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Abstract: In contrast to conducting measurements on single plants, canopy gas exchange monitored
continuously and for large batches of plants can give high-value data for crop physiological models.
To this end, a system including eight airtight greenhouse cabins with a ground area of 28.8 m2 and
a volume of 107.8 m3 each was designed for measuring the CO2 and H2O gas exchange of crop
stands following the general principle of semi-open chambers. The measuring facility consists of a
set of mass flow meters allowing air exchange rates between 0.5 h−1 and 19 h−1 (i.e., m3 gas per m3

greenhouse air per hour) and CO2 supply rates up to 4 L min−1 (i.e., ca. 14.9 g m−2 greenhouse h−1)
and sensors for measuring the concentrations of CO2 and H2O. There are four separated belowground
troughs per cabin for the root environment that can be operated as individual gas exchange chambers
measuring the belowground gas exchange for example root zone respiration. This paper outlines a
demonstration of the possibilities and constraints for measuring crop gas exchange in combination
with crop model validation for larger crop stands under various conditions and discusses them along
with examples.

Keywords: crop photosynthesis; greenhouse gas exchange; crop growth models; photosynthesis;
evapotranspiration; greenhouse physics; greenhouse climate control

1. Introduction

In many ecological and agricultural studies, the instantaneous responses of plants to environmental
effects is of fundamental interest, and non-invasive online measurements of carbon dioxide (CO2) and
water (H2O) gas exchange of plants and canopies are excellent techniques to measure such responses.
Several types of equipment and systems have been developed to meet this need. CO2 and H2O gas
exchange techniques with handhold infrared gas analyzers (IRGA) or other technology is common
practice in crop physiological research [1]. The advantage of this type of gas-exchange chambers on a
laboratory scale is that they generally allow accurate control of the environmental conditions. The size
of these chambers, however, is usually relatively small, often measuring only a few cm2 of a single
leaf. Interpretation of data and theoretical upscaling is difficult due to the large variation within an
individual leaf as well as between leaves in a plant or crop. The interest in upscaling physiological
processes in space and time has been grown since the 1980s and new measurement techniques such as
eddy-covariance or remote sensing procedures have been developed [2].

While these techniques are commonly used to quantify CO2 exchange on the ecosystem scale [3],
their disadvantage is the large ecosystem scale and the relatively long time frame of 24 h. In protected
cultivation in controlled environments, e.g., in greenhouses, processes with a long time frame within
days are next to fast time responses within seconds or minutes of high importance for optimized
climate control strategies [4,5]. To create data for model calibration and validation on a greenhouse
scale and in controlled environments, for optimized climate control, and for model-based decision
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support systems, larger systems measuring single plants [6], or a group of small plants on laboratory
scale [7], or potted plant trays [8,9] have therefore been developed. Although experimental data from
those systems were valuable for use in protected cultivation, none of them were capable of separately
measuring shoot and root zone gas exchange, an often-underestimated factor in crop photosynthesis
models. An attempt to separate measurements of shoot and root has therefore been made [10,11]
including carbon isotope discrimination [11].

Next to measuring systems for complete plants, even larger systems for crop photosynthesis
measurement have been designed since the 1990s as summarized in Table 1. Most of the gas-exchange
systems described above were developed and used for specific research topics, mostly for photosynthesis
model calibration or validation. Some systems were used repeatedly to measure photosynthesis of
different crops under various environmental conditions [12–15]. For other systems, accurate operational
reliability was proven, and, as an example, crop photosynthesis was measured for fitting light response
curves [16,17].

Table 1. Timely development of experimental whole crop gas-exchange greenhouse measurement systems.

Year Ref. Method Gas Supply Type Loc. Size, m2 Crops

1992 [16]
Null-balance at ambient CO2

with proportional pure
CO2 injection

Technically pure CO2
with mass flow controller open UK 1 × 162 Cucumber

1994 [12]
Air exchange rates measured

online using nitrous oxide (N2O)
as tracer gas.

Technically pure CO2
with mass flow controller semi-open NL 4 × 192

Cucumber
Tomato

Sweet pepper

2007 [13]

Proportional pure CO2 injection
with max. 10.2 g m−2 h−1 to air

conditioning unit for
elevated CO2

Technically pure CO2
with mass flow controller semi-closed NL 2 × 44 Tomato

Chrysanthemum

2011 [17] Outside air drawn through a dry
cooling pad with ambient CO2

No CO2 supply open ISR 2 × 360 Sweet pepper

2015 [14]
Supplying outside air through

ducts in a range of 3 to
12 m3 m−2 h−1 to ambient CO2

No CO2 supply semi-open D 6 × 64 Tomato

In general, crop gas exchange measuring systems can be divided into systems with controllable or
ambient CO2 concentration, with the disadvantage of varying CO2 concentration in the crop canopy,
or in open or closed systems. In open systems, photosynthesis and transpiration are estimated from the
differences in CO2 and H2O concentration between air-intake and exhaust air. In closed systems crop
gas exchange is solely measured through the amount of gas injection commonly supplied to maintain
a desired gas concentration set-point.

