Supplementary data

formosolv lignin.		
δ (ppm)	Assignation	
Clusters		
161-141	Aromatic C-O	
141-124	Aromatic C-C	
124-100	Aromatic C-H	
169.6	Carbonyl carbon in acetates	
162.4, 163.4	Formate groups	
158, 161, 167	p-hydroxyphenyl groups	
152.2	C _{3,5} in etherified S units	
149.1	C ₃ in etherified G units	
138.2	C ₄ eth. G + C _{3,5} non eth. S + C ₄ in S	
119.1	Aromatic C ₆ of the G structures	
114.7	Aromatic C_5 of the G structures	
111.1	Aromatic C2 of the G structures	
104.0	C _{2,6} in S units	
71.9	C_{α} of β -O-4'	
70-90	C_β in $\beta\text{-}O\text{-}4'$, C_α in $\beta\text{-}5'$ and $\beta\text{-}\beta'$	
65.6	C in units with oxidized C_{α}	
62.9	C in substructures β -O-4'	
55.9	OCH ₃	
29.1	Methylene carbons in α , β	
21.1	CH ₃ in acetates	
15.3	C_1 -(CH ₃) of the propyl chain	

Table S1. Assignments of carbon chemical shifts (δ , ppm) in ¹³C NMR spectrum of MWL and

 Table S2. Assignments of ¹³C–¹H correlation signals in the HSQC NMR spectrum of the obtained lignin fractions.

Labels	δс/ðн (ppm)	Assignation
С	53.9/3.5	C –H in phenylcoumaran substructures (C)
В	54.3/3.1	C –H in resinol substructures (B)
-OCH3	56.1/3.2-56.2/3.7	C–H in methoxyls
Е	56.0/3.41	C –H in β -1' substructures (E)
А	60.2/3.7-60.4/3.2	C –H in substructures (A)
D	60.4/2.7	C –H in spirodienone substructures (D)
Ι	62.1/4.1	C –H in cinnamyl (sinapyl/coniferyl) alcohol end-groups (I)

В	71.6/3.8-71.7/4.2	C –H in resinol substructures (B)
A (G)	71.8/4.7	C –H in β -O-4' linked to a G unit (A)
A (S)	72.5/4.9	C –H in β -O-4' linked to a S unit (A)
D	81.8/5.04	C –H in spirodienone substructures (D)
Е	83.4/4.8	C –H in dibenzodiozoxin substructures (E)
В	85.5/4.7	C –H in resinol substructures (B)
A (G)	86.5/4.1	C –H in β -O-4' linked to a G unit (A)
A (S)	84.4/4.3	C –H in β -O-4' linked to a S unit (A)
Е	86.6/3.8	C –H in dibenzodiozoxin substructures (E)
С	87.5/5.5	C -H in phenylcoumaran substructures (C)
S _{2,6}	104.4/6.7	C _{2,6} –H _{2,6} in etherified syringyl units (S)
J _{2,6-S}	106.7/7.0	Cinnamyl aldehyde end-groups in S-units (J)
S'2,6	107.1/7.3-107.0/7.2	C _{2,6} –H _{2,6} in syringyl units with α oxidization (S')
G ₂	111.6/7.0	C_2-H_2 in guaiacyl units (G)
G ₅	115.5/6.7-115.8/6.9	C₅–H₅ in guaiacyl units (G)
G ₆	119.7/6.8	C ₆ –H ₅ in guaiacyl units (G)
I 10(7/(0	126.7/6.8	C –H in cinnamyl (sinapyl/coniferyl) aldehyde end-groups
J		(J)
Ι	128.9/6.2	C –H in cinnamyl (sinapyl/coniferyl) alcohol end-groups (I)
H2,6	128.9/7.2	<i>p</i> -hydroxyphenyl units (H)
Ι	129.2/6.5	C –H in cinnamyl (sinapyl/coniferyl) alcohol end-groups (I)
F	162.0/8.2	Formates (F)

Figure S1. Main substructures identified in MWL and PFL of Paulownia. (A) Aryglycerol -aryl ethers;
(A') -OH acylated aryglycerol -aryl ethers; (B) resinols; (C) phenylcoumarans; (D) spirodienones; (E) dibenzodioxocins; (I) cinnamyl alcohol end-groups; (J) cinnamaldehyde end-groups; (G) guaiacyl units;
(S) syringyl units; (S'), oxidized syringyl units bearing a carbonyl group at C .

Figure S2. ¹H NMR spectra of MWL and formosolv Paulownia lignin.

Figure S3. TGA (dashed) and DTG (bold) curves of MWL and PFL.