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Abstract: Strawberry cropping system relies heavily on proper disease management to maintain
high crop yield. Powdery mildew, caused by Sphaerotheca macularis (Wall. Ex Fries) is one of the
major leaf diseases in strawberry which can cause significant yield losses up to 70%. Field scouts
manually walk beside strawberry fields and visually observe the plants to monitor for powdery
mildew disease infection each week during summer months which is a laborious and time-consuming
endeavor. The objective of this research was to increase the efficiency of field scouting by automatically
detecting powdery mildew disease in strawberry fields by using a real-time machine vision system.
A global positioning system, two cameras, a custom image processing program, and a ruggedized
laptop computer were utilized for development of the disease detection system. The custom image
processing program was developed using color co-occurrence matrix-based texture analysis along
with artificial neural network technique to process and classify continuously acquired image data
simultaneously. Three commercial strawberry field sites in central Nova Scotia were used to evaluate
the performance of the developed system. A total of 36 strawberry rows (~1.06 ha) were tested within
three fields and powdery mildew detected points were measured manually followed by automatic
detection system. The manually detected points were compared with automatically detected points
to ensure the accuracy of the developed system. Results of regression and scatter plots revealed that
the system was able to detect disease having mean absolute error values of 4.00, 3.42, and 2.83 per
row and root mean square error values of 4.12, 3.71, and 3.00 per row in field site-I, field site-II, and
field site-III, respectively. The slight deviation in performance was likely caused by high wind speeds
(>8 km h−1), leaf overlapping, leaf angle, and presence of spider mite disease during field testing.

Keywords: machine vision; powdery mildew; real-time sensing; texture analysis; artificial
neural networks

1. Introduction

Powdery mildew (Sphaerotheca macularis) is a serious disease affecting strawberry production in
both warm and dry climates [1] and reduces crop yields by causing decreased fruit set, inadequate
ripening, poor flavor, fruit cracking and deformation, and reducing postharvest storage time [2].
Powdery mildew (PM) can be remarkably problematic when strawberry plants are grown in greenhouses
or polythene tunnels, both of which are conducive to severe outbreaks of PM [3]. Generally, strawberries
are commercially grown on raised beds covered with impermeable polythene mulch/tunnel in outdoor
fields. The white patches of mycelia are the initial symptoms of PM disease, which appear on upper
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and/or lower strawberry leaf surfaces during disease progression [4]. The PM disease symptoms
primarily appear on young leaves [5], scatter through petioles, runners, flowers, and fruits except
roots [6]. The conidial germination of PM disease is optimally grown when the temperature ranges
between 15 and 25 ◦C and relative humidity ranges from 75% to 98% [5]. When the PM disease becomes
severe, the fruit may crack, causing exposure to secondary infections [7] and causing yield losses of up
to 70% [8]. To date, visual observation is still the only method to measure the presence of PM disease
in strawberry cultivation systems. According to Zhang et al. [9], the traditional visual inspection of
diseases is a time-consuming and labor-intensive approach and is also quite impractical on large farms.
Thus, an automated detection system is vital for strawberry growers to inspect PM disease occurrence
in field.

Over the last decade, image processing-based machine vision technologies have been effectively
used for fast and accurate plant disease monitoring and detection within fields [10,11]. Imaging in the
open field is a challenge compared to laboratory conditions due to uncontrollable environmental factors
such as illumination variation, leaf density and overlap, leaf angle, and wind speed [12]. Open fields
can result in adverse operating environments, offering random variability due to terrain and weather,
as well as imperfections of input images that can easily influence the accuracy and precision of machine
vision systems [13]. Pajares et al. [14] provided guidelines for selection of appropriate agricultural
machine vision systems based on lighting conditions in outdoor environments, irregular terrain, or
different plant growth stages for optimum performance. Lee et al. [15] developed a real-time machine
vision system, which was only capable of correctly detecting 47.6% of weeds with 24.2% oversprayed
tomato plants in outdoor field conditions. Sabzi et al. [16] proposed a machine vision system based on
hybrid artificial neural network-harmony search classifiers for automatic segmentation of plants under
different illumination conditions and claimed it could be applied under all field applications with
higher accuracies. However, reliable studies have not been conducted using mixed canopy conditions
that are common in agricultural fields. Therefore, a real-time machine vision system that is able to
detect plant disease under mixed canopy field conditions needs to be developed.

Several attempts applying a color co-occurrence matrix (CCM)-based image processing technique
for crop disease detection have been reported by various researchers, with promising results under
different cropping systems [10,17–22]. Table 1 summarizes the accuracies obtained from using a
CCM-based textural analysis method for disease detection in crops.

