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Abstract: The Crop Environment Resource Synthesis (CERES)-Maize model in Decision Support
System for Agricultural Technology Transfer (DSSAT) was calibrated and evaluated with experimental
data for simulation of response of two intermediate-maturing maize varieties to different sowing dates
in the Nigerian savannas. The calibration experiments involved 14 consecutive field trials conducted
in the rainy and dry seasons in Bayero University Kano (BUK), Dambatta, and Zaria between
2014–2019. Two sets of field experiments were conducted simultaneously for model evaluation in
Iburu in the southern Guinea savanna zone and Zaria in the northern Guinea savanna zone during
2015 and 2016 cropping seasons. The experiments for calibration had two maize (SAMMAZ-15 and
SAMMAZ-16) varieties planted under optimum conditions with no water and nutrients stresses.
The trials for model evaluation were conducted using the same varieties under four different nitrogen
(N) rates (0, 60, 120 and 180 kg N ha−1). A 30-year (1985–2014) term simulation was performed
to determine effect of varying sowing dates on yields of two maize varieties (SAMMAZ-15 and
SAMMAZ-16) in the Sudan savanna (SS), northern Guinea savanna (NGS), and southern Guinea
savanna (SGS) zones. The calibration results showed that the cultivar coefficients of the two maize
varieties resulted in simulated growth and development parameters that were in good agreement with
observed parameters. Model evaluation showed a good agreement between simulated and observed
data for phenology and growth of maize. This demonstrated the potential of the CERES-Maize
model to simulate growth and yield of maize in the Nigeria savannas. Results of 30-year sensitivity
analysis with 9 different sowing windows showed that in SS, sowing the intermediate maize varieties
from early to mid-June produced the highest grain yields. In NGS, the optimum sowing windows
were found between late June and late July for the both varieties. In SGS, the optimum sowing
window is from early June to late July for SAMMAZ-15 and mid-June to late July for SAMMAZ-16.
These planting windows gave the highest long-term average yields for each variety. The variety
SAMMAZ-15 was found to be best performing across the three agro-ecologies. Maize performance
was generally higher in NGS than in SGS. SS in the Sudan savanna recorded the lowest yield compared
with other locations.
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1. Introduction

In most areas of West and Central Africa, delay in onset of the rainy season has been consistently
observed [1,2]. Also, long dry spells at the beginning, mid and end of the rainy season are becoming
more frequent even in the wetter Southern and Northern Guinea Savannas [3]. Frequent uncertainties
due to changing weather patterns are making rainfed agricultural production to become more variable
and riskier to farmers. There is, therefore, a need for developing optimal timing of all production
practices in the maize production regions of Africa [4]. In the Nigerian savannas, farmers plant with
the first onset of rain because of the uncertainty of rainfall duration and to avoid high temperature
and terminal drought during anthesis and grain-filling period [5]. Numerous studies in Nigeria [6–8]
have reported an increase in maize yield with early sowing when crops best used moisture, nutrients,
and solar radiation. Reductions in yield when sowing was delayed beyond the optimum periods have
also been frequently reported. Sowing too early may result in crop failure due to drought that occurs at
seedling stage which necessitates farmers to replant their crops. Sowing too late might reduce valuable
growing time and reduce grain-filling durations thereby leading to reduction in both grain and stover
yields [6].

Intermediate maize varieties that can tolerate the effects of reduced moisture supply around
anthesis [9] could reduce farmers’ risk in drought-affected ecologies. According to Kamara et al. [5]
improved maize varieties tolerant to drought had more ears plant−1 and kernels ear−1 that could
stabilize maize grain yield in the savanna zone, where recurrent drought threatens grain production.
Similarly, long duration maize varieties when sown early were found to out-yield early maturing
ones with yield gain of 34.3% because they could make use of the longer period for grain-filling [10].
Maize production technologies such as planting date and resilient varieties have been developed and
evaluated extensively in the West African sub-region to mitigate the effect of climate variability in order
to enhance adaptation and food security [6,11–15]. However, the reports on the performance of these
technologies are largely site specific and do not take into consideration variability in soils and climate
conditions outside the areas where the technologies have been tested. Assessment of the performance
of these technologies on a large scale across maize growing regions in the Nigeria savannas are time
consuming and expensive.

Decision Support System for Agricultural Technology Transfer (DSSAT) present very important
opportunity for scaling out short-duration field experimental results making use of long-term weather
and soil information [16–18]. The CERES-Maize model of DSSAT has been tested and evaluated
extensively by many researchers in the tropics for a wide range of applications [19–25]. In Nigeria,
the model was used to provide planting-date recommendations of early maturing maize varieties
in the drylands by Jibrin et al. [24], while more recently Adnan et al. [3] provided planting-date
recommendations for early and extra early maturing maize varieties using seasonal analysis of
DSSAT for the drier Sudan and slightly wetter Guinea savannas. Despite the potentials and use
of medium-maturing maize varieties in the Nigeria savannas, little or no research was conducted
to evaluate the response of these varieties to crop management practices including planting dates
in the savannas of Nigeria using crop simulation models. The objective of the current study was
therefore to evaluate the performance of the CERES-Maize model in simulating growth and yield of
intermediate-maturing maize varieties and to provide recommendations for optimum sowing dates
under rainfed conditions in three major agro-ecologies of northern Nigeria.