The design of crop gas exchange facilities is always a compromise between the universality and
accuracy of the respective system and the technical possibilities of a suitable solution. While small
facilities (e.g., handheld IRGA or single plant chambers) were designed for repeated use in many
experimental measurements, all reported large greenhouse-based gas-exchange systems were designed
for certain experimental question and “disappeared” soon after.

In an endeavor to create a universal system, a facility to measure the photosynthesis of complete
canopies consisting of eight cabins was designed and established at the Leibniz-Institute of Vegetable
and Ornamental Crops (Großbeeren, Germany; 52◦21’31.03” N, 13◦18’35.78” E). The cabins can be
operated in both closed-chamber and open-chamber mode. Controlled air exchange rates of up to
70 m3 m−2 h−1 allow operation under most environmental conditions. The system is equipped with
independent root-zone gas-exchange measurement options, enabling the separation of real-time root
and shoot crop gas exchange. To mimic certain atmospheric conditions for crops during CO2 or H2O
gas-exchange measurements (e.g., behavior in a given region or for analyzing future environmental
scenarios) eight different air pollutants can be dosed into the cabins, too.
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2. Materials and Methods

2.1. CO2 and H2O Gas Exchange of Complete Crops

The experimental facility at Großbeeren (52◦21’31.03” N, 13◦18’35.78” E) consists of eight
identical almost airtight glass-greenhouse cabins (Hans Marsmann Gewächshausbau, Münster-Wolbeck,
Germany) with a ground area of 28.8 m2 and a volume of 107 m3 each (720 cm × 400 cm, length ×width;
340 cm height at the eaves, 400 cm height at the ridge) (Figure 1). The walls are built with double
thermo-glass while the roof consists of UVB-transmissible single glass. All cabins can be entered from a
glass-corridor (3200 cm × 400 cm; length × width). Below the corridor, a basement with most technical
equipment is located.

Figure 1. Simplified sketch of the experimental gas-exchange facility (not on scale) of one of eight
cabins with four troughs (A, B, C, in separate root zone measurement mode; D in open mode for cooling
the shoot environment). Red lines denote gas-supply, green lines denote gas sampling, and violet lines
is the outlet air. For supplementary lighting 12 high-pressure sodium lamps (HPSL) or multi-channel
LED lamps can be mounted (six lamps of each side of each greenhouse compartment). All fluxes are
measured with continuous flux-meters. Irrigation and fertigation are done automatically and can be
adjusted for each trough independently (not in the figure).

For the root environment, each cabin contains four troughs embedded in the floor (600 cm × 50 cm
× 100 cm, length × width × depth). The troughs are movable in a vertical direction while the top is
covered with white polyethylene plates when closed (Figure 1). Independent root zone temperature
control is achieved by heat exchange pads in the troughs. Nutrient solution can be dosed in groups or
for each trough independently.

Each of the eight cabins and each of the four troughs in each cabin can be used separately for
online measurement of net CO2 and H2O gas exchange. In addition, eight other environmental
gases can be connected and dosed to the system in order to mimic certain environmental conditions
(see Figure 1). Depending on the experimental question, it is possible to run the cabins both as open
or closed chambers, while the troughs can only be operated in open chamber mode. In this mode,
evapotranspiration can be measured.

2.2. Configuration Measuring CO2 Gas Exchange

In the case of open chambers, air exchange rates can be adjusted in a range of 50 to 2000 m3 air
per cabin per hour; i.e., air exchange of 0.47 to 18.69 h−1. Outside air is sucked in and supply air
is pre-processed by four central ventilation units (HZG 400.4, Klimatec, Trier, Germany), each with
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7.5 kW of power. The supply air can be heated when outside temperatures are low. The overpressure
of the supply air can be adjusted between 0 and 5 kPa. An overpressure of 0.5 kPa allows air exchange
rates up to 1200 m3 h−1. Heat from the ventilation units increases the temperature of the supply air by
2 K. The maximum air exchange rate requires an overpressure of about 1000 Pa, resulting in an air
temperature increase of 4 K. The supply air is transported via stainless steel ductwork to the cabins.
The air supply rate to each cabin is controlled by one 4′’ valve and two 6′’ valves (R411 and R439,
Belimo, Stuttgart, Germany) and measured using a high-precision ultrasonic flow meter (Digital Flow
XGM8681, GE Sensing and Inspection Technologies, Hürth, Germany). In order to achieve high
accuracy, low air supply rates are controlled by the smaller valve only, while the larger valves become
incrementally more involved as air supply rates increase. As a result, the absolute measurement error
is less than 2% (sensors are certified annually by the manufacturers). The supply air is distributed via
perforated acrylate ducts on both sides of the cabins at a height of 2.2 m.

