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Abstract: There is little information on the fatty acid dynamics of forages under grazing. The objectives
of this study were to determine the fatty acid compositions of fall-planted rye (Secale cereale L.) and
wheat (Triticum aestivum L.) forages while rotationally grazed by steers (Bos Taurus L.) for seven weeks
in the spring and summer in Minnesota, USA. With respect to the total fatty acids in forages, the
concentration of α-linolenic acid (C18:3n-3) decreased linearly while the concentration of linoleic
acid (C18:2n-6) increased quadratically over the grazing interval. Simultaneously, the omega-6 to
omega-3 fatty acid ratio increased quadratically in forages. The fatty acid composition had a greater
magnitude of variation in wheat compared to rye over the course of the grazing interval. The omega-6
to omega-3 fatty acid ratio was lower in wheat compared to rye for at least the first five weeks, but
was ≤ 0.21 for both forages during the entire grazing interval. Results from this study indicated that
forage fatty acid compositions varied based on number of days of the grazing interval and forage
species, informing producers of potential grazing schedule adjustments to manage the dietary fatty
acid intake of grazing cattle.
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1. Introduction

The demand for organic animal products is increasing [1,2], which is partially driven by consumer
interest in the health benefits of meat and milk from animals that consumed primarily forages [3].
Saturated fatty acids dominate the fatty acid compositions of beef and milk. Yet, beef and milk have
the potential to be sources of unsaturated fatty acids that are important for human health, such as
omega-3 (n-3) fatty acids and conjugated linoleic acid (CLA) [4–7]. Previous research established that
these particular fatty acids (i.e., n-3 and CLA) found in beef and milk have a positive relationship with
the proportion of fresh forages in cattle diets, which also improves (i.e., lowers) the omega-6:omega-3
(n-6:n-3) fatty acid ratio in animal products [8–10]. In the United States of America (USA), certified
organic cattle must consume ≥ 30% of their dietary intake from forages by grazing during the grazing
season, in order to fulfill the grazing regulations set forth by the United States Department of Agriculture
National Organic Program (§205.237) [11]. Thus, fresh forages are innately a major part of organic cattle
diets, which can lead to improved fatty acid profiles in the resultant beef and milk products [12,13].
Omega-3 fatty acids found in beef and milk include α-linolenic acid (C18:3n-3), eicosapentaenoic acid
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(EPA; C20:5n-3), docosapentaenoic acid (DPA; C22:5n-3) and docosahexaenoic acid (DHA; C22:6n-3).
Alpha-linolenic acid, the predominant fatty acid in forage, is a precursor to the longer chain n-3 fatty
acids found in beef and milk [14,15]. Alternatively, the CLA in beef and milk is attained by incomplete
ruminal biohydrogenation of linoleic acid (C18:2n-6), an n-6 fatty acid [16]. However, high levels of
dietary α-linolenic acid may also play a role in facilitating a population of microflora that increases the
accumulation of CLA in tissues [17]. The desirable fatty acids in beef and dairy products from grazing
cattle, and the resulting potential benefits to human health, have prompted a particular research
interest in the fatty acid composition of forages [12,18,19].

A recent review by Glasser et al. [20] reported considerable fatty acid variations between an
array of forage species, including forbs, grasses and legumes. Other studies reported changes in
fatty acids over several cutting dates in forages [21–23]. These previous studies indicate that the fatty
acid composition of forages depends on plant species and maturity. Yet, limited research exists on
the fatty acid composition of forages under realistic, large-scale grazing conditions. In one study,
Mel’uchová et al. [24] investigated the fatty acid composition of perennial forb, grass and legume
forages from a pasture that was rotationally grazed by ewes (Ovis aries L.). This study reported
variations in the concentrations of α-linolenic, palmitic (C16:0) and linoleic acids in the total fatty acid
content of forages over the course of the grazing season. Likewise, authors also reported seasonal
variations in the n-6:n-3 fatty acid ratio of the forages (ibid).

Alternative cool-season annual forages may be used to extend the grazing season into the early
spring in cooler climates. Crop–livestock integration (i.e., mixing crop and livestock production) is a
dynamic diversification strategy, that can improve environmental resilience and has been suggested
as a promising antidote for the negative effects of farming intensification and specialization [25].
Although farmers may ideally favor crop–livestock methods, perceived social obstacles limit the
adoption of these practices [26]. In a review of crop–livestock integration, Lemaire et al. [27] suggested
that the development of crop–livestock methods must account for different agro-ecological zones. In the
upper Midwest region of the USA, integrating a cool-season annual ley—a temporary pastureland that
is integrated into a crop rotation [28]—for spring grazing represents a feasible method for achieving
crop–livestock integration. Considering the strong consumer interest in the beneficial fatty acids of
beef and milk from grazed cattle, research into fatty acids in forages may be helpful in managing the
resulting fatty acids in these products. Therefore, the current study contributes to filling acknowledged
research gaps regarding crop–livestock integration methods and fatty acid compositions of alternative
cool-season annual forages for cattle grazing.