Pydipati et al. [17] utilized a CCM-based textural analysis method to extract important features
aimed at identifying diseased and normal citrus leaves. According to the authors, the CCM, along
with a back-propagation neural network algorithm, achieved over 90% accurate detections in all
cases used for analysis. In follow-up work, Pydipati et al. [18] used a CCM-based classification
algorithm to detect healthy and greasy spot, melanose, and scab disease-affected citrus leaves. Results
of their laboratory trials showed that the algorithm was able to achieve classification accuracies of
over 95% for all classes. Other studies have successfully achieved 93% detection for tomato leaf
disease [19], using a CCM-based texture analysis algorithm along with a neural network classifier,
and 91% accuracy in classifying different types of nursery stock [23], using a CCM-based algorithm.
CCM-based custom image processing is not a novel approach but to date limited research has been
conducted on detection of strawberry powdery mildew, which causes severe yield crop losses around
the world. Current detection of PM, specifically in strawberries, using machine vision-based automated
techniques have largely been conducted under laboratory or controlled conditions [21,25]. Yang et
al. [25] demonstrated the capacity to recognize strawberry PM disease from single harvested strawberry
leaf using a convolutional neural network. Mahmud et al. [21] analyzed single leaf images to detect PM
disease in strawberry under controlled environmental conditions during image acquisition. Real-time
detection of weeds and disease poses significant challenges and only a few have been successfully
evaluated in agricultural fields.
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Based on the success of PM detection under controlled conditions in previous work, the goal of
this study was to evaluate how a mobile machine vision system would perform in real-time detection
of PM in field-based strawberry production systems.

Table 1. Summary of disease detection accuracies using color co-occurrence matrix (CCM)-based
textural analysis in different cropping systems.

Diseases
Detection/Classification Image Processing Accuracy References

Normal and greasy spot,
melanose, and scab citrus

leaf diseases

CCM and a back-propagation
neural network Over 90% [17]

Normal and greasy spot,
melanose, and scab citrus

leaf diseases

CCM features extract from
converted hue, saturation and

value (HSV) color space
Over 95% [18]

Early scorch, cottony mold,
ashen mold, late scorch, and tiny

whiteness diseases of tomato
and other crops

CCM along with neural
network classifier 93% [19]

Early scorch, cottony mold,
ashen mold, late scorch, and tiny

whiteness diseases of tomato
and other crops

CCM and neural network model 83–94% [10]

Nursery stock CCM and discriminant analysis 90.9% [23]

Powdery mildew of strawberry CCM along with support vector
machine algorithm (SVM) 91.86% [21]

Yellow spots, brown spots,
scorch and late scorch diseases

of banana, lemon, and bean
CCM texture analysis with SVM 94% [20]

Scorch and spot classification of
plant leaves

CCM and artificial
neural network (ANN) 100% [24]

2. Materials and Methods

2.1. Machine Vision System Development

A mobile machine vision system was developed by fabricating a custom platform (width × length
× height: 2.184 m × 1.219 m × 0.737 m) using locally sourced bicycle components to minimize the cost
(Figure 1).
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The custom-based machine vision system was fabricated by modifying image acquisition hardware,
as defined in Mahmud et al. [22], in order to effect real-time detection in the field. The system was
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manually propelled by pushing an integrated handle bar. An artificial cloud lighting condition (ACC)
system was mounted on the mobile platform to minimize the variation of illumination during image
acquisition in the field [22]. The ACC was made with a black cloth cover to avoid direct sunlight
during image acquisition (Figure 1). The light illumination readings inside of the ACC chamber ranged
from 800 to 900 lx during field trials. The system was designed to operate within single strawberry
rows (1.219 m width) and slim bicycle wheels were used to minimize the damage on strawberry
runners during the study. The system consisted of two µEye 1240 LE/C color cameras (IDS Imaging
Development System Inc., Woburn, MA, USA), a HiPer® Lite + RTK-GPS (Topcon Positioning Systems
Inc., Livermore, CA, USA) for georeferencing and a ruggedized laptop computer (Toshiba Corporation,
Minato, Tokyo, Japan). Each of the cameras acquired 24-bits blue–green–red (BGR) 640 × 256 pixels
images covering a 0.6096 m × 0.2438 m (length × width) area of interest (AOI) of each section (half of
row) in strawberry row (Figure 2).
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The AOI was used to minimize the barrel effect caused by the wide-angle lens by extracting from
the center of the full frame images of 1280 × 1024 pixels. The wide-angle field of view lenses (LM4NCL,
Kowa Optimed Inc., Torrance, CA, USA) were set up to a fixed aperture (f/4.0) and infinity focus
with a 3.5 mm focal length. The cameras were set up with a 30◦ inclination from the vertical Z-axis
(downward), as shown in the Figure 3, for acquiring suitable images for PM detection in the field. The
inclination of 30◦ was chosen based on testing different angles prior to the start of the study. Images
acquired with a 30◦ inclination facing the driving direction made the PM symptoms more visible since
the disease is located under the leaves initially and infected leaf edges may also roll upward. Examples
of images captured using a two-camera set up (one is 90◦ vertically downward and another is 30◦

inclination with the vertically downward-axis) are shown in Figure 4.
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Cameras were connected directly to the laptop computer using universal serial bus (USB) cables.
Image acquisition by the cameras were conducted at a travelling speed rate of 25 frames per second
(FPS) during the experiments. An image was extracted from every 15 frames to avoid overlapped
areas between images. The cameras had a 0.3 m working depth from the camera sensor to leaf
canopy. The system speed was manually controlled at 1.50 ± 0.40 km h−1 and was maintained constant
during the study by continuous monitoring of the graphical user interface (GUI) display. The system
speed (in knots) was parsed from RTK-GPS string and converted into metric units (speed (ms−1) =

0.51444 × speed (knots)). The 0.30 m working depth and image acquisition speed of 1.50 km h−1

was previously determined to be optimum for strawberry powdery mildew detection [22]. Digital
gain and exposure time were automatically controlled by autogain control and autoexposure shutter.
The RTK-GPS antenna was mounted above the cameras to simultaneously record the coordinates.
The RTK-GPS position of the images was continuously stored in laptop computer by using National
Marine Electronics Association (NMEA-0183) standard code sentences. The program was designed to
only store the powdery mildew image location, when it was detected, into a comma-separated values
(CSV) file.