2. Materials and Methods

2.1. Study Locations

The model calibration experiments were conducted in three locations namely: Bayero University,
Kano (BUK) agricultural research farm (11.516◦ N, 8.516◦ E, 466 m a.s.l.); Audu Bako College of
Agriculture Dambatta (12.333◦ N, 8.517◦ E, 442 m a.s.l.) and Institute for Agricultural Research (IAR)
irrigation farm, Zaria (11.187◦ N, 7.147◦ E, 702 m a.s.l.). The three locations were selected for the
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calibration experiments based on access to irrigation facilities to ensure optimal moisture conditions by
providing irrigations when the moisture content is below field capacity.

Model evaluation was done in two separate locations in the northern Guinea and southern Guinea
savannas only. The locations for model evaluation were in the Maikanti Bello farm at Iburu (10.269◦

N, 7.789◦ E, 662 m a.s.l) and IITA research station at Shika, Zaria (11.054◦ N, 7.702◦ E, 686 m a.s.l.).
This approach was considered to get a true validation of the model, since the experimental data used
in model evaluation was not used in the initial calibration.

For model application using long-term weather data, the three agro-ecologies were considered
with Kano (12.002◦ N, 8.5920◦ E, ~488 m a.s.l.) representing the Sudan savanna (SS), Zaria (11.086◦ N,
7.719◦ E, ~675 m a.s.l) representing the northern Guinea savanna (NGS) and Abuja (9.076◦ N, 7.399◦ E,
~476 m a.s.l) representing the southern Guinea savanna (SGS). The three locations were selected to
represent the three agro-ecologies with the largest production area for maize.

2.2. Field Experiments for Model Calibration and Evaluation

The calibration involved 14 consecutive field experiments conducted in the rainy (June to
December) and dry (February to May) seasons between 2014–2019. However, only 10 experiments were
used for variety SAMMAZ-16. Time Domain Reflectometry (TDR) Meter 6050 × 1 TRASE SYSTEM
(Soilmoisture Equipment Corp, Santa Barbara, CA, USA) was used to monitor moisture conditions to
ensure optimal moisture across all fields. To ensure near-optimal nutrient conditions, recommended
inorganic fertilizer rate of 120 kg N: 60 kg P2O5: 60 kg K2O per ha were applied. A compound fertilizer
(N.P.K. 15:15:15) was used to supply 60 kg each of N, P, and K ha−1 at 10 days after sowing (DAS).
Urea (46% N) was used to supply the remaining dose (60 kg N ha−1) of nitrogen at 45 DAS. In addition
to inorganic fertilizer, poultry manure was also applied in the calibration experiment at the rate of
2 tons ha−1 to increase soil organic matter and improve nutrient retention at the sites. The calibration
experiments were set in a randomized complete block design (RCBD) with four different maturing
maize varieties (only two are presented in this study) used as treatments and replicated three times.
The experimental plot consisted of 4 rows 5 m in length and spaced 0.75 m apart. Maize was planted at
intra-row spacing of 0.25 m.

Four evaluation experiments were conducted during the rainy seasons (June–November) of 2015
and 2016 each at Zaria and Iburu as described in 2.1. In 2015, planting was done on June 16 in Zaria
and June 17 in Iburu, while in 2016 planting was done on June 18 in Zaria and June 24 in Iburu.
Three different inorganic fertilizers were used for the evaluation experiment. Recommended rates of P
and K were applied. Triple super phosphate in form of powder (19.89% P) was used to supply P at
the rate of 60 kg P2O5 ha−1 (equivalent to 26.2 kg P ha−1) and potassium in form of muriate of potash
(MOP) was used to supply K also at the rate of 60 K2O ha−1 (equivalent to 49.8 K ha−1). Urea (46%
N) was used as source for the four N treatments (0, 60, 120 and 180 kg N ha−1). Half (50%) of the N
and full rate of P and K were properly mixed and applied 10 DAS. The remaining half of nitrogen
was applied 45 DAS. The fertilizers were applied at the depth of 5 cm and buried 8 cm away from the
plant using band application method. The evaluation experiments were set up as a split plot design in
randomized complete blocks with four nitrogen rates (0, 60, 120 and 180 kg N ha−1) set as the main plot
and the two maize varieties used in the calibration experiment set as sub-plots. The experiments had
three replications with a subplot measuring 3 m × 5 m (15 m2) containing four rows of 0.75 m apart
and 5 m in length with intra-row spacing of 0.25 m between stands which gave a plant population of
53,333 plants ha−1. The experimental plots were kept free from weeds using an integrated approach to
control weeds. A mixture of primextra (Atrazine 223 g L−1 + Metolachlor 277 g L−1) and gramaxone
(1:1-dimethyl-4,4-bipyridinum dichloride) at a rate of 1 L ha−1 each was applied immediately after
sowing using a knapsack sprayer. Manual hoe weeding carried out later at 4 and 8 WAS controlled the
subsequent weeds that emerged.
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2.3. Plant Measurements