For this study, fall-planted rye (Secale cereale L.) and wheat (Triticum aestivum L.) forages were
selected based on their established popularity as winter cover crops in the upper Midwest of the
USA, due to their demonstrated adaptation to low temperatures and their potential as forages for leys.
We hypothesized that the fatty acid compositions of spring-grazed forages would depend on species
and number of days of the grazing interval. The objectives of this study were to determine and predict
the fatty acid compositions of rye and wheat forages under cattle grazing conditions during the entire
grazing interval. The grazing land and grazing animal terminology used in this article (e.g., “grazing
interval”, “grazing season”, etc.) is in accordance with terminology defined by Allen et al. [28] on
behalf of the International Forage and Grazing Lands Terminology Committee.

2. Materials and Methods

2.1. Experimental Design

Research was conducted at the University of Minnesota West Central Research and Outreach
Center in Morris, MN, USA in 2016. The organic dairy herd and pastureland had been certified
since June 2010 by the Midwest Organic Services Association—a certification agency accredited by
the United States Department of Agriculture National Organic Program. For ≥ 20 years prior to
the study, the specific location used for the experiment was managed as permanent pastureland
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for dairy cattle grazing during the grazing season months of approximately May through October.
The pastureland included perennial forbs, grasses and legumes, such as alfalfa (Medicago sativa L.),
chicory (Cichorium intybus L.), meadow brome grass (Bromus biebersteinii L.), meadow fescue (Festuca
pratensis L.), orchard grass (Dactylis glomerate L.), perennial ryegrass (Lolium perenne L.), red clover
(Trifolium pretense L.) and white clover (Trifolium repens L.). Soil cores taken at a depth of 0 to 15 cm
prior to the current study had the following characteristics: 7.1 pH (methods described by Watson and
Brown [29]); 8.4 g 100 g−1 organic matter (methods described by Combs and Nathan [30]); 24 cmolc kg−1

cation exchange capacity (methods described by Warncke and Brown [31]); 4.8 g 100 g−1 total carbon,
0.44 g 100 g−1 total nitrogen, and 0.07 g 100 g−1 total sulfur as determined by combustion (Vario MAX
Cube instrument in CNS mode; Elementar, Ronkonkoma, NY, USA); 3540 mg kg−1 plant-available
calcium, 591 mg kg−1 plant-available magnesium, and 340 mg kg−1 plant-available potassium as
determined using Mehlich-3 extractants [31]; 19 mg kg−1 plant-available phosphorus as determined
using Bray-1 extractants [32]; 3.9 mg kg−1 ammonium (methods described by Nelson [33]), and
1.7 mg kg−1 plant-available nitrate (methods described by Gelderman and Beegle [34]), when averaged
across pastures. Prior to and during the study, the pastureland was not irrigated or fertilized.

This field-scale study was part of an integrated crop–livestock system experiment, described
by Phillips et al. [35] and Nazareth et al. [36], where pastures were rotated to cereal grain crops in
subsequent years. For the current study, the treatments of rye (S. cereale) and wheat (T. aestivum)
were randomly assigned to two adjacent 4-hectare (ha) pastures (45◦34’52.8” N, 95◦53’44.7” W) that
were seeded in monoculture in September 2015. To reduce pre-study variability, the specific location
was chosen to minimize variability between pastures (as described by Murison and Scott [37]), such
that the slope, soil characteristics and pre-study management of the land were similar. Each pasture
was divided into seven 0.57-ha paddocks in order to implement rotational stocking methods. Then,
each paddock was divided into three 0.19-ha pens using temporary electric fencing in order to house
separate groups of steers. In total, 6 groups of 4 or 5 steers (29 total steers) were randomly allocated
to either treatment, which were balanced for animal age and breed composition (Holstein and two
crossbreeds), for a total of 3 steer groups assigned to each of the treatments. One steer died prior
to the study grazing interval, so one pen had 4 steers—which was randomly assigned to the wheat
pasture—while all the others had 5 steers over the course of the study.

As shown in Figure 1, the 607 × 66-m pastures were delineated into seven 87 × 66-m paddocks in
each of the rye and wheat pastures. Within each pasture, the experimental units of 3 steer-pens were
established and stocked with the assigned steer group. Over the course of the study, experimental
units were grazed using rotational stocking methods by utilizing recurring periods of grazing and rest
among the seven paddocks. This design followed procedures outlined by Fisher [38] for grazing trials,
which include animal groups on pasture units. The rotation cycles were the same for all steer-pens,
such that steers in rye and wheat pastures were always adjacent to each other. This method allowed
steers to maintain social proximity, to reduce animal stress and consequential disruption of grazing [39].
Only one paddock within each pasture was occupied at any given time and each of the pens in the
paddock housed only one steer group. The steer-pens remained in the same configuration in paddocks
for each grazing period.

For the duration of the grazing interval, cattle were supplemented with ad libitum organic-certified
minerals formulated for steers (Vita Plus®, Madison, WI, USA). Phillips et al. [35] reports the beef lipid
fatty acids of steers that were rotationally stocked on the pastures of the current study. The University
of Minnesota Institutional Animal Care and Use Committee approved all aspects of animal care
management specific to this study, including handling, housing and feeding practices (protocol
number: 1411-32060A).