A real-time strawberry powdery mildew disease detection algorithm was developed in C# (sharp)
using Visual Studio 2017 (Microsoft, Redmond, WA, USA). The algorithm was programmed to process
images and differentiate powdery mildew affected leaves from healthy or other diseased leaves (that
did not retain similar features to PM). The image processing steps started with a conversion of the
acquired blue, green and red (BGR) image into a green ratio, and hue, saturation and intensity (HSI)
image. According to Meng et al. [26], the HSI color space works better compared to RGB (red, green,
and blue) and YUV (luminance, chrominance, and chroma) for image processing under field conditions.
The hue channel from HSI color space represents the purity of color, such as pure blue (b), green (g),
and red (r) in terms of degree, whereas saturation represents the measure, from 1 to 0, to which pure
color is diluted by a neutral color [27]. The b, g, and r intensity levels of individual pixel of an image
were utilized to calculate the hue (H), saturation (S), and intensity (I) components of that pixel by using
the geometrical transformation relationships. These relationships were defined by the International
Commission on Illumination (CIE) chromaticity diagram [27]. A color conversion was performed for
this study from BGR to HSI color plane on input images. Each input image was used to create three
two-dimensional arrays in the process of CCM, color co-occurrence matrix. The pixel intensity of each
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array was applied for CCM construction from each color plane. The H, S, and I images were converted
using Equations (1)–(4) suggested by [27].

θh = cos−1
{

1
2 [(r− g) + (r− b)]

[(r− g)2 + (r− g)(g− b)]
1
2

} (1)

where, θh is the angle, and hue (H) color plane was calculated based on angle (0–360◦) of circle which
was normalized in the range between 0 and 1. This normalized angle was then linearly transformed to
256 different intensity levels for calculating the H of particular pixel depending upon its r, g, and b
components (Equation (2)).

H =

 θh
360 × 255 i f b ≤ g

360−θh
360 × 255 i f b > g

 (2)

S = 255× {1−
3

(r + g + b)
(Min(r, Min(g, b)))} (3)

where, S is the saturation color plane.

I =
r + g + b

3
(4)

The ratio used was (G × 255) (B + G + R)−1 and a manually obtained threshold (>86) for conversion
to g-ratio images. The g-ratio images were masked with the original images to remove the background.
Another thresholding was conducted with the masked image along with the manually obtained
threshold (red > 190 and red < 220, green > 220 and green < 245, and blue > 180 and blue < 200)
to obtain the final image for extracting valuable features. Color co-occurrence matrices (CCMs) [23]
were constructed from converted images, followed by textural features extraction. The CCMs were
constructed with four converted images from one image followed by extracting a set of 10 features
from the individual CCM. Since frequency in the CCMs is a function of the angular relationship
and distance between neighboring pixels, in this research, an angular relationship (oa) of 0◦ and a
displacement vector (dv) of 1 pixel were selected for CCM construction. The displacement vector of 1
pixel was selected, as it provided exceptional results when varied between 1 and 5 [28]. The features
data were normalized and resulting normalization of each CCM value varied from 0 to 1. The CCMs
were normalized by dividing the individual entity in the CCM matrix by the total number of pairs in
each matrix using the relationship presented in Equation (5) [29].

N(a, f ) =
n(a, f , 1, 0)∑F−1

a=0
∑F−1

f=0 n(a, f , 1, 0)
(5)

where, N (a, f ) is a normalized CCM, n (a, f ) is a marginal probability function, a is the intensity level at
a certain pixel, f is another matching intensity level with displacement vector, dv = 1 and an orientation
angle oa = 0, and the denominator of the equation, sum of n (a, f ), is the total number of pairs in the
matrix with specific orientation and displacement vector.

A total of 40 textural features were extracted from an individual image after constructing the CCM
but 23 features were specifically chosen to detect PM disease. The textural features were extracted by
equations used from Shearer and Holmes [23] and presented in Table 2.

The 23 textural features were chosen due to their optimal performance compared to
extracted 50 features for powdery mildew disease detection reported in laboratory experiments
by Mahmud et al. [22] using stepwise discriminant analysis. The selected features are presented in
Table 3.
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Table 2. Textural features equations suggested by [23].

