Supplementary Material

Specific adsorption of heavy metals in soils: individual and competitive experiments.

Campillo-Cora, C. ^{1,2}, Conde-Cid, M. ^{1,2}, Arias-Estévez, M. ^{1,2}, Fernández-Calviño, D.*

^{1,2}, Vega, F.A. ^{1,2}

¹Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense,

Spain

²CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of

Vigo, 32004-Ourense, Spain

* Corresponding author. E-mail address: davidfc@uvigo.es

1 Table S1

2 Langmuir parameters β (mg kg⁻¹), K_L (L mg⁻¹) and R² after adsorption and desorption model data

3 adjustment.

		ADSOR	PTION		DESORPTION-RETENTION			
		β	K_L	R ²	β	K_L	\mathbb{R}^2	
Cu	S1	1516.37 ± 90.88	0.21 ± 0.04	0.94	1714.35 ± 57.18	1.09 ± 0.10	0.99	
	S2	1513.47 ± 80.19	0.33 ± 0.06	0.94	1839.10 ± 44.07	1.00 ± 0.06	0.99	
	S3	1231.75 ± 105.9	0.05 ± 0.01	0.92	1332.38 ± 95.14	0.49 ± 0.09	0.96	
	S4	1329.95 ± 96.24	0.07 ± 0.02	0.94	1326.36 ± 62.17	0.86 ± 0.11	0.97	
	S5	1428.68 ± 97.50	0.13 ± 0.03	0.93	1433.01 ± 102.7	0.74 ± 0.16	0.94	
	S 6	9458.5 ± 2745.8	0.34 ± 0.12	0.98				
	S 7							
	S 8	1655.71 ± 108.6	0.12 ± 0.02	0.94	1596.48 ± 94.13	0.74 ± 0.13	0.95	
	S9	1624.03 ± 90.92	0.25 ± 0.05	0.94	1673.58 ± 97.15	1.20 ± 0.21	0.95	
	S10	1533.06 ± 90.99	0.33 ± 0.07	0.93	1674.90 ± 88.73	1.32 ± 0.21	0.96	
	S1	753.52 ± 16.73	0.06 ± 0.00	0.99	354.41 ± 91.78	0.03 ± 0.02	0.82	
	S2	904.26 ± 19.47	0.07 ± 0.01	0.99	823.00 ± 257.8	0.01 ± 0.01	0.94	
	S3	466.13 ± 28.67	0.04 ± 0.01	0.94	302.43 ± 98.97	0.05 ± 0.03	0.74	
	S4	500.28 ± 20.94	0.05 ± 0.01	0.97				
Zn	S5	583.60 ± 23.55	0.08 ± 0.01	0.97	422.98 ± 139.2	0.03 ± 0.02	0.81	
	S 6	2177.69 ± 48.68	0.59 ± 0.04	0.99	2048.05 ± 54.82	1.19 ± 0.08	0.99	
	S 7	2257.88 ± 62.14	2.46 ± 0.18	0.99	2851.01 ± 195.2	3.00 ± 0.43	0.97	
	S 8	632.39 ± 28.34	0.04 ± 0.00	0.98	473.98 ± 35.37	0.25 ± 0.05	0.94	
	S9	595.50 ± 24.96	0.04 ± 0.01	0.97	335.34 ± 68.59	0.05 ± 0.02	0.84	
	S10	713.59 ± 19.73	0.06 ± 0.01	0.99	473.72 ± 89.34	0.05 ± 0.02	0.87	