Grazing of steers (arithmetic mean ± standard deviation [SD]; 369 ± 20 days [d] of age; 422 ± 44 kg
body weight) initiated when forages reached heights of 15 cm above the soil on April 25, 2016. At this
time, both forages were in the early stem elongation stage of growth. Rotational stocking was utilized
throughout the grazing interval, in which each recurring grazing period concluded after approximately
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50% of visual forage removal. Thus, the grazing period durations were variable (lasting either 3 or 4 d).
When each grazing period ended, steer groups rotated to a new paddock corresponding to their pen.
The grazing interval concluded after 47 d on June 10, 2016, when forages reached the flowering stage
of growth. At this time, the steers (arithmetic mean ± SD; 438 ± 44 kg body weight) were removed
from the pastures. There was a maximum of 3 grazing period cycles with an average rest period (± SD)
of 16 ± 6 d. The average stocking density (± SD) of pens was 25 ± 2 steers ha−1 at 10,700 ± 1350 kg
of body weight ha−1 for each grazing period. The average daily body weight gains (± SD) of steers
stocked on the rye pasture was 0.36 ± 0.32 kg d−1, and was 0.34 ± 0.31 kg d−1 for steers stocked on the
wheat pasture.Agronomy 2020, 10, x FOR PEER REVIEW 4 of 16 
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Figure 1. An illustration of the rotational grazing methods utilized during the grazing interval.
The arrows depict the movement of steer groups during each rotation to a new paddock.

Repeated measures were performed on every experimental unit, when pens were entered for
grazing, by hand-harvesting a random sample of live forage within a 0.23-m2 quadrat area to a height
of 5 cm above the soil [40]. This sample represented the forage available for cattle consumption.
Fresh samples were immediately oven dried for 48 h at 60 ◦C in a forced-air oven, then ground
through a 2-mm screen (Model 4, Wiley Mill®, Thomas Scientific, Minneapolis, MN, USA) and stored
at approximately 21 ◦C until forage analyses for fatty acid composition by a commercial laboratory
(Eurofins BioDiagnostics, River Falls, WI, USA). A total of 96 samples were collected and analyzed
(48 per forage species). Fatty acids were extracted from forage samples and methylated. Sunflower oil
and sunflower seed internal control samples were used to validate the consistency in variation resulting
from the extraction and methylation procedures. Separation of fatty acid methyl esters was achieved
with a Hewlett-Packard (Wilmington, DE, USA) Agilent model 6890 gas chromatograph instrument
with electronic pneumatics control and a flame ionization detector. Samples were presented onto a
fused silica chemically bonded capillary column that was 100 m long, 0.25 mm for inner diameter
and 0.25 µm for film thickness (J&W DB-23, Agilent, Santa Clara, CA, USA). Individual fatty acids
were identified according to their retention times using reference standards (GLC-21A and GLC-17A,
Nu-Chek Prep, Elysian, MN, USA). Results for individual fatty acids are reported as g 100 g−1 of total
fatty acids in the forage sample.
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2.2. Statistical Analysis

The lmer function in the lme4 package [41] of RStudio® software [42] (version 3.6.3) was used to
determine restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects
models. Fixed factors were forage species (2 levels), the continuous variable of day (range: 0–46), and
the interaction term of forage species and day. Random factors were the experimental unit of steer-pen
(6 levels), paddock (7 levels), the paddock and forage species interaction (14 levels), and pen within
the paddock and forage species interaction (42 levels). The quadratic term of day and the interaction
with forage species was considered for each model. Cubic models were not considered for this study.
Using the maximum likelihood (ML) estimates, the hierarchical models were compared for fit; the
quadratic model was accepted when the computed p-value of the X2 test statistic for the likelihood
ratio test was < 0.05. Diagnostics plots of residuals were assessed for normality and constant variance.
No transformations of variables were applied. The presence of spatial autocorrelation was assessed for
each outcome by using tools in the DHARMa package [43]. Simulated residuals were aggregated for
each of the 42 pens grazed throughout the study, and the Moran’s I test [44] was performed using x, y
coordinates that were assigned to each of the 42 pen locations based on their central point. For all tests,
the test statistics had p > 0.05, indicating no apparent spatial autocorrelation. The lowest-concentration
fatty acids [eicosenoic (C20:1) and erucic (C22:1) acids] were summed and the arithmetic mean was
calculated and reported. The Kenward–Roger procedure was used to estimate the denominator degrees
of freedom, and statistical significance of fixed effects was declared when p < 0.05. Predicted outcomes
for rye and wheat forages for each day of the grazing interval (e.g., days 0, 1, 2, . . . , 46) were calculated
using model estimates excluding the effects of random variables. Then, the bootMer function of the
lme4 package was used to perform 1000 model-based parametric bootstrap resamples and construct
95% confidence intervals (CIs) of the predicted fatty acid outcomes. The marginal R2 value (R2

(m))
for each model was calculated to indicate the variance explained by the fixed effects. The R2

(m) value
was calculated by using the r.squaredGLMM function of the MuMIn package [45] based on equations
described by Nakagawa and Schielzeth [46]. Results are reported as predicted means and regression
estimates (coefficients and R2

(m)). Data is available as a supplementary file (Data S1). Figures of
bootstrap estimates were created using graphic tools from the ggplot2 package [47].