The crop data collected during the experimental periods include phenology dates (anthesis and
physiological maturity), grain yield, and shoot dry matter at harvest. Number of days to 50% anthesis
was collected by counting the number of plants with flowers daily, until half of the number of plants
in the net plot had flowers. Likewise, number of days to maturity was measured when 95% of the
cobs in the net plot matured and the kernels reached physiological maturity (signified by black layer
located at the placental region of kernel), this was visually estimated. At harvest, a quadrat measuring
1.25 m × 1.5 m (1.875 m2) was placed across the two middle rows of the net plot; all the plants in
the quadrat were harvested for grain number, dry matter determination, and grain yield per area.
The plant samples were separated into leaves, stem, and cobs. The cobs bearing the grains were
sun-dried to a constant weight and calculated as cob yield m−2, this was threshed and grain yield per
unit area of 1.875 m2 was converted to 1 m−2. The leaves and stems (including the husks) were further
oven-dried to a constant weight at 60 ◦C for 76 h in a force-draft oven [26] and later weighed using
Mettler Toledo balance Model XP60025, the result was converted to a square meter. Cob yield m−2,
leaf dry matter yield m−2 and stem dry matter yield m−2 were added up to achieve total dry matter
yield m−2. The result was expressed in kg ha−1 and recorded for each plot. Grain yield was determined
by adding the yields from the quadrat harvest and remaining net plot harvest and expressed in grain
yield kg ha−1. Matured cobs from the remaining net plot from the two middle rows excluding the
quadrat area were harvested and sun-dried to a constant weight. Dried cobs were shelled manually
using hand held thresher and their grains weighed. Percentage grain moisture was determined using
portable moisture meter (Farmex MT-16). Grain yield ha−1 was adjusted to 12% moisture computed
from the grain using the relationship below:

Grain yield (kg ha−1) = kg grain yield per net plot× 10, 000 m2 (1)

Adjusted grain yield = Grain yield (kg ha−1) ×
[100−mc

88

]
(2)

where mc = grain moisture content.

2.4. Weather and Soil Data

Daily records of rainfall, temperature (minimum and maximum) and solar radiation for the
experimental periods were collected from an automated WatchDog weather station device (2000 Series,
Spectrum Technologies, Aurora, IL, USA) located adjacent to the experimental locations. Thirty (30)
years records of daily precipitation, daily minimum and maximum temperatures, and daily solar
radiation were collected the from Nigerian Meteorological Agency (NIMET) [27] and used for the
long-term simulation studies. The weather data was inputted into the weatherman utility software in
the DSSAT v4.7 where it was checked for errors before use.

For model parameterization, evaluation, and sensitivity analysis, soil profile pits were dug in
all the study areas. The generic horizons of the profiles and soil types were classified using the FAO
guidelines [28]. Total soil organic carbon (total C) was measured using a modified Walkley and Black
chromic acid wet chemical oxidation and spectrophotometric method [29]. Total nitrogen (total N) was
determined using a micro-Kjeldahl digestion method [30]. Soil pH in water (S/W ratio of 1:2.5) was
measured using a glass electrode pH meter and the particle size distribution following the hydrometer
method [31]. Available phosphorus was extracted using the Bray 1 method [32].

2.5. CSM-CERES Maize Model Calibration

The DSSAT crop models require genotype specific parameters (GSPs), which are specific for
each cultivar. GSPs allow the model to simulate performance of diverse varieties under different
soil, weather and management conditions [33]. GSPs of two intermediate-maturing maize varieties
(SAMMAZ-15 and SAMMAZ-16) were first calibrated by adjusting the six coefficients P1, P2, P5,
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G2, G3, and phyllochron interval (PHINT) (Table 1) which describe the growth and development
characteristics for each individual variety. Three parameters (P1, P2 and P5) define the life cycle
development characteristics, two coefficients (G2 and G3) define growth and yield characteristics and
one coefficient, PHINT, defines leaf tip appearances [34]. Development coefficients are calculated in
degree days (or thermal time) in the CERES-Maize. Thermal time in any given day is equal to mean air
temperature minus base temperature [35].

GDD =
n∑

i=1

(Tmaxi + Tmini
2

)
− Tbase (3)

where GDD is growing degree days, Tmax is maximum temperature, Tmin is minimum temperature
and Tbase is base temperature (Tbase for maize = 8 ◦C). GDD is cumulative and is measured in ◦C day−1.

In the CERES-Maize model, the GSPs were calibrated by comparing simulated and measured
data for days to anthesis, days to maturity, biomass, and grain yield from the calibration experiments.
Since both varieties are not in DSSAT, we created them in the genetic file (MZCER047.CUL) of
DSSAT-CSM. Initial values of the GSPs were obtained from the generic medium season cultivar (990002
MEDIUM SEASON), already available in the genotype files. The computed crop specific parameters
values for MEDIUM SEASON cultivar were copied into MZCER047.CUL file to operate the simulation.
The Generalized Likelihood Uncertainty Estimation (GLUE) Coefficient Estimator module [36] fixed in
the DSSAT model was used to estimate the GSPs for both maize varieties.

The soil, weather, and crop management information were used to provide the environmental
calibration for the model. The soil information was inputted into the soil utility software (soil.sol) of
DSSAT. The model estimated the drained upper limit (DUL), the saturated upper limit (SAT), the lower
limit of plant-available soil water (LL), saturated hydraulic conductivity (Ksat) and root growth factor
(RF) for each soil layer. The volumetric water content for each soil layer in the model is between a lower
limit (LL) to which plants can absorb soil moisture and a saturated upper limit (SAT) as described by
Singh et al. [37]. For model calibration, water and nitrogen balance simulation controls were switched
off, to ensure that no stress for water or nitrogen were simulated since near-optimal conditions were
assumed for water and nitrogen in the calibration experiments.

2.6. CSM-CERES-Maize Model Evaluation

Model evaluation was done to test the parameters already optimized in the calibration exercise
using independent experimental data. Data used in model evaluation include final grain yield and
shoot dry matter ha−1. Root mean square error (RMSE) and model forecasting efficiency (EF) were
used to evaluate the mode performance.

