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Abstract: Harvest timing of oil olives is important for oil quality. Concerning the specific features
of each cultivar, physiological and quality characteristics during ripening of Koroneiki olives were
investigated in two successive years, A and B, from trees on full production. In A, olives were
harvested at maturity indices (MIs) 0.9, 1.4, 2.1 and 4, while in B at MIs 1.1, 3.8 and 6.9. MIs ~1, ~4 and
~7 corresponded to green, red and dark purple peel in olives, respectively. Peel color parameters (L*,
h◦ and C*), respiration and ethylene production rates were evaluated along with phenolic compounds
and total antioxidant capacity (TAC) in olives of both crop years. Additionally, oil composition and
a-tocopherol content were examined in olives harvested in years A and B, respectively. During fruit
development, respiration and ethylene productions rates, hydroxytyrosol concentration and linoleic
acid increased, while TAC, oleuropein, luteolin-7-O-glucoside, linolenic acid and α-tocopherol values
decreased. Positive correlations were found among the attributes determined in both crop years
that had a similar course of change during ripening, and vice versa, which could be also related to
harvest timing and to quality traits of olive products. At MI ~4, at least all determined variables
corresponded to oil of high quality. Practically, an early harvest might result in an olive fruit rich in
antioxidants and therefore in oil production of high quality, high stability during storage and long
self-life.

Keywords: Olea europeae L.; maturity index; total antioxidants; fatty acids; ripening physiology;
α-tocopherol

1. Introduction

Olive (Olea europaea L.) is a characteristic species and one of the most important and
widespread fruit trees in the Mediterranean basin. Olive trees can grow under unfavorable
conditions, such as on arid areas and hilly lands, where other fruit trees cannot grow [1].
The majority of olive production is intended for olive oil extraction; however, a substantial
part is destined for direct human consumption after a suitable process. Olive oil is a
predominant component of the widely known ‘Mediterranean diet’, to which increasing
attention is being paid [2]. The consumption of olive oil is linked to the low incidence
of coronary heart disease, cancer and other chronic diseases among the people of the
Mediterranean basin [3].

Olive oil is unique among other vegetable oils due to its characteristic aroma, that
is attributed to its well-balanced composition of fatty acids and the presence of minor
components, such as volatile compounds [4]. Unlike seed oils in which polyunsaturated
fatty acids are predominated, olive oil is rich in monounsaturated oleic acid, which is
less susceptible to oxidation, contributing to the high stability and its long shelf life [2,4].
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Minor and partially soluble or non-soluble in water constituents of olive oil, which in-
clude polyphenols, tocopherols and volatile compounds, are responsible for its special
sensory properties and contribute to its high oxidative stability during prolonged storage
periods [4,5].

Olive fruit composition at harvest affects strongly the composition of oil, especially
that of extra-virgin olive oil, which depends on the genetic background, the environmental
growth conditions, such as biotic and abiotic stresses, and the agronomic techniques [2,5].
Olive ripening is commenced with the epidermal accumulation of anthocyanins that
gradually proceeds to the mesocarp [6]. The maturity index (MI) proposed for olives by
Uceda and Frias [7] takes into account both peel and pulp color of drupes and it ranges
from deep green to black. This index has found wide acceptance, although it has been
criticized as subjective, equivocal and lacking uniformity across cultivars unless combined
with parameters directly associated with the biochemistry of ripening, such as anthocyanin
content and fruit firmness [8,9]. Optimizing harvest time will be beneficial for the olive
growers’ income. An early harvest results in the production of an olive oil rich in phenolic
compounds and usually of superior nutritional value and sensory characteristics, but with
low oil content that may involve intense characters, such as high bitterness and excess
pungency, which are undesirable in some cases, while late harvest leads to increased oil
yields, but a reduction in oil quality. However, the suggested MI depends largely on variety,
while environmental conditions, cultivation practices, crop load and alternate bearing
also influence the process of ripening and consequently the optimal MIs to harvest olives
during fruit development [10,11]. For example, the suggested harvest timing for the high
yielding and slow oil accumulation Barnea is at MI ~4, whereas for the early and massive
fruit shedding Souri at ~2 [12].