3. Results

3.1. Weather

The University of Minnesota West Central Research and Outreach Center weather station recorded
daily weather. Table 1 reports monthly temperature means and precipitation (i.e., rainfall and snowfall)
summations for the 130-year, long-term mean ranging from 1886 to 2016, and for the duration of
the current study ranging from September 2015 to June 2016. Seeds were planted in the month of
September, grazing initiated in the month of April, and grazing terminated in the month of June.
The total mean monthly temperature for the current study (2 ◦C) was similar to the long-term mean
(3 ◦C). The mean temperature during the grazing interval—April to June—of the current study (10 ◦C)
was also similar to the long-term mean (13 ◦C). The total rainfall and snowfall sums for the current study
were approximately 114 and 343 mm less than the sum reported for the long-term mean, respectively.
The total rainfall and snowfall sums during the grazing interval of the study were approximately 90
and 51 mm less than the long-term mean. The difference in precipitation between the current study
and the long-term mean was especially apparent during the month of June, in which the precipitation
was approximately 53% less than reported for the long-term mean.
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Table 1. Monthly weather during the study duration compared to the long-term mean.

Time
Month

Total
Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Temperature, ◦C a

Mean
Study 14 6 0 −6 −11 −8 0 3 10 16 2

Long-term 15 8 −1 −9 −13 −10 −3 6 14 19 3
Rainfall, mm b

Sum
Study 34 40 47 27 7 17 16 47 51 48 333

Long-term 59 47 25 17 18 18 30 58 76 102 447
Snowfall, mm b

Sum
Study 0 0 5 287 112 155 36 36 0 0 630

Long-term 0 18 127 178 178 188 198 84 3 0 973

Weather data collected in Morris, MN, USA during the study duration from September 2015 to June 2016 and for the
long-term mean from 1886 to 2016. a Ambient temperature expressed as monthly arithmetic means. b Precipitation
expressed as monthly summations.

3.2. Fatty Acids

Bootstrap means and 95% CIs of fatty acid compositions for rye and wheat forages on the first
(day0) and last (day46) days of the grazing interval are presented in Table 2, and the regression
coefficients used to predict fatty acid compositions of forages based on day of the grazing interval
are presented in Table 3. The most abundant fatty acid in forages was α-linolenic acid (C18:3n-3),
with an average concentration of 64.8 g 100 g−1 of total fatty acids across the grazing interval and
forage species. Palmitic acid (C16:0) was the second most prominent fatty acid, which accounted for
an average of 17.8 g 100 g−1 of the total fatty acids in forages over the course of the grazing interval.
Linoleic acid (C18:2n-6) was the third most abundant fatty acid and had an average concentration
of 9.2 g 100 g−1 of total fatty acids in forages throughout the grazing interval. The remaining fatty
acids made up approximately 8.2 g 100 g−1 of the total fatty acid content in the forages throughout
the grazing interval, and are therefore not discussed in great detail in this article, yet these results are
available as supplementary files (Figures S1–S6). In general, myristic (C14:0), palmitic, oleic (C18:1),
linoleic and lignoceric (C24:0) acid concentrations increased, and α-linolenic and arachidic (C20:0) acid
concentrations decreased in the fatty acids of forages during the grazing interval. Day of the grazing
interval was not a major source of variation for analyses of stearic (C18:0) and behenic (C22:0) acid
concentrations of fatty acids in forages.

Table 2. Fixed effect bootstrap means and 95% confidence intervals (CIs; 1000 resamples) for fatty acid
compositions of rye (Secale cereale L.) and wheat (Triticum aestivum L.) forages during the spring cattle
grazing interval.

Fatty Acid
Rye Wheat

Day0 Day46 Day0 Day46

g 100 g−1 of total fatty acids
Myristic, C14:0 0.9 [0.6, 1.3] 2.5 [2.1, 2.8] 0.6 [0.3, 1.0] 1.4 [1.1, 1.8]
Palmitic, C16:0 17.3 [15.8, 18.7] 18.3 [17.0, 19.7] 14.4 [13.0, 15.9] 21.2 [19.9, 22.6]
Stearic, C18:0 1.4 [1.1, 1.6] 1.3 [1.1, 1.5] 1.2 [1.0, 1.5] 1.5 [1.3, 1.7]
Oleic, C18:1 2.0 [1.3, 2.8] 1.8 [1.0, 2.6] 2.1 [1.4, 2.8] 4.6 [3.8, 5.3]

Linoleic, C18:2n-6 8.2 [7.4, 8.9] 10.7 [9.9, 11.4] 6.2 [5.4, 6.9] 11.8 [11.0, 12.5]
α-linolenic, C18:3n-3 65.6 [62.8, 68.1] 61.1 [58.6, 63.5] 74.1 [71.5, 76.8] 58.5 [56.0, 61.0]

Arachidic, C20:0 2.3 [2.0, 2.5] 1.3 [1.1, 1.6] 1.3 [1.0, 1.5] 0.9 [0.6, 1.1]
Behenic, C22:0 1.0 [0.8, 1.1] 0.9 [0.7, 1.1] 1.6 [1.4, 1.8] 1.4 [1.2, 1.6]

Lignoceric, C24:0 0.5 [0.4, 0.7] 0.7 [0.6, 0.9] 0.4 [0.3, 0.6] 0.6 [0.5, 0.8]
Others 1 0.1 2.3 0.1 0.2
n-6:n-3 2 0.12 [0.11, 0.14] 0.17 [0.16, 0.19] 0.09 [0.07, 0.10] 0.21 [0.19, 0.22]

Day0, the first day of grazing on 25 April 2016; Day46, the last day of grazing on 10 June 2016. 1 Arithmetic mean for
the sum of eicosenoic (C20:1) and erucic (C22:1) acids. 2 n-6:n-3, linoleic (C18:2n-6) to α-linolenic (C18:3n-3) fatty
acid ratio.
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Table 3. Fixed effects regression coefficients and 95% confidence intervals (CIs) for predicting fatty acid
compositions of rye (Secale cereale L.) and wheat (Triticum aestivum L.) forages during spring grazing
from 25 April to 10 June 2016.