RMSE =

√∑n
i=1(mi − si )

n
(4)

EF =

∑n
i=1 (m1 −m)2

−
∑n

i=1(si −mi)
2∑n

i=1 (mi −m)2 (5)

where n is the number of measured datasets, Si. is the simulated data, mi. is the measured data, and m.
is the mean of the measured data. In addition, an index of agreement (d) statistic [38] was employed in
this study.

d = 1−

∑n
i=1 (mi − Si)

2∑n
i=1

∣∣∣Si
∣∣∣+∣∣∣mi

∣∣∣)2
(6)

where: Si = Si −m and mi = mi −m.
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Table 1. Soil properties used for calibration experiments at BUK, Dambatta, and Zaria.

Location
Soil Layer

Depth
(cm)

Silt
(g kg−1) Clay (g kg−1)

Lower Limit
(cm3/cm3)

Drained
Upper Limit

(cm3/cm3)

Saturated
Water Content

(cm3/cm3)

Bulk Density
(g cm−3)

pH in H2O
(1:2.5)

Organic
Carbon (g

kg−1)

Total N (g
kg−1)

Available P
(mg kg−1)

BUK 28 120 200 0.100 0.201 0.401 1.56 6.6 4.4 0.04 2.0
58 160 190 0.127 0.207 0.382 1.58 6.7 0.02 1.7
120 180 160 0.112 0.194 0.385 1.57 5.9 2.1 0.02 2.8
156 180 170 0.112 0.191 0.376 1.60 7.0 0.4 0.01 1.3
210 180 150 0.102 0.180 0.376 1.60 6.1 0.4 0.01 2.4

Dambatta 14 160 60 0.059 0.129 0.401 1.53 6.1 1.1 0.21 1.2
23 140 80 0.068 0.135 0.386 1.57 6.1 0.8 0.18 1.1
26 110 90 0.078 0.143 0.385 1.57 6.1 2.5 0.15 0.3
63 130 120 0.092 0.162 0.382 1.58 5.9 2.1 0.18 0.2

Zaria 20 420 200 0.139 0.277 0.452 1.38 4.7 4.6 0.8 2.5
45 300 490 0.281 0.410 0.467 1.34 5.6 4.1 0.7 1.7
84 240 500 0.281 0.394 0.450 1.39 5.7 1.7 0.2 0.1
120 260 460 0.260 0.375 0.443 1.41 5.2 3.2 0.2 0.2
190 240 480 0.267 0.377 0.441 1.42 5.0 2.7 0.1 0.4
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The d-index statistics is recommended for making cross-comparisons where the d value is both
relative and has bounded measures. The d-statistics and EF are range of values between 0 and 1,
the closer the index value is to 1, the better the model agreement and efficiency between the two
variables that are being compared. The Microsoft excel software 2016 was used to graph and compare
simulated model outputs with observed data. The graph builder in DSSAT v4.7 was used to calculate
model performance statistics [39].

2.7. Model Application

After model calibration and evaluation, seasonal analysis tool of DSSAT was applied to test
the effect of varying sowing windows on grain yield of the intermediate-maturing maize in three
agro-ecologies mentioned in 2.1. Nine sowing windows (early June, mid-June, late June, early July,
mid-July, late July, early August, mid-August and late August) were simulated with a view to
identifying the optimal planting window. In each year of simulation, sowing was done according
to treatment with conditions set to only sow when a total rainfall exceeding 10 mm occurred within
the previous three days before the sowing window. Generally, sowing was done at soil depth of
5 cm, with a sowing density of 5.3 plants m−2. The model was set to harvest when the crop reached
harvest maturity. The mean, minimum and maximum yields with their standard deviations for 30
years planting date for each variety and location were calculated. Cumulative frequency plots were
used to present the results of simulated yields over 30-year period.

3. Results

3.1. Soil and Weather Condition

Table 1 shows the result of soil parameters used for model calibration. The LL water content
of the soils ranged between 0.1 to 0.13 in BUK; 0.06 to 0.09 in Dambatta, and 0.14 to 0.29 in Zaria.
The maximum drain upper limit was 0.21 in BUK, 0.16 in Dambatta and 0.41 in Zaria. The pH values
of the subsurface oilss were neutral (6.6) in BUK, slightly acidic (6.1) in Dambatta and acidic (4.7) in
Zaria. The soil organic carbon contents were low in BUK and Zaria (4–10 g kg−1) while in Dambatta
the range was very low (<4.0 g kg−1). The values for subsurface total nitrogen at BUK and Dambatta
were in the very low range (<0.6 g kg−1) while Zaria had low total N (0.8 g kg−1) content. Available
soil phosphorus levels observed in the soils fell within the very low (<3 mg kg−1) category.

During model evaluation experiments, the total amount of rainfall was higher at Iburu in both
years. Total annual rainfalls at Iburu were 1286.9 in 2015 and 1173.3 mm in 2016. At Zaria however, total
rainfalls were 983.1 in 2015 and 863.3 in 2016, respectively (Figures 1 and 2). In both years and locations,
rains were less at the beginning and at the end of the growing season with generally even distribution
during mid-season (July/August). At Iburu, the mean minimum and maximum air temperatures
during the experimental periods were 20.3 and 33.2 ◦C in 2015 and 20.1 and 33.0 ◦C in 2016. In Zaria,
the mean minimum and maximum air temperatures were 19.0 and 32.3 ◦C in 2015 and 18.3 and 31.9 ◦C
in 2016. The average solar radiation was 20 and 21 MJ m−2 day−1 at Iburu and Zaria, respectively.
Results from long-term historical weather data on rainfall over a 30-year period from 1985 to 2014 in
the model application sites are presented in Figure 3. The result shows that there was higher rainfall
and with better distribution in the SGS and NGS compared to Sudan savanna (SS). Average rainfall
obtained for the 30-year period is 795, 1042, and 1611 mm for SS, NGS, and SGS, respectively.
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3.2. CSM CERES-Maize Model Calibration