The current work focused on the evaluation of physicochemical traits of Koroneiki
olive drupes. ‘Koroneiki’ was selected because it is one of the main Greek olive cultivars,
occupying around 60% of the total olive-growing land in the country. It produces small
sized drupes, gives high yields and is characterized by a prolonged maturation period.
‘Koroneiki’ produces oil of exceptional quality, being of a fruity taste with an aroma of
leaves and grass with notes of green apple and some astringency. However, studies of
changes in Koroneiki olives composition during fruit development that inevitably affect
the oil are limited [6,10,13].

The aim of this study was to assess the physicochemical properties of olives in re-
spect to fruit ripening, so as to provide a harvest window when the production of oil of
optimum quality is ensured. For this reason, the objective of this work was the detailed
characterization of fruit and olive oil antioxidants, such as phenolic compounds and to-
tal antioxidant capacity of drupes and α-tocopherol content in oil, fatty acid profile in
oil, along with the evaluation of fruit physical/physiological properties, being the peel
color, respiration and ethylene production rates. The detailed information produced may
promote the establishment of integrative harvest maturity parameters for Koroneiki.

2. Materials and Methods
2.1. Source and Handling of Fruit

Self-rooted olive (Olea europea L. cv. Koroneiki) trees grown on the experimental
orchard at the Agricultural University of Athens (latitude 37◦58′56′′, longitude 23◦42′47′′)
were used during two successive years from trees on full production, corresponding to
crop year A and B. Seven- and nine-year-old trees, spaced at 4 × 2.5 m and trained as vase,
were used in A and B, respectively. All trees selected were in good phytosanitary condition
and healthy olive fruits were hand-picked from the fruit bearing zone on the periphery
of each tree. At all harvest dates at both crop years, approximately 3 kg of fruit, 80 olives
corresponding to approximately 100 g, were harvested from six trees. Fruit were harvested
on 6 November, 16 November, 26 November and 8 December 2009 in crop year A and on 5
November, 19 November and 22 December 2010, in B. In both years, all harvested samples,
macroscopically free of disorders and diseases, were transferred to the laboratory in paper
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bags. On each sampling day, sampling and sorting of fruit were all carried out according
to a completely randomized design. Samples consisted of three replicates of approximately
60 olives each, apart from maturity index (MI) evaluation where each replicate consisted of
100 fruits each, on each sampling date.

2.2. Fruit Maturity Index (MI) Evaluation

Estimation of MI was conducted according to the method proposed by Uceda and
Frias (1975) [7] based on the evaluation of peel and pulp color on a scale ranging from 0
(peel color deep green) to 7 (peel color all purple or black with all the flesh purple) [14].

2.3. Respiration and Ethylene Production Rates

Both respiration and ethylene production rates were evaluated at 20 ◦C according to
Tsantili et al. (2012) [15]. In detail, respiration was assessed using a closed portable infrared
gas (IRGA) analyzer (Model LI-6200, LI-COR, Lincoln, NE, USA) connected with a 500 mL
airtight jar and the flow rate was adjusted to 900 mol s−1. Ethylene production was evalu-
ated after 2 h enclosure in 500 mL sealed jars and analyzed by gas chromatography, while
the detection limit was approximately 10 nL L−1. Respiration and ethylene production
rates were expressed in mmol CO2 kg−1 h−1 and nmol C2H4 kg−1 h−1, respectively.

2.4. Peel Color

Peel color was measured at ten points on the surface of olive layers arranged to
entirely cover an open petri dish (60 mm diameter) with a chroma meter (CR-300, Minolta,
Ahrensburg, Germany) under darkness. From the given CIE L* a* b* values, a* and b* were
transformed to hue angle (h◦) and chroma (C*) [16].

2.5. Extraction Procedure and Determinations of Total Antioxidant Capacity (TAC) and Phenolic
Compounds

A total of 60 destoned fresh olives were frozen using liquid nitrogen, freeze dried
and powdered with mortar and pestle in liquid nitrogen before extraction. For TAC and
phenolic compounds, 500 mg of powdered tissue was extracted three times with 80%
v/v acetone (1 mL 100 mg−1 tissue) in an ultra-sonic ice bath for 15 min. The samples
were then centrifuged at 4000× g for 5 min. The combined supernatants were divided
equally into 2 parts. The one part was used for TAC determination and the other for
phenolic extraction [15]. TAC was estimated by the ferric reducing antioxidant power
(FRAP) assay [17], according to Tsantili et al. (2012) [15]. TAC values were expressed as
trolox acid equivalents on a freeze-dried weight basis.