Features Name Equation [v]

Contrast
F−1∑
|a− f |=0

(a− f )2 F−1∑
a=0

F−1∑
f=0

N(a, f )

Homogeneity
F−1∑
a=0

F−1∑
f=0

N(a, f ) 1
1+|a− f |

Entropy
F−1∑
a=0

F−1∑
f=0

N(a, f ) In N(a, f )

Dissimilarity
F−1∑
a=0

F−1∑
f=0

N(a, f )
∣∣∣a− f

∣∣∣
Angular second moment

F−1∑
a=0

F−1∑
f=0

N(a, f )2

Inverse difference moment
F−1∑
a=0

F−1∑
f=0

N(a, f )
1+(a− f )2

Average
F−1∑
a=0

f Nx(a)

Sum of squares
F−1∑
a=0

(a− µ)2Nx(a)

Product moment
F−1∑
a=0

F−1∑
f=0

N(a, f )(a− µ)( f − µ)

Correlation
F−1∑
a=0

F−1∑
f=0

N(a, f )
(a−µa)( f−µ f )

σaσ f

[v] F is the total number of intensity levels, N (a, f ) is the (a, f )th entry in a normalized CCM, µ is the mean, µa is the
mean of row, µ f is the mean of column, σa and σa are the standard deviation along the ath row and f th column of N
(a, f ), respectively, and Nx (a) was obtained by summation of CCM values in ath row.

Table 3. Selected textural features.

Converted
Images

Extracted Textural Features [S]

Con Hom Ent Dis A2M IDM Avg SoS PM Cor

G-ratio 4 4 4 4 4

Hue 4 4 4 4 4 4

Saturation 4 4 4 4 4 4

Intensity 4 4 4 4 4 4

[S] Con: contrast, Hom: homogeneity, Ent: entropy, Dis: dissimilarity, A2M: angular second moment, IDM: inverse
difference moment, Avg: average, SoS: sum of square, PM: product moment, and Cor: correlation.

Dandawate and Kokare [30] reported that a combination of feature extraction using CCM and
artificial neural networks (ANN) machine learning was suitable for detection of different plant diseases.
Among the many supervised machine learning technologies available, using co-occurrence-based
feature extraction with ANN generated better results when dealing with different leaf angles or
positions, which is likely to occur under field conditions [31]. Therefore, the CCM extracted features
were analyzed for PM by using the ANN-based machine learning classifier. ANN-based machine
learning was also chosen due to its superior performance relative to support vector machines and
k-nearest neighbor for powdery mildew detection reported in controlled experiments [32]. Peltarion
Synapse (Peltarion Corp., Stockholm, Sweden) software was used to select the optimal ANN model
architecture using our extracted features data. A total of 20 combinations of model architectures were
tested and 4 optimal architectures were selected (Table 4).
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Table 4. Tested mathematical functions at an epoch size of 15,000 with normalized data.

Model Structures
Tanh Sigmoid Logistic Sigmoid Linear Exponential

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1W (23/23) and 1F
(23/1) 23 inputs 1

output
0.040 0.058 0.073 0.082 0.265 0.343 1.639 1.973

1W (23/23)1W
(23/23)1F (23/1) 23
inputs 1 outputs

0.008 0.010 0.054 0.068 0.146 0.211 0.683 0.769

1W (23/46) and 1F
(46/1) 23 inputs 1

output
0.004 0.005 0.017 0.021 0.119 0.193 0.614 0.687

1W (23/46)1W
(46/46)1F (46/1) 23

inputs 1 output
0.003 0.004 0.010 0.023 0.102 0.179 0.528 0.692

W = weight layer; F = function layer.

A back-propagation artificial neural network (BP-ANN) algorithm was applied to train the
proposed network architectures. Four different transfer functions, including the tanh sigmoid,
exponential, logistic sigmoid, and linear functions were used to translate the input signals into output
signals ranging from 0 to 2 (i.e., 0, 1, and 2). The extracted textural features were selected as inputs
for the input layer and corresponding healthy or disease labels (powdery mildew and other diseases)
were established as an output in the output layer. All the settings of developed models were kept
constant, the mathematical functions were changed, and finally mean absolute error (MAE) and root
mean square error (RMSE) were recorded to find an optimal mathematical function for this study. A
1W (23/46) 1W (46/46) 1F (46/1) ANN model architecture with a tanh sigmoid transfer function was
chosen having the epoch size of 15,000. Farooque et al. [33] also developed an optimal ANN model
with an epoch size of 15,000 and reported that the model was more suitable in capturing nonlinearity
of relationships between variables. A 6000 image dataset was analyzed (60% for training and 40% for
validation) to select an optimal model architecture. Three categories of images, e.g., healthy, powdery
mildew affected, and other disease affected, were collected from 10:00 a.m. to 4:00 p.m. Upon selection
of an optimal ANN model architecture, the model was deployed from Peltarion Synapse software as a
dynamic link library file (dll) file. The deployed dll file used by the real-time powdery mildew disease
detection algorithm ensured real-time selection of one of the three categories, i.e., powdery mildew
affected, healthy, or other disease affected leaves. The algorithm had a statement (is the image powdery
mildew affected?) to save the georeferenced coordinates in a CSV file of leaves identified as PM affected.
The detection results of georeferenced coordinates location were imported into ArcGIS 10.5 computer
software (ESRI, Redlands, CA, USA) for prescription mapping. Overview of the real-time detection
algorithm is presented in Figure 5.
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2.2. Field Evaluation of Machine Vision System for Strawberry Powdery Mildew Detection

Testing of the real-time machine vision system on powdery mildew disease detection in commercial
strawberry fields was carried out on the 6, 7, and 13 August 2018. The commercial strawberry operations
located in Debert, Nova Scotia, provided fields under production for the evaluation of the real-time
system. The tests were conducted on sunny days, with temperatures ranging from 20 to 32 ◦C, relative
humidity (RH) from 50% to 82%, and wind speeds from 3 to 14 km h−1 [34].