GSPs generated from the model calibration experiments for SAMMAZ-15 and SAMMAZ-16 maize
varieties are presented in Table 2. The estimated values for thermal time from seedling emergence
to the end of juvenile phase (P1) for SAMMAZ-15 was 274.3 while that of SAMMAZ-16 was 253.3.
Generated value for P2 (Delay in development for each hour that day-length is above 12.5 h) was 0.489
for SAMMAZ-15 and 0.424 for SAMMAZ-16. The thermal time from silking to time of physiological
maturity (P5) value was slightly higher for SAMMAZ-15. The values of the yield-determining
parameters (maximum kernel number per plant (G2)) and kernel growth rate during linear grain-filling
stage under optimum conditions (G3) were found to be higher for SAMMAZ-15.
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Table 2. Genetic coefficients of maize varieties used in the study.

Coefficient Description Unit SAMMAZ-15 SAMMAZ-16

P1 Thermal time from seedling emergence to the
end of juvenile phase

◦C day−1 274.3 253.3

P2 Delay in development for each hour that
day-length is above 12.5 h day 0.489 0.424

P5 Thermal time from silking to time of
physiological maturity

◦C day−1 840.5 794.9

G2 Maximum kernel number per plant grains ear−1 816.3 743.3

G3 Kernel growth rate during linear grain-filling
stage under optimum conditions mg day−1 6.30 6.25

PHINT Thermal time between successive leaf tip
appearances

◦C day−1 40.00 38.90

To assess the accuracy of the cultivar coefficients derived from model calibration, simulated values
for days to anthesis, days to physiological maturity, grain yield, and shoot dry matter at harvest for
SAMMAZ-15 and SAMMAZ-16 varieties were compared with the corresponding observed values
(Table 3). A close agreement was found between simulated and observed values for all four measured
parameters. The model slightly under estimated all the parameters for both varieties except grain
yield for SAMMAZ-15 and shoot dry matter for both varieties, although they are within acceptable
range according to the evaluation statistics (Table 4). The statistical values of simulated and measured
days to anthesis and physiological maturity ranged from −0.002 to −0.02 days for mean error, 1.9 to 2.3
days for RMSE and 0.93 to 0.97 for d-index for both varieties. The comparison between simulated and
observed grain yields were also quite good for both maize varieties. The RMSE values for grain yield
was 470 kg ha−1 for SAMMAZ-15 and 245 kg ha−1 for SAMMAZ-16 while d-index values were above
0.90 for both varieties. The predictions for shoot dry matter were also good for both varieties; the RMSE
values for shoot dry matter was 1728 kg ha−1 for SAMMAZ-15 and 1152 kg ha−1 for SAMMAZ-16
while d-index value was 0.75 and 0.80 for SAMMAZ-15 and SAMMAZ-16, respectively.

Table 3. Simulated and observed mean values for anthesis, physiological maturity, grain yield, and shoot
dry matter at maturity with their respective statistical indices for the calibrated maize varieties.

Parameter NE
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Table 4. Grain yield (kg ha−1) of 30-year (1985–2014) seasonal analysis (model application) for
SAMMAZ-15 and SAMMAZ-16 using different sowing windows at SS, SGS, and SGS in Nigeria.

SAMMAZ-15 SAMMAZ-16

Sowing Window Mean St. Dev. Max. Min. Mean St.
Dev. Max. Min.

SS

Early June 5601 711 7117 4652 5002 587 6057 3934
Mid-June 5591 478 6352 4768 4913 561 5954 3947
Late June 5228 677 6044 2875 4598 502 5426 3048
Early July 4673 775 5947 2547 4344 651 5241 2453
Mid-July 4001 859 5518 2150 3654 722 5164 2176
Late July 3024 1010 5098 548 2800 901 4567 772

Early August 1952 1007 4281 592 1862 957 4182 617
Mid-August 1256 590 2960 411 1217 625 2931 383
Late August 1102 293 1707 457 982 241 1536 442

NGS

Early June 5711 536 6793 4492 4977 406 6102 4188
Mid-June 5678 635 6957 3896 4864 661 6289 3372
Late June 5835 683 6924 4453 5000 573 5816 3708
Early July 5874 719 7686 4600 5008 591 6110 3904
Mid-July 5983 633 7343 4867 5160 565 6602 4218
Late July 5765 710 7036 4151 5138 603 6372 3818

Early August 5303 976 6777 2197 4810 768 5756 1877
Mid-August 4543 1314 6821 1266 4172 1106 5694 1161
Late August 3123 1314 6060 1163 3031 1144 5532 1270

SGS

Early June 4672 478 5814 3783 3882 404 4610 3120
Mid-June 4822 533 5924 3866 4060 382 5009 3323
Late June 5048 597 6338 4145 4245 462 5025 3415
Early July 5059 531 6139 4139 4314 537 5389 3340
Mid-July 4882 511 5865 3877 4255 425 4964 3361
Late July 4650 581 5561 3511 4056 481 5074 3105

Early August 4434 843 5747 2428 3973 627 4905 2434
Mid-August 3820 1109 5883 926 3545 906 5115 1052
Late August 2964 1313 5242 543 2826 1127 4822 546

Min. = Minimum, Max. = Maximum, St. Dev. = Standard Deviation.