The cabins are almost airtight with a known minimum leakage error (used as a variable in the
gas-exchange equation). The supplied air is actively removed by four exhaust air units (HZG 063.4,
Klimatec; provide negative pressure between 0 and 2 kPa) via a conduit in one corner of the cabin.
The suction of the exhaust air is controlled by one small and two larger dampers (ASKA110 and ASK160,
Mietzsch, Dresden, Germany) with actuators (LM24A-SR, Belimo, Hinwil, Switzerland). The suction
process starts using the small damper and with increasing exhaust air rates subsequently using the
two larger dampers. The control of the exhaust air rate is based on a constant pressure difference
between the cabin and the ambient air, measured by a differential pressure sensor adjustable up to
50 Pa (DDPT-I2-DP, Prignitz, Wittenberge, Germany). Pure technical CO2 can be supplied (SIMATIC
S7-300, Siemens, Munich, Germany) controlled by mass flow controllers (GF 40, Brooks Instrument,
Hatfield, PA, USA). The system is capable of CO2 enrichment to a limit of 3000 µmol mol−1, while CO2

absorption (scrubber) is not implemented.
An infrared gas analyzer (IRGA; URAS 26, ABB, Zurich, Switzerland) measures the concentrations

of carbon dioxide (CO2) and water (H2O) in the cabin and the ambient air. To achieve this, ambient air
and air from the cabins is continuously sucked close to the IRGA but discarded when not sampled.
As such, a sample gas pump cyclically pumps ambient air and cabin air from these gas streams into
the analyzer, controlled by magnetic valves (S307-05, Sirai, Bussero, Italy). The measurement signal
stabilizes after 1 min, resulting in a maximum measurement cycle of 9 min i.e., when all eight cabins
are included in the measurements.

Additional equipment such as an isotopic CO2 cavity ring-down spectroscopy system can be fed
with the URAS 26 exhaust air in order to measure the 13C/12C fraction in the outside, cabin, or trough
air, respectively.

2.3. Calculation of the CO2 and H2O Gas Exchange

The rate of net CO2 gas exchange in relation to the ground area occupied by the crop (Acrop, m2)
herein referred to as net photosynthesis (Pnet, g m−2 h−1) can be estimated as used in Körner et al.
(2007) [13] for time steps (∆t, h) as

Pnet(t) =
us(t)·ρ

CO2
s ·(Cs(t) −Ce(t)) − 1

∆t ·(Ce(t) −Ce(t− ∆t))·ρCO2
e (t)·V + SCO2(t)

Acrop
(1)

where us(.) (m3 h−1) is the supply air rate; Cs(.) and Ce(.) (mol mol−1) are the CO2 concentrations in the
supply and exhaust air, respectively; ρCO2

e (.) (g m−3) is the density of CO2 at the temperature of the
exhaust air; and SCO2 (.) (g h−1) is the CO2 supply rate. For simplification, it was assumed that the CO2

concentration of the exhaust air would be a close approximation of the CO2 concentration in the cabin,
and the very marginal effect of the cabin pressure on ρCO2

e was omitted. All variables x(.) are average
values of a period [t − ∆t

2 , t + ∆t
2 ). V (m3) denotes the cabin volume and ρCO2

e (g m−3) indicates the
density of CO2 in the supply air. The supply air rate us is provided as a standard volume flow rate,
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meaning that it is related to a temperature of 0 ◦C and a pressure of 101,325 Pa. Therefore, must also
refer to these conditions, and is a constant. The effect of evapotranspiration on the difference between
supply and exhaust air rate is omitted here because it is negligible.

The rate of H2O gas exchange related to the ground area of the crop, herein referred to as
evapotranspiration E (g m−2 h−1) can be estimated analogously to Pnet; however, it is necessary to take
into account the possible presence of any condensation of water vapor on the cabin cover:

E(t) =
us(t)·ρ

H2O
s ·(Ws(t) −We(t)) + 1

∆t ·(We(t) −We(t− ∆t))·ρH2O
e (t)·V + Wcond(t)

Acrop
(2)

Here, Ws and We (mol mol−1) denote the water vapor content of the supply and exhaust air;
ρH2O

s and ρH2O
e (g m−3) are the water vapor density at 0 ◦C and at the temperature of the exhaust air,

respectively. The water condensed on the roof Wcond (g h−1) can be measured using rocker cup sensors
or estimated from the measured or calculated roof temperature.

2.4. Removing Heat and Humidity from the Cabin Air

In the case of a low outside temperature and low crop transpiration rates, the total transpired
water can be recaptured from the air by roof condensation. In this case, the air supply to the cabin can
be interrupted, and the cabin can be operated in the closed chamber mode.

The troughs for the roots are equipped with mats for heating and cooling the root environment.
However, when opening the troughs and lifting the tables with the plants above the level of the cabin
floor (Figure 1), the trough cooling can be used for cooling the cabin air, leading to a decrease of
absolute air humidity through condensation. For this to occur, the warm and humid air from the cabin
roof space must be actively transported via tubes and axial fans into the cooled troughs. This expands
the possibilities for measuring Pnet in closed chamber mode, while it allows lower air exchange rates
at conditions with high energy load (high global solar radiation, high outside temperature) in open
chamber mode.

2.5. Environmental Constraints for Gas Exchange Measurements

Air temperature can be adjusted by setpoints for heating and ventilation as it is common in regular
climate-controlled greenhouses, as well as with controlled air supply rates at closed vents. However,
roof ventilation inhibits gas exchange measurements and vent opening is to be avoided when necessary.
Supplying a tracer gas such as N2O at a constant rate and estimating the air exchange rate during open
roof ventilation [12,18,19] has not been tested yet.