Phenolics were extracted from the second part three times with the same volume
of ethyl acetate each time. The organic solvent was removed by a rotary evaporator at
37 ◦C, the residue was dissolved in 0.5 mL methanol and filtered through a nylon syringe
filter (0.2 m pore size) before analysis. The identification and quantification of phenolic
compounds was performed by a high performance liquid chromatography (HPLC) system,
according to Tsantili (2014) [18]. Results were expressed in mg or µg per g of freeze-dried
weight.

2.6. Extraction of Oil and Determination of Fatty Acid (FA) and α-Tocopherol Composition

A cold-pressing method with a laboratory screw-press device was used for oil ex-
traction. Briefly, chilled (at 4 ◦C) destoned olives (~50 g) wrapped in cheese cloth were
compressed between two parallel stainless-steel plates of 10 × 5 cm pre-cooled at 4 ◦C and
each at a torque of 30 N m−1. Before analyses the recovered oil was centrifuged at 5000× g
for 3 min [13].

The FA composition of oil samples was performed by gas chromatography of fatty
acids methyl esters, according to Kafkaletou and Tsantili (2016) [13]. Determinations of FAs
were carried out on samples of crop year A and results were expressed as % (w/w) in oil.
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The α-tocopherol content of oil samples was determined using an HPLC system,
consisting of a Varian 9010 pump (Varian, Santa Clara, CA, USA), HP 1050 UV-Vis de-
tector (Hewlett-Packard, Waldbron, Germany) and Peak Simple 3.25 data processing
system. The separation was achieved on an Ascentis® Express Fusecore analytical column
(100 × 2.1 mm; 2.7 µm particle size). The mobile phase used was methanol/dichlormethane
(85:15, v/v), the flow rate and the detection wavelength were set to 0.05 mL min−1 and
295 nm, respectively. Oil samples were dissolved in hexane, evaporated until dryness
under vacuum, diluted in the mobile phase and filtered through a nylon syringe filter
(0.2 m pore size) before analysis [19]. α-tocopherol was quantified in comparison with a
multipoint calibration curve obtained from the corresponding standard. Determinations of
α-tocopherol content were carried out on samples of crop year B and results were expressed
as mg kg−1 oil.

2.7. Data Analysis

The significance of the effect of MI on all determined variables was evaluated by one-
way analysis of variance (ANOVA). Mean (of three replicates of 60 olives each) separations
were analyzed by the Tukey-HSD test (p = 0.05). The significant differences were estimated
at p < 0.05. Principal Component Analyses (PCA) and pairwise correlations were performed
to get an overview of the main variation in the data and to interpret variable relationships
among the traits measured on both crop years, namely peel color parameters (L*, h◦ and
C*), CO2 and C2H4 production rates, phenolic compounds and TAC. Data analyses were
conducted using JMP 7.0.1 (SAS Institute, Cary, NC, USA).

3. Results and Discussion
3.1. Ripening and Quality Traits in Olives of Different MIs
3.1.1. MIs, Peel Color and CO2 and Ethylene Production Rates

In crop year A, the MIs averaged 0.9 (±0.05), 1.5 (±0.11), 2 (±0.18) and 4 (±0.31) on
the four successive harvest dates, respectively, with numbers in parenthesis being ± SDs.
In B, the MIs averaged 1.1 (±0.09), 3.8 (±0.26) and 6.9 (±0.08) on the three successive
dates, respectively, with the samples being the same with those analyzed as controls in
experiment I in a previous study [13].