Three strawberry field sites were selected in Debert, Nova Scotia, to evaluate the performance of
machine vision-based powdery mildew disease detection system. A commercial 12-hectare strawberry
farm was used to conduct this study. The field sizes were 1.3 ha each (area) located in Debert site I
(field 1; 45.429318◦ N, 63.483843◦ W), Debert site II (field 2; 45.429611◦ N, 63.48114◦ W), and Debert
site III (field 3; 45.429098◦ N, 63.480276◦ W). All fields were cultivated with an Albion strawberry
variety. Albion is a day-neutral or everbearing strawberry variety that grows quickly to about 12 inches
(0.30 m) in height, with a spread of 12–24 in (0.30–0.60 m). They are high yielding and everbearing,
which means they usually provide flower and fruit continuously from late spring into the fall. The
fields have been cultivated in strawberries over the past few years and each maintained commercial
management practices including mowing, pruning, fertilizing, and application of herbicides, pesticides,
fungicide, etc. A total of 12 randomly selected strawberry rows were tested in each field (Figure 6).
The strawberry rows evaluated had dimensions of 1.22 m × 220 m (wide × length) for field site-I and
1.22 m × 180 m for field site-II and field site-III with a 0.31 m buffer between rows (Figure 6).



Agronomy 2020, 10, 1027 10 of 21Agronomy 2020, 10, x 10 of 22 

 

 

 
Figure 6. Experimental strawberry field (1.22 m in row width with a 0.31 m buffer between rows). 

Manual detection of PM disease was conducted for each experimental field based on 
recommendations from two experienced field scouts who checked for symptoms including white 
patches of mycelium on the upper leaf surface, roll upward leaf edges, and reddish irregular spots 
on leaf. Manual detection was conducted by carefully confirming all the symptoms of strawberry 
PM, especially checking white patches with roll edges leaves throughout the experiments. The 
detected points were marked by inserting red flags. The number of detected points of powdery 
mildew affected plants in a single row was calculated manually recorded in a paper notebook (Hilroy, 
Mississauga, ON, Canada) after counting. The locations of the detected points were also recorded 
using a ProMark3 mobile mapper (Thales Navigation, Santa Clara, CA, USA). 

The machine vision system was deployed over individual rows of strawberry plants for 
continuous image acquisition by the two cameras. A total of 36 rows were covered over 3 strawberry 
fields (12 rows each) in this study. The images were processed through texture analysis by CCM and 
followed by detection using the ANN classifier. A step-by-step real-time strawberry PM disease 
detection process of an image is presented in Figure 7. The average processing time for an image was 
7648 μs (~0.0076 s). The powdery mildew detected leaf image locations (latitude and longitude) were 
saved automatically to a CSV file using a function in the custom software. Manually and 
automatically detected points were compared by manually counting points to evaluate the outcomes 
of the system. The detected points were mapped to create prescription map using the co-ordinates 
(longitude and latitude) collected from RTK-GPS and mobile mapper. 

Figure 6. Experimental strawberry field (1.22 m in row width with a 0.31 m buffer between rows).

Manual detection of PM disease was conducted for each experimental field based on
recommendations from two experienced field scouts who checked for symptoms including white
patches of mycelium on the upper leaf surface, roll upward leaf edges, and reddish irregular spots on
leaf. Manual detection was conducted by carefully confirming all the symptoms of strawberry PM,
especially checking white patches with roll edges leaves throughout the experiments. The detected
points were marked by inserting red flags. The number of detected points of powdery mildew affected
plants in a single row was calculated manually recorded in a paper notebook (Hilroy, Mississauga, ON,
Canada) after counting. The locations of the detected points were also recorded using a ProMark3
mobile mapper (Thales Navigation, Santa Clara, CA, USA).

The machine vision system was deployed over individual rows of strawberry plants for continuous
image acquisition by the two cameras. A total of 36 rows were covered over 3 strawberry fields (12 rows
each) in this study. The images were processed through texture analysis by CCM and followed by
detection using the ANN classifier. A step-by-step real-time strawberry PM disease detection process
of an image is presented in Figure 7. The average processing time for an image was 7648 µs (~0.0076 s).
The powdery mildew detected leaf image locations (latitude and longitude) were saved automatically
to a CSV file using a function in the custom software. Manually and automatically detected points were
compared by manually counting points to evaluate the outcomes of the system. The detected points
were mapped to create prescription map using the co-ordinates (longitude and latitude) collected from
RTK-GPS and mobile mapper.

The software interface of the machine vision system was developed using Microsoft Visual Studio
2017 (Microsoft Corp, Redmond, WA, USA) (Figure 8).

Communication between the RTK-GPS and laptop computer was established using a serial link
setting (COM Port 1, baud rate 9600 bps, stop bit none, and parity bit 1). The speed of the system
was calculated from NMEA-0183 standard code system directly from the RTK-GPS data displayed in
GUI (Figure 8). The latitude and longitude were also recorded from standard code from the RTK-GPS.
The checkbox of camera selection was added to control the two cameras used for real-time image
acquisition. Although the experiments used four processed images from one camera, two picture
boxes (for one camera) were added in the real-time software due to a lack of space in the GUI display.
The processed g-ratio and hue images were displayed from both cameras. The program was able to
process the images to differentiate powdery mildew leaf images in the strawberry fields in real-time
from both images taken by the two cameras. The system performance was evaluated by correlating
the manual detection results with the automatic system detection results from both cameras in all the
fields. The performance of the developed system is also evaluated by calculating recall, precision, and
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F-measure using relationship presented in Equations (6)–(8), respectively. Prescription maps were
developed from the experimental data using ArcGIS 10.5 software.