Fatty Acid
Rye Wheat Source of Variation 1

β0 DayL DayQ β0 DayL DayQ D F F × D R2
(m)

g 100 g−1 of total fatty acids Probability
Myristic

C14:0
0.9

[0.6, 1.3]
0.03

[0.02, 0.04]
0.6

[0.3, 0.9]
0.02

[0.01, 0.03] < 0.0001 0.14 0.06 0.45

Palmitic
C16:0

17.3
[15.9, 18.6]

0.0
[−0.03, 0.07]

14.4
[13.1, 15.7]

0.15
[0.10, 0.20] < 0.0001 0.009 0.0009 0.27

Stearic
C18:0

1.4
[1.2, 1.6]

−0.002
[−0.010, 0.006]

1.2
[1.0, 1.4]

0.006
[−0.002, 0.014] 0.52 0.37 0.17 0.03

Oleic
C18:1

2.3
[2.0, 2.6]

−0.72
[−3.34, 1.91]

−2.02
[−4.64, 0.61]

2.4
[2.1, 2.7]

7.38
[4.75, 10.00]

5.02
[2.39, 7.64] 0.0002 0.69 < 0.0001 0.32

Linoleic
C18:2n-6

10.2
[9.8, 10.5]

7.67
[5.18, 10.10]

−3.92
[−6.45, −1.00]

8.2
[7.9, 8.5]

16.97
[14.56, 19.50]

4.19
[1.46, 6.70] < 0.0001 0.002 < 0.0001 0.77

α-linolenic
C18:3n-3

65.6
[63.1, 68.1]

−0.10
[−0.19, −0.01]

74.1
[71.7, 76.6]

−0.34
[−0.43, −0.25] < 0.0001 0.0002 0.0006 0.41

Arachidic
C20:0

1.5
[1.4, 1.7]

−2.85
[−3.76, −1.94]

1.44
[0.49, 2.37]

0.9
[0.8, 1.0]

−1.19
[−2.10, −0.28]

0.95
[0.01, 1.89] <.0001 0.009 0.04 0.59

Behenic
C22:0

1.0
[0.8, 1.1]

−0.001
[−0.007, 0.004]

1.6
[1.4, 1.8]

−0.005
[−0.011, 0.001] 0.14 0.0001 0.37 0.46

Lignoceric
C24:0

0.5
[0.4, 0.7]

0.004
[0.001, 0.008]

0.4
[0.3, 0.6]

0.004
[0.000, 0.008] 0.003 0.32 0.94 0.13

n-6:n-3 2 0.16
[0.16, 0.17]

0.154
[0.095, 0.212]

−0.066
[−0.125, −0.008]

0.13
[0.12, 0.13]

0.367
[0.308, 0.425]

0.107
[0.049, 0.166] < 0.0001 0.02 < 0.0001 0.72

β0, intercept coefficient at day 0 (25 April 2016) of the grazing interval; DayL, linear slope coefficient for day; DayQ,
quadratic coefficient for day. 1 p-values of F-tests where effect of day is pooled for non-linear models; F, forage; D,
day; F ×D, forage species and day interaction; R2

(m), marginal R2 (i.e., variance explained by fixed factors). 2 n-6:n-3,
linoleic acid (C18:2n-6) to α-linolenic acid (C18:3n-3) fatty acid ratio.

Scatter plots of data points with predicted regression lines and bootstrap-based 95% CIs for
myristic, stearic, oleic, arachidic, behenic and lignoceric acid compositions in rye and wheat forages
during the grazing interval are presented as supplementary files in Figures S1–S6, respectively.

3.2.1. Alpha-Linolenic Acid (C18:3n-3)

The concentration of α-linolenic acid in the total fatty acids of forages decreased by approximately
7% in rye and 21% in wheat over the course of the grazing interval (Table 2). From regression coefficient
results in Table 3, the effects of forage species and day explained less than half of the variation in the
model (R2

(m) = 0.41). However, all fixed effects were major sources of model variation. Concentrations
decreased linearly in the fatty acids of both forages over the course of the study, but the concentration
in the fatty acids of wheat decreased at a rate that was 0.24 (95% CI [0.11, 0.37]) g 100 g−1 of total fatty
acids greater per day than in rye.