Initially, at MI 0.9 in olives of crop year A, values of L*, h◦ and C* were about 56,
115 and 32, respectively (Figure 1a,c,e). Both L* and C* values were reduced considerably
at MI 4.0, while h◦ values increased, being close to 360◦ in A or 0◦ in B, obtaining a red
color in both years. Similarly, in fruit of crop year B, all peel color parameters decreased
significantly at MI 3.8 in comparison to values at MI 1.1, indicating that samples had
turned from green to red (Figure 1b,d,f). Moreover, at MI 6.9 all three-color parameters
estimated were further reduced to approximately 23, 9 and 3 for L*, h◦ and C*, respectively.
These values indicate that olives had a black or dark purple peel and almost all the pulp
was purple [7]. According to Vinha et al. (2005) [8] the development of the deep purple
color is associated with anthocyanin synthesis and particularly to cyanidin 3-O-glucoside
and cyanidin 3-O-rutinoside. The present findings suggest that color differences could be
distinguished with objective measurements rather than subjectively by visual estimation, as
mentioned by Tsantili (2014) [18]. On the other hand, Garcia and Yousfi (2005) [9] proposed
that firmness evaluation is a more reliable tool than color for predicting harvest for colored
olives, but in the present study firmness was not able to be measured due to the small size
of Koroneiki olives.

The respiration rate of olives at MI 0.9 in A, expressed in CO2 production, was
3.04 mmol kg−1 h−1, but increased to 3.8, 4, 7 and 5.7 mmol kg−1 h−1 at MI 1.4, 2.1 and 4,
respectively (Figure 2a). A similar pattern of change was monitored in olives of of crop
year B (Figure 2b). In detail, CO2 production was 3.6 mmol kg−1 h−1 on fruit at MI 1.1
and increased to 4.4 and 5 mmol kg−1 h−1, at MI 3.8 and 6.9, respectively. According
to Ranalli et al. (1998) [20], similar tendency to increase was observed in Leccino and
Frantoio olives during maturation. It is noteworthy that relatively high respiration rates



Agronomy 2021, 11, 122 5 of 13

in olives of advanced MIs may suggest that the fruit is sensitive to postharvest handling,
indicating that olives have to be processed soon after harvest [18]. Additionally, the
increased respiration rate during fruit development is in disagreement with a typical non-
climacteric fruit. However, further investigation of this observation is not included in the
aim of the present work.
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Ethylene production was either not detectable in olives at MI ~1 of both crop years
or found at low levels in olives of advanced MIs (Figure 2c,d). Here, detectable amounts
of ethylene coincided with the appearance of red colored areas on the peel, at ~MI 4, in
olives of both years. According to Fernández-Bolaños et al. (1997) [21] olives synthesize
increasing amounts of ethylene as ripeninig proceeds. Both respiration and ethylene
production rates were lower than in ‘Kalamon’ [18], but in accordance with the values
reported in ‘Konservolia’ [15,22,23].
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3.1.2. Phenolic Compounds

Plant phenolic compounds are derived from the shikimate pathway and phenyl-
propanoid metabolism. The phenolics of olives have been investigated thoroughly [24]. A
decrease of phenolics during olive fruit development on tree, in many olive cultivars has
been reported [25]. Phenolic compounds determined in ‘Koroneiki’ were the non-flavonoid
oleuropein (OE), verbascoside (Verb), hydroxytyrosol (HT) and tyrosol (Tyr), in addition
to the flavonoid phenolics luteolin-7-O-glucoside (Lut-7), rutin, quercetin and luteolin
(Table 1). Here, OE was the major phenolic compound identified in all samples. In crop
year A, OE was reduced considerably from 9.9 mg g−1 at MI 0.9 to 4.1 mg g−1 at MI 4,
likewise in year B OE from 10.5 mg g−1 at MI 1.1 to 0.3 mg g−1 at MI 6.9. A trend of
decreasing fruit OE content with advanced maturity was described in several French [26],
Spanish [27] and Cypriot [6] cultivars. OE possesses pharmacological properties and olive
varieties with high OE amounts are desirable for medical purposes and might be a target
for breeding programs [28]. Verb values remained almost stable during ripening and were
found at 0.32 and 0.18 mg g−1 on average, in olives of crop year A and B, respectively.
In black ripe Kalamon olives Verb values measured were five times higher than current
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results [18]; in the literature, high levels of Verb have been reported in cultivars with large
fruit size [26]. HT concentration in olives of both crop years increased about 65% during
ripening and these findings are in accordance with literature [27,29,30]. Moreover, olive
products with high HT values are preferable due to HT’s high antioxidant capacity [31].
Fluctuations in Tyr concentration during ripening were observed, however, Tyr is usu-
ally present in lower amounts than HT [32], and this was in agreement with the present
results. Among the four flavonoid phenolics identified, Lut-7 and rutin were at similar
levels and decreased during maturation process, and both were higher than quercetin
and luteolin which were detected in traces, as suggested by others [8]. In another study
on Koroneiki olives harvested at MI 3, OE, HT and rutin were estimated at higher levels
than here, whereas Tyr at a similar level [6]. However, the current results were in general
agreement with other cultivars studied [8,33,34]. During olive ripening, quantitative and
qualitative changes in phenolics happen, and these fluctuations are ascribed to a series of
chemical and enzymatic alterations of some phenolics [35,36]. Nevertheless, there might
be variations over the years and environmental factors, as well as cultivation practices that
could influence the phenolics in olives and olive products [10].