3.3. CSM CERES-Maize Model Evaluation

The accuracy of the CERES-Maize model simulations and performance of genetic coefficients were
assessed by running the model with independent data sets collected during 2015 and 2016 growing
seasons under four levels of nitrogen (0, 60, 120 and 180 kg N ha−1) application in two locations (Iburu
and Zaria). Days to anthesis, days to physiological maturity, grain yield at maturity and shoot dry
matter at maturity were used for model evaluation (Figures 4 and 5).
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Figure 4. Comparison of simulated and measured anthesis (a), physiological maturity (b), grain yield at
maturity (c) and shoot dry matter at maturity (d) for SAMMAZ-15 using Iburu and Zaria experimental
data sets. (Iburu = N2015, #2016 and Zaria = • 2015, ∆ 2016, the plants were grown under four N
treatments within each location and date).
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Figure 5. Comparison of simulated and measured anthesis (a), physiological maturity (b), grain yield at
maturity (c) and shoot dry matter at maturity (d) for SAMMAZ-16 using Iburu and Zaria experimental
data sets. (Iburu = N2015, #2016 and Zaria = • 2015, ∆ 2016, the plants were grown under four N
treatments within each location and date).

The results show high accuracy with RMSE values of <1.5 days for number of days to 50% anthesis
and <3 days for several days to physiological maturity with high d-index (above 0.80) values for both
varieties (Figures 4 and 5). There was a good fit in the model prediction of grain yield with low RMSE
of 709 kg ha−1 for SAMMAZ-15 and 730 kg ha−1 for SAMMAZ-16. The shoot dry matter value of
RMSE was 2339 for SAMMAZ-15 and 2510 kg ha−1 for SAMMAZ-16. There were also high d-index
values (above 0.90) for both grain and shoot dry matter for the two varieties. Estimation efficiency
(EF) values between 0.5 to 0.9 were observed for grain yield and shoot dry matter for both varieties.
Generally, grain yield and shoot dry matter increased with increase in nitrogen; however, the model
slightly underestimated grain yield and shoot dry matter at 0 N. However, with application of N the
parameters were mostly and slightly overestimated.

3.4. Model Application

Results of seasonal analysis for the two varieties conducted at the three locations over a 30-year
period for the different sowing windows are shown in Table 4. The results indicate minimum and
maximum yield within the 30-year period of simulation with their mean and standard deviations. In
SS, sowing between early to mid-June recorded the highest grain yield for the two varieties. In this
location, delay in sowing beyond mid-June consistently reduced grain yields. Delaying sowing of
SAMMAZ-15 from mid-June to mid-July reduced grain yield by 25% and further delay to mid-August,
reduced grain yields by 78%, Delaying sowing of SAMMAZ-16 to mid-July and mid-August reduced
grain yield by 26% and 75%, respectively. The lowest mean grain yields (<1500 kg ha−1) were recorded
from mid to late August sowing windows for both varieties.

Results showed that sowing SAMMAZ-15 in NGS from early June to late July produced mean
grain yields (above 5.7 t ha−1) that were higher than those of the other sowing windows (Table 4).
Delaying the sowing of this variety beyond late July reduced grain yields by 8 to 46%. Sowing
SAMMAZ-16 between late June and late July gave mean grain yields (5.0 t ha−1) that was higher than
those of the other sowing windows. When sowing was delayed beyond late July grain yields reduced
by 6–41%. The model simulated consistently minimum grain yields with higher standard deviations
when sowing was delayed to August.

In SGS, higher mean (<5 t ha−1), maximum (<6 t ha−1) and minimum (<4 t ha−1) grain yields
with low standard deviations were obtained when sowing was done from late June to early July for
SAMMAZ-15. However, for SAMMAZ-16 highest mean (4314 kg ha−1) and maximum (5389 kg ha−1)
grain yields were produced when planting was done in early July. Mean grain yields above 4.5 tons
ha−1 were observed for all sowing dates from early June to late July for SAMMAZ-15, while yields
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above 4 tons ha−1 were obtained between mid-June to late July for SAMMAZ-16 (Table 4). In this
location, delayed sowing from late July to late August led to a reduction in mean grain yields by 36%
for SAMMAZ-15 and 30% for SAMMAZ-16. The minimum grain yields (<1.1 tons ha−1) were recorded
with sowing window from mid to late August for both varieties.

