
45 72 92 94 77 83 0.66

28-July-16 30 72 92 94 88 83 0.66
45 56 88 92 67 74 0.48

12-August-16
15 86 94 94 87 90 0.80
30 50 89 94 65 72 0.44
45 56 90 94 68 75 0.50

6-July-17
15 82 65 56 76 69 0.38
30 92 82 80 91 86 0.72
45 82 80 80 82 81 0.62

20-July-17
15 88 73 68 85 78 0.56
30 80 83 84 81 82 0.64
45 78 87 88 80 83 0.66

3-August-17
15 74 93 94 78 84 0.68
30 90 83 82 89 86 0.72
45 62 78 82 68 72 0.44

B10

9-June-17
15 84 78 76 83 80 0.60
30 78 77 76 78 77 0.54
45 86 77 74 84 80 0.60

27-June-17 15 82 84 84 82 83 0.66
30 72 92 94 77 83 0.66
45 68 87 94 74 79 0.58

11-July-17 15 82 93 94 84 88 0.76
30 82 91 92 84 87 0.74
45 74 93 94 78 84 0.68

a Abbreviations: UA, user’s accuracy; PA, producer’s accuracy; Kc, overall kappa statistic.
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The two-class supervised classification system was as successful in discriminating be-
tween Palmer amaranth and soybean from the multispectral imagery collected in 2017 from
both fields. Overall accuracies for 2017 ranged from 69 to 88% with certain classifications
exceeding 80% accuracy (Table 8). At the “B8” location, accuracy was increased in the 30
and 45 m imagery only on the 6 July and 20 July 2017 imaging dates. Regardless of altitude,
overall classification accuracy was at least 69% at the “B8” location. Similar classification
accuracies were achieved at the “B10” location, where at least 77% overall classification
accuracy was achieved. At this location, altitude did not have any significant effect on
classification accuracy. These findings corroborate much of what has been concluded
through previous research involving using supervised image classification techniques to
discriminate between soybeans and weed species in agronomic settings [9–11,23].

The incorporation of a Palmer amaranth density component as part of an eight-class
classification system diminished the observed overall accuracy between Palmer amaranth
and soybean. In 2016, overall classification accuracy was 16.4% (Kc = 0.05) and 17.5%
(Kc = 0.07) for the July 14 and August 12 imagery, respectively (Table 3). Due to corruption
of the original image file, classification was not possible for the imagery acquired on 28
July 2016. The greatest accuracies with respect to density were achieved at the highest
weed density (8 plants m−2) for Palmer amaranth, while the best classification of soybean
occurred at weed densities of 1 plant m−2. This is of note because it may indicate that as
Palmer amaranth weed density increases, so does the accuracy at which the classifier can
correctly identify Palmer amaranth. In turn, the best supervised classification accuracy of
soybean occurs at the lowest weed density, where spectral mixing between the two species
would also be minimized. Spectral mixing results in inaccurate spectral classification
because the pixel value takes in to account the presence of two of more classes within the
pixel with respect to the proportion of the pixel they occupy [24].

Overall accuracies from the 2017 studies were better than those observed in 2016,
but errors of at least 65% were still present in those classifications. At the “B8” location
in 2017, accuracies were 35% (Kc = 0.25), 11.8% (Kc = −0.01) and 25% (Kc = 0.14) for the
imagery from 6 July, 20 July and 3 August, respectively (Table 3). Similar to observations in
2016, the best species-specific accuracies for Palmer amaranth were obtained at the highest
weed density of 8 plants m−2, while the best soybean accuracy was obtained at the lowest
weed density of 1 plant m−2. The accuracies observed at the “B10” location were less than
those at the “B8” location, and no straightforward trends were observed with respect to
imaging date and classification accuracy (Table 9). On the first imaging date (9 June), the
highest overall accuracy was observed at 26% (Kc = 0.16). Accuracies of 25% (Kc = 0.16)
and 15% (Kc = 0.03) were obtained in the subsequent imaging dates of June 27 and July
11. Discrimination of Palmer amaranth was best at the highest weed density of 8 plants
m−2 similar to the other field in 2017. Unlike in the other two studies where soybean
discrimination was best at the lowest Palmer amaranth weed density, soybean classification
accuracy was similar across a range of Palmer amaranth weed densities (Table 9). The
highest overall accuracies for both studies in 2017 were observed at the earliest imaging
dates (9 June, 6 July), suggesting that temporal effects may influence the ability of the
classifier to discriminate between the two species at the weed densities tested. This trend
was not apparent in the 2016 imagery, with accuracy observed in the July 14 imagery being
only slightly less than the accuracy observed in the 12 August imagery. In early season,
when the plants are small and their proportion of the total number of the pixels in the
imagery is small, it may be easier to discriminate between the two species.
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Table 9. Summary of the eight-class supervised classification accuracies for Palmer amaranth and soybean detection growing in mixed stands from aerial imagery collected from an
altitude of 15 m at two separate fields at Rocky Mount, NC in 2016 and 2017.