In crop year A at MI 0.9, TAC was found at about 179 µmol g−1 and reduced consid-
erably to 160 µmol g−1 at MI 4. Similarly, in olives of year B, TAC values decreased from
172 to 129 µmol g−1, at MI 1.1 and 6.9, respectively. The current results were in accordance
with the literature [13,35]. In this study, TAC estimated with the FRAP method was highly
and positively correlated with OE (Table S1) indicating the high contribution of OE to TAC,
and this was in general agreement with other works [29,37].

3.2. Oil Composition

The olive oil composition is very important both for its stability during storage and for
human nutrition. In Koroneiki oil of crop year A derived from olives at MI 0.9, the values
of palmitic, palmitoleic, stearic, oleic, arachidic and gondoic acid were 11.16, 0.84, 2.92,
76.18, 0.52 and 0.31%, (w/w in oil), respectively (Table 2), and remained almost stable until
olives reached MI 4. Vaccenic acid showed no consistent changes. Linoleic acid exhibited
a continuous increase that was highly significant, in detail it increased by 0.73-fold in
comparison with initial levels. On the contrary, linolenic acid decreased considerably from
0.8% at MI 0.9 to 0.66% at MI 4. The current results were in accordance with other studies
on Koroneiki oil [10,13].
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Table 1. Content of individual phenolic compounds, oleuropein (OE), verbascoside (Ver), hydroxytyrosol (HT), tyrosol, luteolin-7-O-glucoside (Lut-7), rutin, quercetin, luteolin, as well as,
total antioxidant capacity (TAC), estimated by FRAP assay, in the flesh of Koroneiki olive fruit of different maturity indices (MI), in crop years A and B.

Crop yea MI OE
(mg g−1)

Ver
(mg g−1)

HT
(µg g−1)

Tyr
(µg g−1)

Lut-7
(mg g−1)

Rutin
(mg g−1)

Quercetin
(µg g−1)

Luteolin
(µg g−1)

TAC
(µmol g−1)

A

0.9 9.89 ± 0.16 1 0.32 ± 0.01 39.70 ± 1.34 20.14 ± 1.94 0.37 ± 0.01 0.35 ± 0.02 26.29 ± 2.15 17.85 ± 0.44 178.75 ± 0.98
1.4 10.63 ± 0.14 0.33 ± 0.02 45.26 ± 1.18 28.95 ± 0.77 0.34 ± 0.01 0.33 ± 0.01 20.18 ± 1.67 10.10 ± 1.75 163.10 ± 1.87
2.1 6.36 ± 0.28 0.31 ± 0.01 49.95 ± 1.53 18.82 ± 2.59 0.30 ± 0.01 0.26 ± 0.01 10.41 ± 1.30 10.89 ± 0.81 155.02 ± 1.20
4.0 4.05 ± 0.09 0.32 ± 0.01 100.95 ± 5.73 16.90 ± 1.30 0.18 ± 0.01 0.25 ± 0.01 9.94 ± 1.78 7.46 ± 1.18 160.13 ± 2.81