A rough estimate of the sensitive heat transfer out of the greenhouse cabin (qsensitive, W m−2) per
unit of cabin floor area (Afloor, m2) by exchange of dry air and heat transmission through the cover
under steady-state conditions can be obtained:

qsensitive =
us·ρair

s ·(Te − Ts)·cair + kroo f ·(Te − Ta)·Aroo f

A f loor
(3)

where ρair
s (kg m−3) denotes the air density at standard conditions; cair (J kg−1 K−1) is the specific heat

capacity of dry air; kroof (W m−2 K−1) is the thermal transmittance of the greenhouse roof, Aroof (m2) is
the cabin roof area; and Ts, Te and Ta (◦C) are the temperature of the supply, exhaust, and ambient air,
respectively. Ts is higher than Ta due to the heat disposal of the ventilation units. For simplification,
Equation (3) does not account for the effect of water vapor in the air. In addition to sensitive heat
transfer, latent heat transfer (qlatent, W m−2) due to evapotranspiration must be taken into account:

qlatent =
Acrop·E·

(
∆Hvap + cH2O

·(100− Te)
)

A f loor
(4)
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∆Hvap (J g−1) and cH2O (J g−1 K−1) denote the vaporization enthalpy at 100 ◦C and the specific heat
capacity of water, respectively. The heat transfer out of the greenhouse—the cooling power—must
be accounted for in relation to any heat transfer into the greenhouse from global radiation passing
through the greenhouse cover. In this rough calculation, effects from the side walls to the adjacent
cabins, the corridor, and the outside have been omitted, as all walls are made of double thermal glass
with a heat transmission coefficient of 1 W m−2 K−1. External screens can be used to avoid most of the
solar radiation from penetrating into the cabin through the outside walls.

2.6. Air Exchange Rates of Closed Cabins and CO2 Sources

The air exchange rates of closed cabins must be taken into account when operating in closed
chamber mode. In order to measure these air exchange rates, the cabins were flushed with CO2 up to
concentrations of about 3000 µmol mol−1. Next, the CO2 supply was disconnected. The air exchange
rate could then be obtained from the CO2 depletion curve

ln[Cc(t) −Ca(t)] = a0 − a1·t (5)

where t (h) denotes the time, Cc(t) and Ca(t) (mol mol−1) denote the cabin and ambient CO2

concentrations at time t, and a0, and a1 are regression parameters. Multiplying a1 by the cabin
volume V provides the air exchange rate u′ (m3 h−1). Note that in contrast to the air supply rate us,
the air exchange rate u′ is related to the density of the air in the cabin at Tc (◦C) during the measurement.

The quantity of CO2 sources (or sinks) was estimated by adjusting a constant supply air rate in
the empty cabins and calculating the CO2 flux from the cabins according to Equation (1).

2.7. Controlling the Cabin Climate and Other Possible Treatments of the Plants

There are many possibilities to control the individual cabin environment for different aspects
of crop photosynthesis and transpiration. Air temperature can be varied among the cabins by
adjusting different heating set points or controlling the supply air rate. The cabins have shading
screens that can reduce global solar radiation at plant level by 50%. Plant available radiation can be
increased by supplementary lighting with twelve lamps of either high-pressure sodium discharge
type (Master AGRO 400 W, Philips, Amsterdam, The Netherlands) with up to 210 µmol m−2 s−1 or
with multi-spectral LED lamps with 8 free mixable and programmable light channels (LightDNA-8;
Valoya, Helsinki, Finland) with a range between 380 and 780 nm with a maximum of 320 µmol
m−2 s−1 (all channels 100%). The lamps were refurbished with an additional acryl-glass cover for
water protection.

Air CO2 concentration in the cabins is kept at the desired level, while relative humidity may be
reduced by increasing supply air rates or increased by fogging water at a pressure of 120 bar. The latter,
however, inhibits transpiration measurements.

The dosage of air pollutants, including ozone (O3), sulfur dioxide (SO2), nitrogen oxides
(NOx, N2O), methane (CH4), ethylene (C2H4), and ammonia (NH3) into the cabin atmosphere
in order to investigate their effect on photosynthesis and transpiration. The plant itself can also be
manipulated, e.g., by changing the sink/source ratio. In addition to the shoot environment, there
are many options to consider the effects of treatments in the root environment on the gas exchange
characteristics of the shoots.