Field Date

Palmer Amaranth Soybean Overall
Accuracy

(%)
Kc1 Plant m−2 2 Plants m−2 4 Plants m−2 8 Plants m−2 1 Plant m−2 2 Plants m−2 4 Plants m−2 8 Plants m−2

UA a PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

B8

14-July-16 0 0 11 11 10 14 20 25 57 27 10 8 25 25 11 13 16 0.05
12-August-16 0 0 0 0 25 40 22 40 60 21 0 0 0 0 33 38 18 0.07

6-July-17 30 43 22 33 43 43 40 36 22 18 38 27 33 30 50 56 35 0.25
20-July-17 0 0 0 0 11 17 40 50 0 0 11 8 10 7 13 20 12 −0.01

3-August-17 0 0 11 25 11 17 40 36 20 13 25 20 57 33 38 27 25 0.14
9-June-17 25 28 25 40 20 40 56 26 0 0 33 18 25 25 25 50 26 0.16

B10
27-June-17 0 0 30 60 33 50 56 31 22 18 33 18 30 27 22 25 25 0.16
11-July-17 0 0 0 0 40 44 33 30 13 7 14 6 13 14 0 0 12 0.03

a Abbreviations: UA, user’s accuracy; PA, producer’s accuracy; Kc, overall kappa statistic.
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As previously observed, varying weed density reduced the overall classification
accuracy. When using a maximum likelihood classifier, the introduction of weed density
diminishes the classification accuracy. There has been little previous work performed
to investigate the feasibility of classifying at the species level based on a surrounding
plant density, but Gray et al. [12] did note that the ability for a supervised classification
to discriminate between soybean and several weed species using hyperspectral imagery
was dependent upon the surrounding weed density and varied with the weed species and
density present. Classification accuracies ranged from 8 to 79%, with accuracy increasing as
weed density increased. Therefore, much of the same density dependency on the accuracy
of classification observed by Gray et al. [12] was observed in this research as well.

4. Conclusions

In conclusion, while bands 4 and 5 would appear the most reliable for species detection
between Palmer amaranth and soybean at various weed densities, all wavebands utilized
in this study demonstrated some functionality in species discrimination. Previous research
identified similar bands as those utilized in this research, 490–500 and 600–700 nm, as being
particularly useful for species discrimination [12–14]. In addition, Huang et al. [25] identi-
fied wavelengths of 400–500, 650–690, 730–740 and 800–900 nm as not only being useful
for species detection, but for detecting fine differences that could exist even within species.
The wavelengths identified by Huang et al. [16] roughly align with blue, red, red-edge,
and NIR wavebands, respectively, that were used in this research. Furthermore, Hermann
et al. [26] found wavelengths between 700 and 1200 nm useful for weed discrimination as
well, a range which includes similar wavebands as those utilized by this research which
provides further evidence for their utility for species detection. The distinct differences of
spectral reflectance exhibited by Palmer amaranth and soybean were further demonstrated
with supervised classification. Two-class supervised classification accuracy ranged from
60 to 90% across all imaging dates. However, accuracy with the eight-class supervised
classification was never greater than 25% across all Palmer amaranth densities. The inverse
relationship of decreased accuracy with increased number of classes is evident from other
research [11,16]. Thus, the classification accuracy of Palmer amaranth and soybean can
increase if fewer, distinct classes are utilized. While many findings of this research were
parallel to previous research, the efficiency of the spectral imagery collection with a UAV
and advanced analysis software is drastically increased [20].

5. Future Research

Future research should focus on using the wavelengths between 717 and 840 nm
(NIR and red-edge) for more concrete spectral reflectance differences between the two
species across the tested variables. If consistent spectral reflectance differences are found
between the species, supervised classification accuracy may increase and exhibit increased
accuracy throughout the season and different weed densities. Additionally, research will
be necessary to further understand how temporal factors influence spectral reflectance
and classification accuracy at the species level both individually and as a function of
surrounding weed density.
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