Figure 2 illustrates the dynamic changes in the α-linolenic acid concentration of total fatty acids in
rye and wheat forages during the spring grazing interval. Concentrations were greater in the fatty
acids of wheat compared to rye on days 0 through 26 of the study [mean difference for wheat–rye
(95% CI) at day0, 8.6 (4.7, 12.2) g 100 g−1 of total fatty acids; at day26, 2.2 (0.3, 4.1) g 100 g−1 of total
fatty acids]. However, concentrations were similar in the fatty acids of forages for days 27 to 46 of the
grazing interval [mean difference for wheat–rye (95% CI) at day27, 2.0 (−0.0, 3.9) g 100 g−1 of total fatty
acids; at day46, −2.6 (−6.2, 0.9) g 100 g−1 of total fatty acids].
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3.2.2. Palmitic Acid (C16:0)

Palmitic acid concentrations of the total fatty acids in forages increased by approximately 6% in
rye and 49% in wheat between the first and last days of grazing (Table 2). Results in Table 3 suggest
that fixed effects only explained approximately a third of the model variation (R2

(m) = 0.27). However,
all fixed effects were sources of variation in the model. For rye, the slope for the linear effect of day to
predict palmitic acid concentration was not different than 0, indicating that the change in concentration
for rye was trivial during the study duration. The linear slope for the effect of day was 0.13 [95% CI
(0.06, 0.20)] g 100 g−1 of total fatty acids greater per day for wheat compared to rye. Furthermore, the
concentration in the total fatty acids of wheat increased at a rate of 0.15 [95% CI (0.10, 0.20)] g 100 g−1

of total fatty acids per day.
Temporal changes in palmitic acid concentrations of fatty acids for rye and wheat forages are

summarized visually in Figure 3. The total fatty acids in rye had a greater concentration of palmitic
acid from days 0 to 12 of the study [mean difference for rye–wheat (95% CI) at day0, 2.8 (0.9, 4.9) g
100 g−1 of total fatty acids; at day12, 1.3 (0.1, 2.7) g 100 g−1 of total fatty acids]. Concentrations in the
fatty acids of forages were similar for days 13 through 32 [mean difference for rye–wheat (95% CI) at
day13, 1.2 (−0.0, 2.5) g 100 g−1 of total fatty acids; at day32, −1.2 (−2.3, 0.0) g 100 g−1 of total fatty acids].
For the remainder of the study, fatty acids in wheat had greater concentrations than fatty acids in rye
[mean difference for wheat–rye (95% CI) at day33, 1.3 (0.0, 2.5) g 100 g−1 of total fatty acids; at day46,
2.9 (1.0, 4.8) g 100 g−1 of total fatty acids].
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rye and wheat forages during the grazing interval (day0 = 25 April; day46 = 10 June 2016).

3.2.3. Linoleic Acid (C18:2n-6)

Linoleic acid concentrations in the total fatty acids of forages increased by approximately 3% in
rye and 90% in wheat over the grazing interval (Table 2). Regression coefficient results from Table 3
suggest that the model to predict linoleic acid concentration had the greatest R2

(m) value compared
to all other models, and the effects of forage species and day explained most of the model variation
(R2

(m) = 0.77). Intuitively, all fixed effects were major sources of variation in the model.
The linear and quadratic effects of day were 9.31 [95% CI (5.90, 12.88)] and 8.11 [95% CI (3.89, 11.74)]

g 100 g−1 of total fatty acids per day greater for wheat compared to rye, respectively. The coefficient
for the quadratic term of day was negative for rye and positive for wheat. The outcome of these
contrasting quadratic terms is displayed in Figure 4 by the concave (negative coefficient) and convex
(positive coefficient) relationships between the composition and day.

As displayed in Figure 4, the concentration of linoleic acid was greater in the total fatty acid
content of rye compared to wheat for the majority of the study’s beginning [mean difference for
rye–wheat (95% CI) at day0, 2.0 (0.9, 3.0) g 100 g−1 of total fatty acids; at day39, 0.6 (0.0, 1.3) g 100 g−1

of total fatty acids]. However, the fatty acid content of forages had similar concentrations from days
40 through 45 (mean difference for rye–wheat (95% CI) at day40, 0.4 (−0.2, 1.1) g 100 g−1 of total fatty
acids; at day45, −0.8 (−1.8, 0.2) g 100 g−1 of total fatty acids]. On the final day of the grazing interval
(day46), wheat had 1.1 [95% CI (0.0, 2.2)] g 100 g−1 of total fatty acids greater linoleic acid than rye.
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3.2.4. Omega-6 to Omega-3 (n-6:n-3) Fatty Acid Ratio

The n-6:n-3 fatty acid ratio increased by approximately 41% in rye and 140% in wheat (Table 2).
From the results in Table 3, the effects of forage species and day explained most of the variation in the
n-6:n-3 fatty acid ratio outcome (R2

(m) = 0.72), and all fixed effects were sources of variation in the
model. Similar to the results for linoleic acid, the linear and quadratic effects of day were 0.213 [95% CI
(0.130, 0.296)] and 0.174 [95% CI (0.091, 0.256)] per day greater for wheat compared to rye, respectively.
The coefficient for the quadratic term of day was negative for rye and positive for wheat, which is
visually apparent in Figure 5.Agronomy 2020, 10, x FOR PEER REVIEW 11 of 16 
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From results illustrated in Figure 5, the n-6:n-3 fatty acid ratio was greater in rye compared to
wheat from days 0 through 37 [mean difference for rye–wheat (95% CI) at day0, 0.04 (0.01, 0.06); at
day37, 0.01 (0.00, 0.03)]. Rye and wheat forages had similar n-6:n-3 fatty acid ratios from days 38
through 43 [mean difference for rye–wheat (95% CI) at day38, 0.01 (−0.00, 0.02); at day43, −0.02 (−0.03,
0.00)]. The n-6:n-3 fatty acid ratio was greater for wheat compared to rye for the last 3 days of the
grazing interval [mean difference for wheat–rye (95% CI) at day44, 0.02 (0.00, 0.04); at day46, 0.03
(0.01, 0.06)].