2.8. Separating the Gas Exchange of the Shoot and of the Root Zone

Between 2016 and 2020 we investigated the behavior of the system for different crops as tomato,
cucumber, broccoli, and apple. For all crops, the gas exchange of the aboveground plant components
can be measured independently of that of the root zone. The latter has been used for measuring the
effect of N2O emission in the root-zone [20]. Briefly, for root-zone CO2 measurements, after closing
the troughs containing the roots in an almost airtight way, ambient air is injected into the root zone



Agronomy 2020, 10, 737 7 of 20

using mass flow controllers (VA 420, CS Instruments, Villingen-Schwenningen–Tannheim, Germany).
The air leaves the root zone via the remaining leakages in the cover of the troughs due to the slight
overpressure measured by using different pressure sensors (DDPT-I2-DP, Prignitz). At the same time,
the overpressure prevents air from the cabin from penetrating into the troughs. The CO2 concentration
of the supply air and the air in the troughs is measured analogously to the measurements in the cabins
using a second URAS 26 infrared gas analyzers. The root-zone CO2 release can be calculated from the
air injection rate and the difference in the CO2 concentration of the air in the troughs and that of the
injected air. Then, Equation (1) needs to be adjusted. At the same time, the release of other greenhouse
gases such as N2O or CH4 can be measured, too.

2.9. Crop Experiments

Three experiments with tomato crops were performed for facility testing with CO2 and H2O
gas exchange. In Experiment 1, tomato plants (‘Komeet’, De Ruiter Seeds, The Netherlands) were
planted on 28 September 2015, the response of gas exchange measurements to sudden changes in
photosynthetic photon flux density (PPFD, µmol [photons] m−2 s−1) was evaluated. In Experiment
2, tomato plants (‘Komeet’) were planted on 12 January 2016, the climate control options, and both
the open and closed chamber mode were examined. In Experiment 3, tomato plants (‘Pannovy’,
Novartis, UK) were sown 02 January 2018 and planted to the gas-exchange facility 22 February 2018.
CO2 gas-exchange of crops at different temperature and CO2 levels was investigated for validation of a
crop photosynthesis model.

In all three experiments (Experiment 1, Experiment 2, and Experiment 3), after developing around
eight true leaves, twelve rockwool cubes with the plants were each set on a black mat of fibers on
the tables, resulting in a plant density of 2 plants m−2. Plants were supplied with a nutrient solution
via drip irrigation according to a formula for Dutch horticulture [21]. A drainage solution fraction
of 40% of the solution supplied was set. The tables were aligned 15 cm below the cabin floor. Next,
the troughs were covered using clipboards. The shoots were fitted through holes in the covers of the
troughs and trained vertically using a wire. The plants were trained weekly: all side shoots and leaves
below trusses with red fruits were removed. Shoot growth was terminated when the stem reached the
mounting of the wire, at a height of 2.7 m. Pollination was facilitated by vibrating flowering trusses at
least ones a week.

Leaf length was measured periodically during cultivation, and leaf area was estimated using an
allometric relationship [22]. The total biomass produced (harvested fruit, removed leaves, complete
plants at the experiment’s end) was recorded and subsamples were dried in a ventilated oven to
estimate the dry matter.

2.10. Comparing Measured and Simulated Crop Photosynthesis

For comparison of measured crop photosynthesis in a block-shape crop (as it is the case in the
current facility) with theoretical values, the light distribution within the blocked crop needs to be
calculated. As such, crop stands can only be used with the comparison of measurements with the same
crop architecture. For comparisons between models and measurements for model validation purposes
or for parameterization, an architectural model of the block-shaped structure of the crop canopy and the
photosynthesis model needs to be combined. Simple upscaling would due to the non-endless structure
of the canopy yield in underestimation of measured photosynthesis. Due to that, leaf photosynthesis
was scaled up to the crop level with a geometric radiation absorption model as used by Körner
(2003) [23]. Photosynthesis of separate leaves was determined with photochemical efficiency (al) and
maximum leaf gross photosynthesis (Pgl,max) of the negative exponential light response curve [24].
Pgl,max and al were calculated with several biochemical key processes from the FvCB-Model for leaf
CO2 assimilation [25] that have been summarized in a simplified description [26,27]. A homogeneous
distribution of CO2, temperature, and humidity inside the canopy was assumed and morphological
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differences between leaves of different ages and locations were neglected. Only the vertical difference
of stomata resistances was accounted in the vertical calculation of Pgl,max and al.

A model was developed that calculated diffuse and direct photosynthetic active radiation (PAR)
absorbed by individual leaves inside the block-shaped plant stand. A rectangular 3-dimensional grid of
4.000 points (Pxyz; 20 points along the width, 20 points along the depth, and 10 points along the height
of the block) was adopted. Diffuse and direct PAR were first determined outside the greenhouse and
transmission was then determined separately. Transmission of direct PAR was calculated depending
on elevation and azimuth of the sun, the angle of incidence on roof or wall and the transmission
curve of roof or wall, and the presence of non-transparent construction parts. It was assumed that
neighboring greenhouse compartments fully intercept direct light and that the intensity of diffuse light
coming from neighboring houses was the same as that of the unobstructed sky. Transmission of diffuse
light was assumed constant according to measurements performed at an overcast sky.