HSD 2 0.48 0.02 8.11 4.66 0.02 0.04 4.58 3.01 4.85
p 3 *** ns *** *** *** *** *** *** ***

B

1.1 10.49 ± 0.35 0.18 ± 0.01 100.16 ± 9.65 17.54 ± 5.11 0.12 ± 0.009 0.17 ± 0.009 6.65 ± 1.70 15.17 ± 1.16 172.06 ± 2.83
3.8 0.80 ± 0.03 0.21 ± 0.02 429.90 ± 14.90 154.05 ± 18.51 0.03 ± 0.005 0.05 ± 0.003 14.81 ± 2.15 43.15 ± 4.72 123.47 ± 3.69
6.9 0.34 ± 0.06 0.16 ± 0.01 328.48 ± 17.55 88.33 ± 7.63 0.02 ± 0.002 0.02 ± 0.003 3.98 ± 0.60 27.83 ± 7.37 128.73 ± 4.13

HSD 0.52 0.04 36.10 29.88 0.01 0.01 4.06 12.78 9.00
p *** ns *** *** *** *** *** *** ***

1 Numbers are means of three replicates ± SD. 2 HSD, Tuckey’s honest significance difference values at p = 0.05. 3 p, Probabilities. ns, not significant. ***, Significant at p < 0.001.

Table 2. Content of fatty acids (FAs), in the oil derived of Koroneiki olive fruit of different maturity indices (MI), in crop year A.

MI
Palmitic

C16:0
(%)

Palmitoleic
C16:1 n-9

(%)

Stearic
C18:0
(%)

Oleic
C18:1 n-9

(%)

Vaccenic
C18:1 n-11

(%)

Linoleic
C18:2 n-9, 12

(%)

Linolenic
C18:3 n-9, 12, 15

(%)

Arachidic
C20:0
(%)

Gondoic
C20:1 n-11

(%)

SFA
Cv:0
(%)

MUFA
Cv:1
(%)

PUFA
Cv:n (n ≥ 1)

(%)
UFA/SFA ω-6/ω-3

0.9 11.16 ± 0.58 1 0.84 ± 0.03 2.92 ± 0.10 76.18 ± 0.76 1.89 ± 0.09 5.20 ± 0.07 0.80 ± 0.01 0.52 ± 0.04 0.31 ± 0.03 14.61 ± 0.69 79.24 ± 0.65 6.01 ± 0.08 5.85 ± 0.33 6.44 ± 0.11
1.4 11.02 ± 0.92 0.84 ± 0.04 2.93 ± 0.31 76.35 ± 1.50 1.50 ± 0.14 5.52 ± 0.12 0.75 ± 0.01 0.55 ± 0.08 0.34 ± 0.02 14.51 ± 1.27 79.05 ± 1.37 6.28 ± 0.12 5.92 ± 0.63 7.27 ± 0.19
2.1 10.46 ± 0.71 0.87 ± 0.07 2.70 ± 0.33 76.64 ± 0.80 1.81 ± 0.18 5.73 ± 0.27 0.75 ± 0.04 0.41 ± 0.08 0.36 ± 0.03 13.66 ± 1.12 79.70 ± 0.96 6.49 ± 0.31 6.34 ± 0.62 7.63 ± 0.04
4.0 9.85 ± 0.82 0.87 ± 0.09 2.48 ± 0.45 76.07 ± 1.51 1.94 ± 0.12 7.13 ± 0.13 0.66 ± 0.03 0.48 ± 0.09 0.34 ± 0.04 12.82 ± 1.35 79.24 ± 1.44 7.81 ± 0.13 6.85 ± 0.83 10.68 ± 0.56

HSD 2 2.01 0.16 0.54 3.14 0.35 0.44 0.07 0.19 0.08 2.97 3.01 0.48 1.64 0.78
p 3 ns ns ns ns * *** *** ns ns ns ns *** ns ***