4. Discussion

Concentrations of α-linolenic acid in the fatty acids of forages decreased during the grazing
interval, while palmitic and linoleic acids increased (Table 2). The magnitude of fatty acid composition
change for wheat was profoundly greater than that for rye. In a comparable study, Clapham et al. [22]
investigated the effects of forage maturity on the fatty acid compositions of numerous forb, grass and
legume species over a 6-week interval. This study reported a 13% (range: −4% to 12%) decrease in
α-linolenic acid, a 1% (range: 0% to 36%) increase in palmitic acid, and a 2% (range: −11% to 18%)
increase in linoleic acid concentrations in the total fatty acid content, as well as a 4% (range: −12% to
31%) increase in the n-6:n-3 fatty acid ratio between minimum and maximum harvest dates, when
averaged across forage species (ibid). The wide ranges of values reported suggest that forage species
has a major influence on the variation of fatty acid concentration change in the total fatty acid contents
of forages. Boufaïed et al. [21] investigated the effects of plant maturity, between stem elongation and
the early flowering growth stages, on the fatty acid composition in timothy forages, and reported a
11% decrease in α-linolenic acid, a 10% increase in palmitic acid and a 8% increase in linoleic acid
concentrations in the total fatty acid content, as well as a 22% increase in the n-6:n-3 fatty acid ratio as
forages matured. For the results of the current study, the percentage change in fatty acid compositions
for rye forages are similar to the results reported in previous studies, but the percentage change in fatty
acid compositions for wheat forages are much greater than previous reports. Authors encourage the
investigation of similar forages—which have the potential to be utilized for leys—in future large-scale
grazing experiments, to better understand fatty acid composition dynamics.

Grazing land management factors, such as fertilizer application and rest period, may play a limited
role in the fatty acid composition variation of forages [21,23,48]. Mayland et al. [48] reported that the
total content of fatty acids in forages increased linearly between soil nitrogen concentrations of 1 and
5 g 100 g−1. Boufaïed et al. [21] found no effect of the addition of 45 kg ha−1 of phosphorus fertilization
on the total fatty acid content of timothy forages; however, the addition of 120 kg ha−1 of nitrogen
fertilization increased the overall fatty acid content of forages. Forages treated with 120 kg ha−1 of
nitrogen fertilization had 5.0 g 100 g−1 of total fatty acids greater α-linolenic acid, 1.3 g 100 g−1 of total
fatty acids less palmitic acid, 2.5 g 100 g−1 of total fatty acids less linoleic acid, and a 0.10 lower n-6:n-3
fatty acid ratio (ibid). In a study comparing 20-d and 38-d rest periods, Dewhurst et al. [23] reported
that the longer rest period resulted in 6.9 g 100 g−1 of total fatty acids lower α-linolenic acid, 3.3 g
100 g−1 of total fatty acids greater palmitic acid, 1.3 g 100 g−1 of total fatty acids greater linoleic acid,
and a 0.04 increase in the n-6:n-3 fatty acid ratio in forages. Soil nitrogen levels of soil cores taken at a
depth of 0 to 15 cm prior to fall planting (0.43 g 100 g−1), during the grazing interval (0.48 g 100 g−1)
and at the end of the grazing interval (0.47 g 100 g−1) were similar, suggesting that soil nitrogen levels
likely did not influence fatty acid composition variation. The difference between the maximum and
minimum rest period was 19 d for the current study. On the basis of this information, and results
reported by Dewhurst et al. [23], the varying rest period utilized during the current study may have
played a minor role in the fatty acid composition variation in forages throughout the grazing interval.

Numerous reviews of previous research studies agree that the major factors influencing the fatty
acid concentrations of forages include maturity and species [20,49–51]. Quantitative results, analyzed
in a meta-analysis by Glasser et al. [20], reported that stage of maturity had the greatest magnitude of
effect on the α-linolenic acid concentration in the total fatty acids of forages, compared to rest period
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and soil nitrogen, where the estimated difference between maximum and minimum cutting dates was
a difference of −14 g 100 g−1 of total fatty acids. Khan et al. [50] investigated the causes of variation
in fatty acid content and composition of forage silage samples, and determined from a redundancy
analysis that forage maturity explained 82% of the variation in the fatty acid content and composition
of silages. As forages mature through the vegetative stages, the proportion of leaves decreases while
the proportion of stems and seeds increases [23], which results in a decrease of membrane lipids and a
decrease in the concentration of α-linolenic fatty acid, in terms of its contribution to the total fatty acid
content in forages [52]. Thereafter, the maturation and senescence of leaves, as well as an increase in
the fiber and grain development, explain variations in the fatty acid composition of forages due to
reproductive stage. With the results of the current study supported by evidence of previous studies,
the change in fatty acid compositions of rye and wheat forages throughout the grazing interval was
most likely explained by stage of maturity, characterized by stem-to-leaf ratio and grain development.