Absorption of diffuse and direct light was calculated for each point independently. Absorption of
a single (direct) light beam was calculated from path length through the canopy, leaf area traversed,
average projection of leaves into the direction of the beam, reflection, and scattering for shaded and
sunlit leaves [28] and similar to the model for hedgerow canopies [29]. Intensity of absorption of
a direct PAR beam at each point in the block was calculated by multiplying outside direct light by
the transmission-value of the specific direct PAR beam (through either the cover of the phytotron,
the front or back wall, or the sides). Absorption of diffuse PAR (intensity was equal for all directions)
was calculated by averaging absorbed intensities of numerous single beams coming from n different
angles from the whole hemisphere. Crop gross assimilation was then separately calculated from
absorbed total PAR fluxes for shaded and sunlit leaves (Rn,a,sun and Rn,a,sun, respectively) to yield
shaded and sunlit photosynthesis (Pgc,shd and Pgc,sun respectively). Total crop photosynthesis (Pgc) was
the sum of those. Calculation from net CO2 gas exchange to Pgc was done by adding daytime crop
dark respiration (Rdc) to Pgc. In Experiment 3, Rdc was determined during the first four hours after
darkness measuring net CO2 exchange without light at a constant temperature. Temperature influence
on Rdc was calculated with a temperature-dependent mathematical function [25].

Pgc,shd =

z10,y20,x20∫
z1,y1,x1

Pgl,shd


x1 . . . x20

y1 . . . y20

z1 . . . z10


 = Pgl,max


1−

−αl [Rn,a,shd{

x1 . . . x20

y1 . . . y20

z1 . . . z10

}]

Pgl,max


(6)

Pgc,sun =

z10,y20,x20∫
z1,y1,x1

Pgl,sun


x1 . . . x20

y1 . . . y20

z1 . . . z10


 = Pgl,max


1−

−αl [Rn,a,sun{

x1 . . . x20

y1 . . . y20

z1 . . . z10

}]

Pgl,max


(7)

Shaded leaves intercepted diffuse light and the scattered part of direct light and sunlit leaves
intercepted in addition to that also the direct light beam. Leaves were assumed to have the so-called
near-planophile vertical leaf angle distribution. For that, a scattering coefficient (σ = 0.15) and an
extinction coefficient for diffuse radiation (Kdif = 0.8) were used [30]. The photosynthesis species-specific
model parameters were parameterized for the tomato cultivar ‘Pannovy’ with measured light-response
curves (LI-6400, LI-COR Bioscences, Lincoln, NA, USA), of single leaves in three layers in the crop at
three different temperatures (Experiment 3).



Agronomy 2020, 10, 737 9 of 20

3. Results and Discussion

3.1. Air Exchange Rates of Closed Cabins

The closed greenhouse cabins are almost airtight. Blower-door measurements (EN 13829, 2000)
in the cabins at a pressure difference of the cabin to the outside air of 50 Pa resulted in air exchange
rates of around 2 h−1. Estimated leakage areas were according to LBL ELA @ 4 Pa of approximately
45 cm2 per cabin. Due to this minimal leakage, the air exchange rates of the cabins derived from the
CO2 depletion curves at zero pressure difference were at a very low range of 0.01 h−1 or 1.07 m3 h−1

(Figure 2). There is a slight increase in the air exchange rate to about 0.045 h−1 or 4.8 m3 h−1 when the
air from the cabin is blown through the troughs for heat and humidity removal (Figure 2). Over a
cultivated area of 24 m2, this results in 0.44 m3 m−2 h−1. When the CO2 concentration in the cabin
is close to the ambient CO2 concentration, these low air exchange rates can be disregarded. Even a
difference between cabin and external CO2 concentration of 500 µmol mol−1 at an air exchange rate of
0.045 h−1 would result in a CO2 leakage of only ~200 mg h−1 per m2 cultivated area. For comparison,
Körner et al. (2007) [13] gave an estimate in their experimental facility of an air exchange rate of
approximately 1.4 m3 m−2 h−1, a typical value for a modern conventional greenhouse [31].

Figure 2. CO2 depletion curves of two closed greenhouse cabins with calm air and one cabin where
the air is blown through the open troughs, resulting in air exchange rates of 0.0099, 0.0106 and
0.0452 h−1, respectively.

3.2. CO2 Sources and Sinks in the Cabins

CO2 sources and sinks in the greenhouse cabins can be disregarded in most cases when plants are
grown hydroponically. However, with small plants and low ground coverage, there may be significant
effects on the measurements, which must be considered in the calculation of crop CO2 gas exchange
(Equation (1)). The mean daily differences between exhaust and supply air CO2 concentrations at low
air exchange rates (100 m3 h−1) were between 0.17 and 0.91 µmol mol−1. This corresponds to mean
daily CO2 sources between 1 and 6 mg h−1 m−2, which can be disregarded (Figure 3). Körner et al.
(2007) [13] reported an uncontrolled CO2 source in their greenhouses in the range of 100 mg m−2 h−1

while most other authors did not present anything but disregarded such a source or sink. However, it is
important to note that using irrigation water with high carbohydrate content can result in a significant
root zone CO2 source.
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Figure 3. Daily time course of CO2 concentration of the supply and exhaust air of an empty cabin at an
air exchange rate of 3.5 m3 h−1 per m2 cabin floor area.