1 Numbers are means of three replicates ± SD. 2 HSD, Tuckey’s honest significance difference values at p = 0.05. 3 p, Probabilities. ns, not significant. *, Significant at p < 0.05. ***, Significant at p < 0.001.
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At MI 0.9, the values of saturated fatty acids (SFA), mono-unsaturated fatty acids
(MUFA), poly-unsaturated fatty acids (PUFA), unsaturated fatty acids/saturated fatty acids
(UFA/SFA) and linoleic acid/linolenic acid (ω-6/ω-3) were 14.61, 79.24, 6.01, 5.85 and
6.44, respectively, and SFA, MUFA and UFA/SFA remain almost stable during ripening.
However, significant changes occurred in PUFA and ω-6/ω-3 values that increased by 0.77-
and 0.6-fold, respectively, by the end of the experiment. As expected, oleic and linoleic were
the main FAs measured in Koroneiki oil, while changes in PUFA were attributed to linoleic
acid increases. Dag et al. (2014) [11] observed that the reduction of the MUFA/PUFA
ratio was ascribed to both a slight decrease in oleic acid and increase in linoleic acid,
which could occur during desaturation of FAs under low temperatures. Here, a substantial
decrease in MUFA/PUFA was observed from 12.28 at MI 2.1 to 10.14 at MI 4, coinciding
with the increased linoleic acid at MI 4, while oleic remained fairly stable. Also, the ratio
of ω-6/ω-3 is considered very important for disease prevention or therapy [38] and for
this reason it was included into the present results. Particularly, a low ratio of ω-6/ω-3
in conjunction with elevated levels of linolenic acid (ω-3) are desirable in reducing the
risk of chronic diseases [38]. In the present study, the ratio of ω-6/ω-3 decreased by 1.39-
fold from MI 2.1 to MI 4.1 and this was primarily attributed to the respective increase
in linoleic acid by 1.24-fold. In general, both oleic acid percentage and UFA/SFA ratio
belong to the criteria for the characterization of olive oil quality and Koroneiki exhibits a
higher proportion of oleic than other cultivars [39]. Indeed, oleic acid in Koroneiki was
found at 76% in oil in A, being close to 70% at MI ~4 in a previous study of the same
variety [13], against 60–62% in other varieties [39]. Moreover, decreases in the ratio of
MUFA/PUFA are associated with oil deterioration in olives of advanced MIs or high field
temperatures during ripening [11]. Here, decreases in MUFA/PUFA and increases in ω-
6/ω-3 are attributed to the increased linoleic acid observed at MI 4. Kafkaletou and Tsantili
(2016) [13] reported a further reduction of MUFA/PUFA ratio in the oil derived from
Koroneiki olives at MI 6.9. However, this increase did not necessarily indicate the onset of
oil deterioration since in Koroneiki, linoleic acid remains at very low levels even at MI 4,
being ~7.1% in oil, against other varieties that exhibited about double that percentage [11].
Also, it has to be mentioned that the present samples of B crop year are the same as those in
experiment I of an earlier study [13], with the respective means and ±SDs of oil percentage
at the three successive harvest dates being 54.28 (±0.59), 60.03 (±1.32) and 64.71 (±0.97) (%
w/flesh dw), while the effect of harvest date on the oil content was significant (p < 0.001).
Therefore, taking into consideration the results of both studies, it is confirmed that oil from
olives harvested at MI 4 exhibited values of high quality, at least concerning the variables
determined here.

3.3. α-Tocopherol Content in Oil

α-tocopherol concentration in olive oil varied from 190 to 250 mg kg−1 (Figure 3) and
these levels complied with other studies concerning monovarietal Koroneiki extra virgin
olive oils [40,41]. In this study, at MI 6.9, α-tocopherol reduced by 0.8-fold from initial
values, but slightly from MI 3.8. Similar reductions during ripening have been reported
by others [20,42]. During olive fruit ripening, changes in composition and concentration
of antioxidants in oil have been observed [43]. These changes have an impact on sensory
attributes, stability during storage and nutritional value of olive oil, however, their con-
centration might be ascribed to many factors, such as cultivar, cultivation practices and
environmental factors [12].