Recall =
Tp

Tp + Fn
× 100 (%) (6)

Precision =
Tp

Tp + Fp
× 100 (%) (7)

Fε =
(1 + ε) ×Recall× Precision
ε× Precision + Recall

(8)

where, Tp is the correctly detected points of PM disease, Fp is the number of healthy and other diseases
points that are falsely classified as PM disease, and Fn is the number of points of PM disease that are
falsely detected as healthy or other disease. Fσ is the F-measure value representing accuracy using
recall and precision relationship, and ε is a non-negative real value, we set ε = 0.80 in this study to
weigh recall more than precision.

1 
 

 

Figure 7. Strawberry powdery mildew disease detection in real-time field condition: (a) acquired
image, (b) threshold image, (c) masked image, and (d) PM detected image.
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2.3. Statistical Analysis

Linear regression analysis was used to compare the results of manual measurements (PM detected
points) and real-time detection using the mobile machine vision system separately in each field by
using Minitab® 18 statistical software (Minitab® Inc., State College, PA, USA). The coefficient of
determination (R2), mean absolute error (MAE), and root mean square error (RMSE) were calculated.
A paired t-test was also used to compare the mean of two measurements in Minitab version 18.

3. Results and Discussion

3.1. Laboratory Evaluation Results for ANN-Based PM Detection

Table 5 shows ANN-based machine learning classifier performances based on internal, external,
and cross validations with different image datasets. The model detected healthy, powdery mildew,
and other diseases leaf images with higher accuracy in all cases of internal validations. The recall was
calculated by the ratio of total correctly detected PM and total numbers of PM being detected (e.g., in
case of internal validation: recall for PM detection = 784/(6 + 784 + 10) and for calculation of precision
for PM detection = 784/(3 + 784 + 9)). The highest recall (98.00%), precision (98.49%), and F-measure
(98.27%) were reported during internal validation and the lowest recall of 86.49% was calculated in
external-III validation, and the lowest precision and F-measure of 85.27% and 86.22%, respectively, were
measured with external-I validation for strawberry PM detection. Laboratory evaluation suggested
that the ANN classifier performed better with healthy and other diseases image classification resulting
in fewer numbers of misclassifications, whereas a comparatively higher misclassification rate was
obtained with powdery mildew images.
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Table 5. Laboratory-based evaluation of artificial neural network (ANN) classifier for strawberry
powdery mildew (PM) detection.

Predicted Performance (PM Detection)

Validations Response Healthy PM Other
Diseases Total Recall

(%)
Precision

(%)
F-Measure

(%)

Internal
Healthy 790 3 7 800

98.00 98.49 98.27PM 6 784 10 800
Other diseases 4 9 787 800

Fivefold Cross
Healthy 394 2 4 400

97.00 97.98 97.54PM 4 388 8 400
Other diseases 3 6 391 400

External I a
Healthy 578 23 65 666

87.44 85.27 86.22PM 26 569 71 666
Other diseases 33 60 573 666

External II b
Healthy 587 24 55 666

86.94 86.81 86.87PM 16 579 71 666
Other diseases 19 64 583 666

External III c
Healthy 586 29 51 666

86.49 86.75 86.63PM 32 576 58 666
Other diseases 27 59 580 666

External-I a: training with Field I + Field II and validated with Field III; External-II b: training with Field I + Field III
and validated with Field II; External-III c: training with Field II + Field III and validated with Field I.

3.2. Strawberry Field Real-Time Powdery Mildew Detection Results

The machine vision-based powdery mildew disease detection system was tested at three strawberry
field sites. The corresponding results are presented in Figure 9, Figure 10, and Figure 11 for field site-I,
field site-II, and field site-III, respectively.
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Figure 9. Correlation between manually and automatically detected points for field site I.
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Figure 10. Correlation between manually and automatically detected points for field site II.
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Linear regression of manually detected PM vs. real-time PM detection using the machine vision
system suggests a highly significant correlation for field site-I (R2 = 0.93; p < 0.001; N = 12) (Figure 9).
The system also showed a significant correlation with the other two fields (field site-II: R2 = 0.88; p <

0.001; N = 12, field site-III: R2 = 0.92; p < 0.001; N = 12) (Figures 10 and 11). The MAE and RMSE were
also calculated from all field tests. The results showed that higher MAE and RMSE were obtained
from field site-I test (4.00/row and 4.12/row). Lower MAE and RMSE were recorded in validation with
field site-III, with values of 2.83/row and 3.00/row, respectively. The MAE calculated values from three
fields were lower than RMSE values because MAE does not give undue importance to large errors [35].
The co-efficient of determination (R2) was higher in field site-I and the MAE and RMSE values were
also higher compared to the other two fields. This result was due to the larger number of PM-affected
plants and longer length of rows in field site-I compared to the other field sites. The lowest R2 value
was 0.88, generated from field site-II, due to overestimates by the machine vision system accounting
white patch symptoms (i.e., spider mites) as powdery mildew disease. The underestimates were likely
due to the higher density of plant leaves, resulting in powdery mildew-affected leaves being hidden
under leaves. The variations in plant leaf density may have also contributed to the machine vision
system accuracy. Palleja and Landers [36] noticed that the plant density could account for errors in
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image processing, while others have encountered issues with predicting harvest ripeness of blueberries
using an image processing-based blue-ratio algorithm [37].