In addition, plant cultivation in soil or substrates contains organic materials so the decomposition
of the organic compounds may become a significant CO2 source. As net CO2 gas exchange is measured
in complete crops including substrates, processes such as root respiration and the exudation of organic
compounds and their decomposition by microorganisms are included. Kläring et al. (2014) [10]
demonstrated that the latter may become a significant CO2 source in the system and lead to an
overestimation of the plant’s respiration. Therefore, the possibility to separate the root from the shoot
zone and measure the gas exchange in both environments separately was a logical consequence.

At low air exchange rates of ~1 h−1, a short delay in measured CO2 concentration response between
exhaust air and supply air is expected (Figure 3). In this figure, the maximum absolute difference
between supply and exhaust air CO2 concentration is below 5 µmol mol−1, a potential error in the gas
exchange calculation for the corresponding time point of 35 mg CO2 m−2 h−1. While this value is still
relatively small (and can be disregarded in most cases), possible significant errors at high variations in
external CO2 concentration and low supply air rates are possible. In such cases, the scattering effect
should be taken into account, e.g., by measuring or calculating the CO2 concentration for any empty
cabin C0 and using C0 instead of Cs in Equation (1).

3.3. Possible Ranges of Environmental Conditions during the Measurements

One general problem with gas exchange measurements in greenhouses is the rising temperature
in the cabin with increasing outside temperature and radiation. The facility was designed without an
exterior shading screen that could be closed during high global solar radiation and thus could reduce
heat penetration into the greenhouse. Without these screens, vents need to open to avoid overheating
at certain conditions with high energy load. In Figure 4, outside global solar radiation just before
the first daytime vent opening and after last daytime closing is illustrated from 26 March to 16 May
2016 (Experiment 2). In that period, the tomato crop occupied 24 m2 and the leaf area index (LAI)
increased from 1.4 to 2.2 m2 m−2. The supply air rate was 200 m3 h−1. Surprisingly, even at very low
differences between cabin air temperature and ambient air temperature, the vents could be kept closed
in the morning during relatively high global solar radiation (Qb). In the afternoon, however, the vents
closed almost as expected when global radiation fell to values close to the thresholds calculated above
(Figure 4). Note that the latent heat transfer here, qlatent, is a rough estimate based on an assumed
transpiration of 120 g m−2 h−1, a good value for a tomato crop. In other cases, the exact numbers
depend on additional variables, such as LAI, the ratio of cultivation area to cabin floor area, global
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radiation, and the water vapor pressure deficit (VPD, kPa) of the air. The latter can be controlled in
certain constraints by controlling the supply air rate. In the present example, at a constant supply
air rate, VPD was significantly lower during high global solar radiation before the vents opened
than during low global radiation after the vents closed, resulting in a similar transpiration rate in
both situations.

Figure 4. Constraints of outside global radiation and air temperature for the gas exchange measurement
of an adult tomato crop in the period from 22 March to 16 May 2016 at supply air rates of 200 m3 h−1.
A total of 33 data points depict the hourly average of the outside global radiation (W m−2) as a function
of the difference of the air temperature in the cabin and outside the greenhouse (∆T, K) during the hour
before (Qb) or after (Qa), when the roof vents opened for the first or last time of the day, respectively.
On the remaining 23 days, the vents did not open at any time. Solid lines represent regression lines and
dotted lines represent the calculated constraints of the global radiation according to the sensitive heat
transfer, qs (W m−2), and sensitive plus latent heat transfer qs+l (W m−2) out of the cabin. Transpiration
of 120 g m−2 h−1 related to a cultivation area of 24 m2 and a transmission coefficient of 0.6 of the cabin
cover for global radiation were assumed.

Consolidated, during morning hours the vents are kept closed longer than expected from
calculations. Thus, gas-exchange measurements could be continued during these hours. There are
obviously elements in the cabins with significant heat capacity, which act as cold storage during
daytime, removing heat energy from the air in the morning hours, and heating the air as cabin air
temperature drops during the night. One important heat sink is likely to be the concrete floor, which
covers 60% of the cabin floor. Figure 5 depicts the temperature courses of the floor, the cabin and
ambient air, and the global radiation on a sunny day in May. Interestingly, between 10:00 h and 19:00 h,
when the outside air temperature was high, the differences in temperature between the cabin air and
the concrete floor was on average 6 K. This is higher than the temperature difference between cabin
and ambient air.

There are also research topics where air exchange with the environment is undesirable. In particular,
when gaseous air pollutants are supplied in order to investigate their effect on photosynthesis and
plant growth, any loss of supply gases must be minimized.

Figure 6 illustrates two cooling options: In one cabin plants were set to a level 30 cm above the
cabin floor and the trough cooling system was used to remove heat and water vapor from the cabin air
(Figure 1); in another cabin, the air temperature was controlled by increasing the supply air rate with
increasing temperature. Both approaches to removing heat from the cabin air were similarly effective
(Figure 6).
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Figure 5. Daily courses on 11 May 2016 of global radiation outside the greenhouse and temperatures
of the cabin and ambient air, the concrete cabin floor, and the chipboard covers of the root troughs.
The latter two were measurements from six points in two rows each using a handheld infrared
thermometer, while the others were records from the greenhouse computer. The setpoints for heating
the greenhouse air during the night and the day and ventilating the greenhouse were 15, 19, and 29 ◦C,
respectively. The temperature in the root troughs was adjusted at 19 ◦C. The supply air rate was 60 and
200 m3 h−1 during the night and day, respectively. In addition, roof ventilation was open from 10:00 to
17:00. The same pattern of the cabin floor temperatures was obtained when the cabin was cooled by
increasing the supply air rate with increasing cabin temperature and roof ventilation remained closed.