	S1	1133.77 ± 71.87	0.04 ± 0.01	0.96	1224.59 ± 65.74	0.19 ± 0.02	0.99	
	S2	1080.50 ± 58.88	0.06 ± 0.01	0.96	1180.81 ± 70.00	0.26 ± 0.03	0.98	
Ni	S3	578.81 ± 32.14	0.02 ± 0.00	0.97	608.74 ± 41.26	0.16 ± 0.02	0.98	
	S4	674.31 ± 32.74	0.04 ± 0.01	0.97	767.44 ± 45.47	0.20 ± 0.03	0.98	
	S5	761.46 ± 35.85	0.04 ± 0.01	0.97	846.67 ± 45.25	0.15 ± 0.02	0.99	
	S6	2308.82 ± 61.21	0.29 ± 0.02	0.99	2686.54 ± 57.37	0.69 ± 0.03	1.00	
	S 7	2615.12 ± 96.31	0.60 ± 0.05	0.99	2597.76 ± 196.5	2.65 ± 0.44	0.95	
	S 8	866.14 ± 60.43	0.02 ± 0.00	0.96	736.64 ± 41.89	0.17 ± 0.02	0.98	
	S9	1107.65 ± 104.9	0.02 ± 0.00	0.95	820.83 ± 56.62	0.16 ± 0.03	0.97	
	S10	740.59 ± 62.36	0.05 ± 0.01	0.91	647.69 ± 53.80	0.31 ± 0.07	0.92	
	S 1	2404.63 ± 87.58	1.60 ± 0.14	0.98				
	S2	4390.74 ± 410.0	0.89 ± 0.13	0.98				
	S3	1919.10 ± 102.3	0.54 ± 0.09	0.95	2056.14 ± 99.66	1.68 ± 0.22	0.97	
	S4	1810.05 ± 89.77	1.41 ± 0.24	0.95	2442.65 ± 133.2	2.33 ± 0.28	0.97	
Pb	S5	1990.99 ± 72.81	4.07 ± 0.47	0.97	2152.52 ± 143.2	8.61 ± 1.64	0.93	
	S 6				3255.03 ± 402.8	6.80 ± 1.56	0.93	
	S 7							
	S 8	2118.70 ± 120.8	1.39 ± 0.23	0.94	2237.04 ± 66.77	5.37 ± 0.42	0.99	
	S9	2166.79 ± 113.5	1.37 ± 0.20	0.95	2207.69 ± 107.6	6.15 ± 0.82	0.97	
	S10	2293.43 ± 188.9	2.63 ± 0.57	0.88	2232.84 ± 118.2	12.85 ± 1.85	0.96	
Cr	S 1	753.40 ± 38.61	0.16 ± 0.04	0.93	753.41 ± 33.91	3.19 ± 0.46	0.94	
	S2	758.18 ± 56.26	0.06 ± 0.01	0.92	647.85 ± 32.55	2.25 ± 0.41	0.93	
	S3	574.40 ± 21.86	0.03 ± 0.00	0.98	444.42 ± 30.69	0.16 ± 0.03	0.96	
	S4	448.96 ± 19.59	0.03 ± 0.00	0.98	327.88 ± 13.64	1.01 ± 0.16	0.96	
	S5	858.56 ± 35.28	0.04 ± 0.00	0.98	745.97 ± 33.69	0.13 ± 0.01	0.99	
	S 6	2257.96 ± 198.8	0.01 ± 0.00	0.99	1422.67 ± 86.52	0.08 ± 0.01	0.99	
	S 7				2556.95 ± 877.3	0.02 ± 0.01	0.97	
	S 8	944.39 ± 66.69	0.03 ± 0.00	0.96	632.40 ± 39.24	0.27 ± 0.05	0.95	
	S9	897.99 ± 63.75	0.02 ± 0.00	0.96	612.57 ± 33.34	0.17 ± 0.02	0.97	
	S10	1041.21 ± 58.37	0.04 ± 0.01	0.97	746.23 ± 36.25	0.27 ± 0.04	0.97	