A direct comparison of manually and automatically detected powdery mildew disease in
strawberry fields are presented in Figure 12.
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Figure 12. Strawberry powdery mildew disease detection comparison row by row between manually
and automatically detected points.

The wind speed has direct effects upon real-time machine vision system performance under field
conditions. Zhang and Chaisattapagon [38] developed a machine vision system for weed identification
which was successful during laboratory experiments, but they pointed out that it was not practical for
real-time weed detection, especially when a wind effect was considered. The wind speed can cause
blurring boundaries in the images which becomes quite complicated for image analysis [39]. The more
pronounced fluctuations for powdery mildew detections in our study were observed in the field site-II
testing of strawberry rows (12–24 rows) under high wind speeds (7–14 km h−1). Comparatively, lower
fluctuations were reported in field site-I (1–12 rows) results where the wind speed was 4–10 km h−1,
followed by field site-III (25–36 rows) with a wind speed of 3–8 km h−1. Since the wind speed was
comparatively higher in field site-II, the movement of the branches and the leaves during real-time
testing was a bit faster. Plant leaf movement during frame to frame image capture may have also
resulted in a false match, which was similar to observations reported by Shrestha and Steward [40].
The number of affected plants were higher in field site-I compared to other two field sites due to longer
row (220 m each) compared to other fields (180 m each) leading to misclassification rates of some
strawberry rows being higher. Some of the misclassifications may be associated with spider mites that
leave a white spider net over the leaves that the image processing algorithm identifies as PM.

The results of A paired-sample t-test suggested that a statistically significant difference existed
between the two measurements (manual and automatic) for powdery mildew detection. At all field
sites, manual identification of PM was always greater than the machine vision system implemented in
the strawberry fields. The difference in mean detection of PM between manual and machine vision
(automatic) at field site-I was 4.00 (95% CI, 3.34 to 4.66; p < 0.001), for field site-II, it was 3.42 (95% CI,
2.46 to 4.37; p < 0.001), and for field site-III, it was 2.83 (95% CI, 2.18 to 3.48; p < 0.001) (Table 6).
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Table 6. Pair-wise t-test for manually and automatically powdery mildew disease detection.

Fields Detections Mean (Points) S.D. (Points) Mean Diff. (Points) p-Value

Field site-I
Manual 22.33 3.96

4.00 <0.001 a
Automatic 18.33 3.65

Field site-II
Manual 18.67 4.12

3.42 <0.001 a
Automatic 15.25 3.39

Field site-III
Manual 14.83 3.38

2.83 <0.001 a
Automatic 12.00 2.92

a Significant at a probability level of p = 0.05.

The real-time field evaluation results demonstrated that the machine vision image processing
system could achieve a high recall (82.09%), precision (87.65%), and F-measure values (85.09%),
specifically at field site-I (Table 7). The accuracy parameters at the other two field sites were comparable,
despite having differences in field row lengths and wind conditions. Two types of statistical errors were
noticed during the field evaluations (e.g., type-I error and type-II error). The type-I error, also called a
false positive, and the type-II error, known as a false negative, are likely to occur under conditions
when variables, such as climate, lighting, and environmental conditions, cannot be well controlled. In
type-I error, machine vision system detected PM diseases when there were healthy or other diseased
leaves present. The type-II errors occurred when the machine vision system confirmed no PM disease
on the leaf but the manual detection identified it as being present. In the long run, reducing type-II
error is important in order to minimize the spread of PM from one plant to another. In this experiment,
the type-II error was comparatively higher than type-I error at field site-I and field site-II because
the machine vision system mistook for PM disease detection and accounted PM as spider mites in
some spots.

Table 7. Real-time field evaluation results of developed machine vision system.

Accuracy Parameters [s]

Tp (Points) Fp (Points) Fn (Points) Recall (%) Precision (%) F-measure (%)

Field I 220 31 48 82.09 87.65 85.09
Field II 183 27 41 81.70 87.14 84.64
Field III 144 26 34 80.90 84.71 82.97

[s] Tp means true positive; Fp means false positive; Fn means false negative.

Although our real-time machine vision imaging system provided good insights for field-based
detection of PM in strawberry fields, a number of challenges were also identified. Previous studies
also identified challenges on their experiments in field conditions [41–43]. Jeon et al. [42] was able to
detect 72.6% of crop correctly using ANN with a real-time crop and weed segmentation algorithm.
Other researchers attempted to overcome the issues arising under field conditions by developing an
environmentally adaptive segmentation algorithm, but it was only able to correctly identify 45% to
67% of tomato cotyledons [43]. This study detected over 80% of powdery mildew disease correctly
in the three commercial strawberry fields tested due to errors caused by uncontrolled environment.
A high frame per second (FPS) camera would have reduced effects of windy conditions in the field
experiments but managing for other sources of error for real-time detection is still a major area of study.
Faster processing also needs to be considered while using high-resolution images.