The awareness of fatty acids in human diets is a driver for investigating alternative forages for
production of organic and pasture-raised cattle. The major important fatty acids in dairy and beef
products include CLA and long-chain n-3 fatty acids (i.e., EPA, DPA and DHA). Although the CLA in
beef and milk is formed from the incomplete ruminal biohydrogenation of linoleic acid [16], cattle diets
high in α-linolenic acid appear to enable specific microflora development that increases the formation
and deposition of CLA in tissues [17]. The longer chain n-3 fatty acids in beef and milk are formed
from dietary α-linolenic acid [14,15]. Results from the current study demonstrated that rye and wheat
forages vary in their fatty acid compositions over the grazing interval. Specifically, the prominent fatty
acid concentrations of α-linolenic, palmitic and linoleic acids, and the n-6:n-3 fatty acid ratio, varied in
respect to day and forage species during the grazing interval. Therefore, these findings suggest that
forage species and number of days of the grazing interval may contribute to the formation of CLA and
long-chain n-3 fatty acids in beef and milk from grazing cattle.

The n-6:n-3 fatty acid ratio in cattle diets may be related to CLA and the n-6:n-3 fatty acid ratio
in beef and milk. A study by Dhiman et al. [53] reported increased CLA concentrations in milk
when linoleic acid was supplemented and the dietary n-6:n-3 fatty acid ratio was ≥ 5, as well as
when α-linolenic acid was supplemented and the dietary n-6:n-3 fatty acid ratio was approximately
0.5. The study also reported a similar relationship between n-6:n-3 fatty acid ratios in the diet and
consequent milk in dairy cattle (ibid). A high dietary n-6:n-3 fatty acid ratio may lead to increased
CLA concentrations, but may also have undesirable effects on the n-6:n-3 fatty acid ratio by increasing
the ratio in cattle tissues. In another study, French et al. [10] reported increased CLA concentrations
and decreased n-6:n-3 fatty acid ratios in the intramuscular fat of beef when cattle consumed a diet
with an n-6:n-3 fatty acid ratio of approximately 0.3. The maximum predicted n-6:n-3 fatty acid ratio
in forages of the current study was 0.21 (Table 2). On the basis of this information, increasing beef
and milk fat CLA concentrations, while simultaneously decreasing the n-6:n-3 fatty acid ratio, may be
achieved by implementing cattle grazing of forages with high α-linolenic acid concentrations, like the
rye and wheat forages investigated in the current study. In general, producers should aim to stock
cattle as soon as conditions are suitable for grazing, to take advantage of the lowest n-6:n-3 fatty acid
ratio offered in immature forages.

Grazing land management is currently a major focus for organic and pasture-raised cattle
producers. The growing consumer interest in desirable fatty acid profiles of beef and dairy products
has inspired the development of alternative grazing land management strategies that can support
cattle production. In the Midwest of the USA, cool-season annual leys in the early spring can
complement permanent pastureland by extending the grazing season beyond the ability of a permanent
pastureland. Rye and wheat are cool-season annual forages that are primarily used for improving
soil health in rotation with crops. By utilizing integrated crop–livestock methods, rye and wheat
leys can simultaneously provide forages rich in α-linolenic acid for cattle grazing. Since the grazing
interval of cool-season annual leys may only last several weeks, it is important to stress that producers
should also explore other feeding strategies to implement throughout the year (e.g., perennial pasture
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improvement, warm-season annual pastures and fatty acid dietary supplementation) to continue
enhancing a favorable fatty acid composition of beef and milk products. It is important to note that this
study was conducted in one location over a single grazing interval. This limitation should be considered
when applying the results of the study to the development of crop–livestock integration methods
in other agro-ecological zones, as emphasized by Lemaire et al. [27]. The fatty acid compositions of
forages may vary due to numerous factors, such as climate, grazing methods, irrigation, water quality
and soil fertility, as well as plant characteristics such as density, growth rates, physiological stress,
seeding rate and competition for light, nutrients, and space. Future studies should explore the effects
of alternative forages, grazing patterns and rest period durations on fatty acids in forages, to further
support crop–livestock integration practices.

5. Conclusions

The composition of fatty acids in rye and wheat forages changed during the grazing interval.
The greatest marginal R2 values resulted from models predicting linoleic acid (0.77) and the n-6:n-3
fatty acid ratio (0.72), indicating that the variations in linoleic acid concentration of total fatty acids,
and variations in the n-6:n-3 fatty acid ratio, may be mostly explained by forage species and number
of days of the grazing interval. Alpha-linolenic acid, the most prominent fatty acid in the forages,
decreased linearly over the grazing interval in terms of its concentration in the overall fatty acid content
of forages. The n-6:n-3 fatty acid ratios in the forages increased quadratically, but remained below
levels that were previously determined to improve CLA and n-6:n-3 fatty acid ratios in beef and milk
products. Based on results from this study, forage species and number of days of the grazing interval
influence the composition of fatty acids in forages under rotational cattle grazing conditions.
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