5 Table S2

6 7

Competitive desorption results. Parameters derived from Freundlich model fitted with competitive desorption data.

	m	etal 1	metal 2			
	Competitive DESC	RPTION Freun	Competitive DESORPTION Freundlich metal 2 (metal 1)			
	metal 1	(metal 2)				
	K <i>F</i> - <i>m</i> 1(<i>m</i> 2)	n	R ²	K F-m2(m1)	n	R ²
	Cu	u(Zn)		Zn	(Cu)	
S 1	656.75 ± 25.38	0.47 ± 0.03	0.96			
S 6	3702.76 ± 212.55	1.00 ± 0.05	0.96	933.78 ± 23.83	0.46 ± 0.02	0.98
S7	9760.2 ± 1210.2	1.19 ± 0.07	0.95	2066.41 ± 125.54	0.62 ± 0.05	0.89
	Cu	u(Ni)	Ni(Cu)			
S 1	637.84 ± 21.73	0.48 ± 0.02	0.97			
S 6	3713.80 ± 186.52	1.06 ± 0.05	0.97	650.84 ± 36.66	0.56 ± 0.04	0.93
S7	25007.2 ± 4592.2	1.65 ± 0.11	0.95	1205.64 ± 56.92	0.59 ± 0.04	0.91
	Cu(Pb)			Pb(Cu)		
S1	604.66 ± 27.26	0.42 ± 0.03	0.94	1332.71 ± 27.08	0.40 ± 0.02	0.98
S6	20393.7 ± 2261.3	2.00 ± 0.08	0.99	16136.9 ± 5642.6	1.37 ± 0.19	0.82
S7	30390.7 ± 6772.9	1.63 ± 0.12	0.94			
	Ст	u(Cr)	Cr(Cu)			
S1	993.83 ± 38.24	0.54 ± 0.03	0.94	668.53 ± 48.87	0.40 ± 0.04	0.81
S 6	3396.00 ± 94.28	1.17 ± 0.03	0.99	116.43 ± 7.60	0.87 ± 0.03	0.99
S7	5904.49 ± 352.04	1.17 ± 0.05	0.98	41.39 ± 4.59	1.05 ± 0.04	0.99
	Zı	n(Ni)	Ni(Zn)			
S1	120.43 ± 06.37	0.44 ± 0.03	0.96	184.26 ± 12.85	0.33 ± 0.04	0.88
S6	1027.37 ± 19.19	0.45 ± 0.02	0.99	845.20 ± 28.34	0.44 ± 0.03	0.97
S7	2236.81 ± 79.57	0.58 ± 0.03	0.97	1255.21 ± 21.82	0.52 ± 0.02	0.99
	Zı	n(Pb)	Pb(Zn)			
S1	154.68 ± 10.41	0.43 ± 0.03	0.94	2611.25 ± 95.88	0.78 ± 0.03	0.98
S6	1509.43 ± 22.56	0.67 ± 0.02	0.99	10658.3 ± 3582.7	1.24 ± 0.20	0.83
S7	3058.48 ± 334.11	0.75 ± 0.08	0.83			
	Zı	n(Cr)	Cr(Zn)			
S1	224.34 ± 14.98	0.60 ± 0.04	0.96	541.30 ± 27.43	0.31 ± 0.03	0.89
S 6	1592.84 ± 23.59	0.70 ± 0.02	0.99	163.71 ± 9.57	0.81 ± 0.03	0.99
S7	4259.87 ± 337.28	0.97 ± 0.06	0.94	50.90 ± 3.23	0.96 ± 0.02	0.99
	Ni(Pb)			Pb(Ni)		
S1	192.69 ± 23.16	0.40 ± 0.06	0.78	2440.12 ± 105.02	0.69 ± 0.04	0.96
S6	937.61 ± 37.03	0.72 ± 0.04	0.95	20508.0 ± 10934.6	1.16 ± 0.22	0.82
S7	1584.06 ± 36.46	0.74 ± 0.03	0.80	13663.3 ± 3469.6	0.93 ± 0.62	0.88
	Ν	Cr(Ni)				
S1	264.36 ± 13.66	0.56 ± 0.03	0.98	600.31 ± 28.52	0.34 ± 0.03	0.91
S6	975.04 ± 13.04	0.67 ± 0.02	1.00	153.8 ± 11.55	0.81 ± 0.03	0.98
S7	1461.73 ± 45.33	0.63 ± 0.05	0.96	$\underline{32.75\pm2.92}$	1.06 ± 0.03	0.99
	Pl	o(Cr)	Cr(Pb)			
S1				445.73 ± 17.51	0.59 ± 0.03	0.98
S6				188.70 ± 9.74	0.79 ± 0.03	0.99
S7				53.85 ± 4.05	1.03 ± 0.03	0.99

9 Fig. S1. Single adsorption and desorption curves of Cu by soil samples.

10 Fig. S2. Single adsorption and desorption curves of Zn by soil samples.

11 Fig. S3. Single adsorption and desorption curves of Pb by soil samples.

12 Fig. S4. Single adsorption and desorption curves of Zn by soil samples

13

14 Fig. S5. Competitive (coloured) and single (black) adsorption and desorption curves of Cu by soil S1, S6

and S7 samples.

16 Fig. S6. Competitive (coloured) and single (black) adsorption and desorption curves of Zn by soil S1, S6

and S7 samples.

18 Fig. S7. Competitive (coloured) and single (black) adsorption and desorption curves of Pb by soil S1, S6

and S7 samples.