3.3. Prescription Map of Field Evaluations

Strawberry powdery mildew disease detection results from the three commercial strawberry field
sites were mapped in ArcGIS 10.5 software (Figure 13, Figure 14, and Figure 15). The map consists
of real-time machine vision system detected points that are marked with red bullets and manually
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detected points, represented by a star. The overlaid markers were georeferenced and compared
to evaluate the accuracy of the machine vision detection system relative to the manual detection.
Subjective analysis of prescription maps indicated that the system detected powdery mildew disease
with an 82.09%, 81.70%, and 80.90% accuracy for field site-I, field site-II, and field site-III, respectively.
The accuracies were calculated using the ratio of total correctly detected points with the machine
vision system relative to the total manual detected points. Figure 13 identified that the presence of
powdery mildew was greater in the western and eastern parts of field site-I compared to the central
portion of the field. Correspondingly, Figure 14 identified that the western and central western parts of
field site-II were more severely affected than other areas, and Figure 15 indicated that field site-III was
severely impacted by powdery mildew in the eastern parts of the site. The map revealed that field site
III (Figure 15) strawberry plants were less affected by powdery mildew disease compared to field site
I (Figure 13) and field site II (Figure 14). The goal of generating the prescription maps is to provide
the true scenario of the developed detection system’s effectiveness for PM monitoring and to help in
understanding the distribution of disease throughout the fields. Another reason is to provide decision
support for the spraying machine, which will be considered in our future study.
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Overall, a total of 17.91% powdery mildew affected points were missed in field site-I compared to
18.30% points and 19.10% points in field site-II and field site-III, respectively. In contrast, the real-time
machine vision system inaccurately detected powdery mildew points by 10.37%, 10.76%, and 12.75%
for field site-I, field, site-II and field site-III, respectively. Despite our system can only detect over
80% of PM disease in the field evaluations as stated earlier, the developed vision system can be used
onsite since it saves time and costs for PM disease monitoring with reliable observation. An over
80% of accuracy is sufficient to be claimed as useful for the strawberry growers because till date,
there is no such technology available, however, improvement of the system is expected in the future
considering various environmental factors. Additionally, manual monitoring is a time-consuming and
costly approach since the diagnosis requires very careful observation. A higher risk of human error is
also associated with manual monitoring due to the scout’s fatigue for continuously working in the
field. On the other hand, this custom-based system is a feasible and reliable option for minimizing PM
disease outbreak through monitoring symptoms rapidly and providing warnings about disease risk.
Prescription maps have been used by many researchers as a means of visually reporting the detection
and site-specific management results of their machine vision systems, particularly for applications of
variable rate spraying technologies in different cropping systems [44–46], crop disease mapping [47],
weed mapping [48,49], site-specific management [50–52], and spot applications [53,54]. Miller et al. [46]
applied granular fertilizer in citrus and observed that GPS map-based control were similar to those
found for real-time control. Prescription maps also incorporate well with real-time machine vision
systems in different cropping systems to detect weeds, bare spots, and fruits [53,55,56]. Hence, the
generation of prescription map based on disease outbreaks in the field could be used to support
site-specific management for variable rate fungicide spraying by strawberry growers. In this study, it is
aimed to detect the suspected region of the strawberry PM disease symptom-based on a mobile machine
vision system, and it was possible that automatically detected PM symptom area was visible by the
naked eyes of field scouts. It can improve the detection performance by reducing the time and cost as
compared to the manual monitoring and also by minimizing scout’s fatigue in the field diagnosis.

4. Conclusions

Field-based evaluation of strawberry fields via a novel real-time mobile machine vision powdery
mildew detection system, using image texture analysis, was successful. The real-time vision system
detected PM disease with F-measure values averaging 84.23% across three commercial strawberry field
sites. A custom CCM-based image processing algorithm in conjunction with ANN was used to detect
the PM disease in strawberry fields. Two RGB cameras were used to continuously capture images from
the fields. Acquired images were converted to green ratio, hue, saturation, and intensity images before
generating CCM from each. The CCM was generated from each converted image and then, textural
features were extracted. A total of 23 texture features, along with ANN classifier, were utilized in
the machine vision system development. Manually measured powdery mildew detected points were
compared with the real-time PM detected points using the machine vision system. Results of linear
regression plots showed significant correlations between manually and automatically detected PM
points. The MAE and RMSE of the detection results were 4.00, 3.42, and 2.83 per row and 4.12, 3.71, and
3.00 per row for field site-I, field site-II, and field site-III, respectively. Real-time field evaluation results
of this study reported that the developed machine vision system achieved a high recall of 82.09%,
precision of 87.65%, and F-measure of 85.09% during testing at field site-I compared to other two field
sites. The automatic PM disease detection system was fairly accurate; however, some misclassifications
were also reported in places. Environmental variability, especially spatial variability of wind speeds,
effects of leaf overlap or differences in density, and presence of spider mites, resulted in slightly higher
misclassification rates than desired. The advancement of a commercial real-time machine vision aided
PM detection system needs to consider how to address these variables in future studies. Despite the
challenges identified in our study, the relatively low cost of developing this system and the ease of
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implementation demonstrated the real potential for providing a real-time decision support system for
strawberry growers.
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