3.4. Principal Component Analyses and Relationships among Olive Attributes

The PCA was performed for all variables determined in both crop years, as presented
in Figures 1 and 2 and Table 1. PCA showed two interpretable components, explaining
together 81.6% (eigenvalue 2.67) of the total variation (Figure 4). In the score plot, all
samples were separated clearly according to their MI (Figure 4a).
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Figure 4. Principal Component Analysis (PCA) in Koroneiki olives according to the variables of peel color parameters (L*,
h◦ and C*), CO2 and C2H4 production rates, phenolic compounds (oleuropein (OE), verbascoside (VER), hydroxytyrosol
(HT), tyrosol (TYR), luteolin-7-O-glucoside (LUT-7), rutin, luteolin and quercetin) and total antioxidant capacity (TAC)
affected by maturity index (MI), in crop years A and B. In PCA—a, Score plot; b, Load plot. In (a)—open and filled shapes
correspond to crop year A and B, respectively; open circle, olives at MI 0.9; open rhombus, olives at MI 1.4; open rectangle,
olives at MI 2.1; open square, olives at MI 4; filled circle, olives at MI 1.1; filled square, olives at MI 3.8; filled triangle, olives
at MI 6.9. In (b)—circle indicates the position of each variable in load plot. Numbers in parentheses correspond to the
percentage of the total variance explained by each component.

Correlations among the variables are summarized in the load plot (Figure 4b) and are
represented in Table S1. Strong relationships were found among the attributes following a
similar pattern of change during olive fruit ripening. In detail, significant, positive and
strong correlations were found between HT and Tyr (r = 0.957), HT and C2H4 (r = 0.926),
HT and luteolin (r = 0.906), Tyr and luteolin (r = 0.940), OE and TAC (r = 0.900), OE and
L* (r = 0.904) and Lut-7 and rutin (r = 0.965). These relationships were supported by PCA
since luteolin, HT, Tyr and C2H4 were shown to be situated close together near the left axis
of load plot, while OE, L*, TAC, Lut-7 and rutin were shown to be situated close together
near the right axis.
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Another PCA for all variables determined in A crop year (including FAs) is presented
in Figure S1 and confirmed the higher olive oil quality at early ripening stages or low MIs,
being similar to a previous work [13].

4. Conclusions

The aim of the current study was to evaluate the physiological and quality characteris-
tics during ripening of Koroneiki olives in two successive crop years of full production, A
and B. Olives were harvested at different MIs and peel color parameters (L*, h◦ and C*),
respiration and ethylene production rates, TAC and phenolic compounds were measured
in olives, and the fatty acid profile and a-tocopherol content were determined in oil. Ac-
cording to the results, respiration and ethylene productions rates, HT concentration and
linoleic acid in oil increased by advanced MIs. However, TAC, OE, Lut-7 and linolenic acid
values decreased during maturation progression. Practically, olives of low MI were rich in
antioxidants and therefore the oil derived from olives harvested at early stages acquired
high-quality traits, high stability during storage and long self-life. At MI 4, all determined
variables corresponded to oil of high quality. However, more studies are needed to de-
velop objective and easy-to-use descriptions for harvest timing decision under different
environmental conditions and cultivation practices in order to obtain oil of high quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/1/122/s1, Table S1. Pairwise correlations among peel color parameters, CO2 and C2H4
production rates, phenolic compounds and total antioxidant capacity (TAC), in Koroneiki, olives
of different maturity indices (MI), in crop years A and B. Figure S1. Principal Component Analysis
(PCA) in Koroneiki olives according to the variables of peel color parameters (L*, h◦ and C*), CO2 and
C2H4 production rates, phenolic compounds (oleuropein (OE), verbascoside (VER), hydroxytyrosol
(HT), tyrosol (TYR), luteolin-7-O-glucoside (LUT-7), rutin, luteolin and quercetin), total antioxidant
capacity (TAC) and fatty acids (palmitic (PA), palmitoleic (PO), stearic (ST), oleic (OL), vaccenic (VA),
linoleic (LL), linolenic (LN), arachidic (AR), gondoic (GO)) affected by maturity index (MI), in crop
year A. In PCA: a, Score plot; b, Load plot. In a: open circle, olives at MI 0.9; open rhombus, olives
at MI 1.4; open rectangle, olives at MI 2.1; open square, olives at MI 4. In b: circle indicates the
position of each variable in load plot. Numbers in parentheses correspond to the percentage of the
total variance explained by each component.
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