Figure 6 show cumulative distribution functions (CDF) plots for simulated grain yields of
SAMMAZ-15 and SAMMAZ-16 in SS, NGS, and SGS. For SAMMAZ-15 in SS, early sowing (early to
late June) resulted in grain yields above 4 tons ha−1 in all years of simulations, except for sowing in late
June where 28 out of 30 years recorded yields above 4 tons ha−1. For the early sowings, yields above 6
tons ha−1 were simulated in 6 out of the 30 years of simulation for sowing in both early and mid-June.
Delaying sowing to early, mid, and late July, progressively decreases yield of SAMMAZ 15 in SS with
the lowest yields simulated for late July where yields below 4 tons are only guaranteed 50% of the time.
The simulations show that sowing SAMMAZ 15 in mid and late August resulted in yields below 2
tons in 28 out of the 30 years of simulations, while sowing in early August could only produce yields
above 2 tons with a 55% probability. Similar trends were observed for SAMMAZ-16 in SS, with the
highest yields simulated when sowing was done early, and lowest yields simulated when sowing
was delayed to August. The only difference is that the yield of SAMMAZ 15 was consistently higher
than that of SAMMAZ 16 in all sowing windows (Figure 6A,B). The CDF plot in NGS showed that
sowing SAMMAZ-15 from early June to mid-July gave a grain yield of at least 4 tons ha−1 at the lowest
probability, delaying sowing from late July to early, mid and late August reduced guaranteed grain
yield by 47, 70 and 72%, respectively (Figure 6C). At 50% probability, sowing SAMMAZ-15 from early
June to late July produced a grain yield above 5500 kg ha−1. For SAMMAZ-16, the CDF plot shows that
sowing from early June to late July gave grain yield of at least between 3.4 to 4.2 tons while sowing in
August gave grain yields between 1.3 to 1.9 tons (Figure 6D). At 50% probability, sowing SAMMAZ-16
from early June to late July produced a grain yield above 5000 kg ha−1. In SGS, the CDF plot shows that
at lowest probability sowing SAMMAZ-15 from late June to early July recorded grain yield of at least
4 tons ha−1. Delaying sowing to August gave a minimum obtainable grain yields ranging between
0.5 and 2.4 tons (Figure 6E). Yields above 5 tons were observed when sowing was done between late
June and mid-July with probability of 50%. For SAMMAZ-16, the CF plot shows that sowing from late
June to mid-July gave a guaranteed grain yields of at least 3.3 tons ha−1 while sowing in mid and late
August windows gave lowest obtainable grain yields of ≤1000 kg ha−1 (Figure 6F). Yields above 4 tons
were observed when sowing was done between late June and mid-July with probability of 50%.



Agronomy 2020, 10, 871 15 of 20

Agronomy 2020, 10, x FOR PEER REVIEW 14 of 19 

 

   

   
Figure 6. Cumulative function plots for simulated grain yields of SAMMAZ-15 (A) and SAMMAZ-16 (B) in SS; SAMMAZ 15 (C) and SAMMAZ-16 (D) in NGS; 
SAMMAZ-15 (E) and SAMMAZ-16 (F) in SGS over a 30-year (1985–2014) period.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June
Mid-June
Late-June
Early-July
Mid-July
Late-July
Early-August
Mid-August
Late-August

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June
Mid-June
Late-June
Early-July
Mid-July
Late-July
Early-August
Mid-August

NGS

(C)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June
Mid-June
Late-June
Early-July
Mid-July
Late-July
Early-August
Mid-August

(E)

SGS

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June

Mid-June

Late-June

Early-July

SS

(B)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June
Mid-June
Late-June
Early-July
Mid-July
Late-July
Early-August
Mid-August
Late-August

NGS

(D)

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000 6000 7000 8000

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

Grain yield at maturity (kg ha-1)

Early-June
Mid-June
Late-June
Early-July
Mid-July
Late-July
Early-August
Mid-August
Late-August

(F)

SGS

Figure 6. Cumulative function plots for simulated grain yields of SAMMAZ-15 (A) and SAMMAZ-16 (B) in SS; SAMMAZ 15 (C) and SAMMAZ-16 (D) in NGS;
SAMMAZ-15 (E) and SAMMAZ-16 (F) in SGS over a 30-year (1985–2014) period.



Agronomy 2020, 10, 871 16 of 20

4. Discussion

The model statistics for calibration and evaluation as indicated by high d-index and low RMSE
values indicated good agreements between observed and model predicted values. This shows that
the CERES-Maize model can be used as a suitable tool for decision making in crop production in
the Nigeria savannas. The accuracy of model calibration and evaluation in the current study agrees
with previous research conducted using CERES-Maize in Nigeria [3,20,24]; Ghana [25]; and in the
Sub-humid Region of Benin [40].

The model performed well in predicting phenological parameters (anthesis and physiological
maturity), grain yield, and shoot dry matter of both varieties in the savannas of Nigeria. The average
d-index values for measured parameters were above 0.90 for each variety at both locations.
Adnan et al. [41] evaluated CERES-Maize model with many varieties and different maturity groups
in northern Nigeria and reported average d-index value for grain yield as 0.99 from experimental
data and 0.96 from breeder data. Adnan et al. [3] also reported a d-index of 0.82 for shoot dry matter
in northern Nigeria. The overall accuracy of the model evaluation might be as a result of close
agreements between simulated and measured phenological parameters of the calibration experiments.
Better prediction of maize phenological parameters is among the important stages for model calibration.
Robertson et al. [42] stated that when phenology is accurately calibrated, it is expected that models
will be able to capture all genotypic variations that affect the leaf area development, total dry matter,
and grain yield. The closeness of simulated and measured grain yields in both calibration and
evaluation experiments can be as a result of accurate estimation of maximum grains number per plant
and kernel growth rate under optimum conditions as suggested by Adnan et al. [3].

Selecting the appropriate sowing window is among the crop management strategies that is costless
to the farmer [22]. To date, the major challenge among maize growers in the savanna regions is finding
the appropriate window between sowing too early and sowing too late that gives an optimum yield [43].
Early sowing at the onset of rainy season is quite risky as the crop might mature in humid and cloudy
weather that favors cob/grain rot due to high moisture content at the time of harvesting. While late
sowing also leads to a higher yield reduction and has the potential of resulting in total crop failure due
to shorter period for exposure to moisture, sunlight as well as less nutrient uptake [3]. Irrespective of
maize varietal differences, the recommended sowing date for maize in Nigeria is early to mid-June in
the major three (SS, NGS, and SGS) agro-ecologies of northern Nigeria [44]. These recommendations
are made from cropping experiments conducted in a few sites across the maize zones in Nigeria.
Sowing date is usually recommended for multiple years and multiple locations irrespective of seasonal
and spatial variations as well as varietal differences [3]. However, our findings with the simulation
model are contrary to the recommendations.

The model application results show that the highest average yield for the 30 years in Sudan
savanna was simulated when sowing was done in mid-June. However, when sowing was delayed to
mid-July, a reasonable minimum grain yield of 2 tons for both varieties were obtained. Rainfall in this
agro-ecological zone usually ends in September, meaning that intermediate-maturing maize should
be sown in the Sudan savanna as soon as the rain establishes in the second or third week of June to
avoid yield reduction due to insufficient moisture and dry spell in September which coincides with
grain-filling stage of the crop. Kamara et al. [6] and simulation results from Jibrin et al. [24], reported
late June and early July as the optimum sowing dates in Sudan savanna of northern Nigeria for early
and intermediate/late varieties from short-duration experiments.

The model simulated the optimum sowing window from late June to late July for both varieties in
the NGS. Higher mean grain yields were observed when sowing was slightly delayed in this window.
However, higher guaranteed grain yields were obtained when both varieties were sown in mid-July. In
this location, however, sowing window can be as wide as from early June to late July as evident by the
potential yield of >5.6 tons ha−1 for SAMMAZ-15 and >4.9 tons for SAMMAZ-16. This suggests that
farmers in this zone can delay planting both varieties to late July which reduces the risk of replanting
and labor demand constraints at the peak periods of the growing season. The present results are
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contrary to the recommendation by NAERLS [44] which suggested that the best planting date under
NGS climatic conditions is between early to mid-June a period where farmers bear a risk of poor crop
establishment because of unstable rainfall. In the SGS, the sowing window is as wide as that of NGS
agro-ecology. However, for minimum obtainable yields, the model predictions show that sowing
should not be delayed beyond late July for both varieties. However, evidence from the average grain
yields, farmers in this zone can start planting intermediate-maturing maize varieties from mid-June
since rainy season usually established in June in this savanna agro-ecology.

Despite the high amount of rainfall observed in the Northern and Southern Guinea Savannas,
late sowing in August is not advisable according to the simulation results. This is demonstrated by low
minimum obtainable yields in majority of years when planting was delayed in both agro-ecologies.
The reduction in yields when intermediate/late maturing maize was sown in August may be due to
water logging which may reduce soil temperature and high cloud cover that negatively affects yield of
C4 plants such as maize if planted in August when rainfall is highest and solar radiation is lowest.
Alberta [45] reported that when moisture content is maintained, every decrease in soil temperature
resulted in a decrease in water and nutrient uptakes. At low temperature, transportation from the
root to the shoot and vice versa will also reduce. Also, according to [46] very high or very low relative
humidity is not conducive for high grain yield of maize. High humidity negatively correlates with grain
yield of maize. The yield reduction was 144 kg ha−1 with an increase in one per cent of mean monthly
relative humidity. Carter et al. [47], reported that solar radiation was the primary yield limiting climate
variable and Oke [48] indicated that increase in mean relative humidity resulted in decline in grain
yield. Likewise, the reduction in crop growth cycle when planted in August particularly from sowing
to the grain-filling stage which is likely to extend to the end of October characterized by low rainfall and
insufficient moisture might reduce the grain yield significantly. Additionally, late sowing could result
in silking and grain-filling periods coinciding with periods of cessation of rainfall, thereby leading to
flower abortions, low grain-filling rates, and reduction in grain-filling durations.

Maize performance varied among the tested agro-ecologies in this study. This could be as a
result of high variability in the soil conditions and weather elements (rainfall, solar radiation and
temperature) in the three agro-ecologies. Lin et al. [49] stated that climate, soil condition, and crop
variety are the most important factors that influence crop production. Averaged mean grain yield
across planting windows for both varieties were generally higher in the NGS followed by the SGS.
The lowest yields were recorded in the SS. The higher grain yield obtained in the NGS and SGS could be
attributed to the sufficient moisture and longer growing periods that increases dry matter accumulation
and extend grain-filling duration of the crop. The SS has a shorter growing season, low rainfall and
poor soil fertility that reduces the availability of water and dry matter accumulation leading to low
yields. This makes the zone to be the least conducive for production of medium and late maturing
maize varieties when compared with NGS and SGS agro-ecological zones.

5. Conclusions

Results from this study show that the CERES-Maize model when well calibrated and evaluated
can be used to simulate the response of intermediate and late maturing maize varieties to varying
sowing dates in the Nigerian savannas. Long-term simulations using 30-years weather data showed
that the best planting window for both varieties was between early to mid-June in the SS and late
June to late July in the NGS. However, in the SGS farmers can start planting SAMMAZ-15 from early
June to late July and SAMMAZ-16 from mid-June to late July. For SAMMAZ-15, the drought-tolerant
variety is recommended to farmers as an adaptation strategy to mitigate the impact of the current
climate change especially in areas prone to intermittent droughts because it gives the highest grain
yield under the three ecological conditions. Findings from this study have also shown that yield
potential of intermediate maize varieties was highest in the NGS region. Results also show planting of
intermediate-maturing maize can be delayed to late July in the NGS and the SGS if the onset of rainfall
is delayed or the labor demand is high at the peak period of the season.
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