Figure 6. Daily course of temperature in two cabins on 10 May 2016. One cabin was cooled by increasing
the supply air rate with increasing cabin temperature, while the other was cooled by blowing cabin air
into the cooled troughs. The maximum supply air rate corresponds to an exchange rate of the cabin air
of about 16 h−1. In both cabins, a fully developed tomato crop was cultivated. Set points for heating at
night and day and opening the greenhouse roof windows were 15, 19, and 32 ◦C, respectively.
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3.4. Measurement of Photosynthesis in the Closed Chamber Mode

Figure 7 illustrates an example of a measured PPFD-net photosynthesis response curve of a tomato
crop in a closed chamber mode. One drawback of this mode is the discontinuous supply rate of CO2

to the cabin when multiple cabins are used, as there is a time lag between measurements and the
CO2 supply. This leads to dynamics measured photosynthesis, especially under changing outside
environmental conditions. As a result, R2 decreased from 0.96 to 0.91 when hourly instead of smoothed
values were used (Figure 6). Therefore, this approach is not applicable if a very high temporal resolution
is required. In addition, further efforts are required to improve the CO2 measurement cycle and supply
of CO2 to the cabins.

Figure 7. Net photosynthesis of a tomato crop measured in the closed chamber mode affected by PPFD.
Data shows hourly averages of measurements smoothed over three hours in one cabin in the period
from 01 April to 02 May 2016. Leaf area index increased during this period from 1.4 to 2.0 m2 m−2. CO2

concentration ranged between 500 µmol mol−1 at night and 330 µmol mol−1 during the day. The line
depicts the negative exponential PPFD response curve fitted with the data.

A few defective measurements of the net photosynthesis (technicians in the chamber training
plants, harvesting fruit or maintaining sensors, open roof ventilation in March) were replaced by values
estimated using the negative exponential PPFD response curve (Figure 7). Dry matter obtained from
harvested fruit, removed leaves and harvested complete plants by the end of the growing period was
610 g m−2, while the initial dry matter at planting was 3 g m−2. Assuming a carbon content in the dry
matter of 0.4 g g−1 results in 243 g m−2 carbon in the biomass produced by the plants. The total sum
measured of the gas-exchange system was 250 g m−2 carbon, thus a difference of only 2.8%.

3.5. Measurement of Photosynthesis in the Open Chamber Mode

Measuring photosynthesis in the open chamber mode is the standard procedure in this facility.
It allows the separation of the aboveground and belowground gas exchange. In addition, under most
conditions, transpiration can be measured in parallel. Controlling the cabin temperature by controlling
the supply air rate prevents unwanted roof ventilation as long as the outside temperature is low
enough (Figure 6). Figure 8 shows data of the net photosynthesis PPFD response for a tomato crop
measured in two cabins. Data is in good agreement with results obtained by other scholars [15,19].
Despite the biological variation of the plants, the measurements in both cabins yielded similar results,
an important requirement when comparing treatments in different cabins.
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Figure 8. Net photosynthesis of a tomato crop measured in the open chamber mode affected by
photosynthetic photon flux density (PPFD). Data shows hourly averages of measurements in two
cabins in the period from 1 April to 16 May 2016. Leaf area index increased during this period from
1.5 to 2.2 m2 m−2. CO2 concentration ranged between 500 µmol mol−1 at night and 350 µmol mol−1

during the day. The continuous and dotted lines depict the negative exponential PPFD response curves
fitted with the data of the two cabins separately.

Due to a faster CO2 distribution of the injected air in open chamber mode, the dynamics of
measured photosynthesis due to delays of CO2 supply is much smaller compared to the closed
chamber mode. The best temporal resolution can be obtained when assimilated CO2 is replaced by the
injected air only (Figure 9). The shortest temporal resolution depends on the number of cabins in the
measurement sequence. If all cabins and the outside conditions are included (standard) the complete
cycle duration is 9 min. Measuring photosynthesis without supplying CO2, however, restricts the
upper range of CO2 concentration in the chamber to slightly below that of outside CO2 concentrations.

Figure 9. Daily course of net photosynthesis of a tomato crop measured in the open chamber mode
and PPFD on the top of the crop on 24 November 2015 under two different light regimens. Data shows
measurements taken in 9-min intervals. Leaf area index was 1.4 m2 m−2. CO2 concentration in the
cabin air ranged between 500 µmol mol−1 during the dark and 350 µmol mol−1 during the light phases.
In two cabins, artificial light of 210 µmol m−2 s−1 PPFD was supplied from 15:00 to 24:00, while plants
in two other cabins received artificial light of the same intensity from 15:00 to 18:00, 20:00 to 23:00 and
01:00 to 04:00.
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3.6. Measurement of Transpiration in the Open Chamber Mode

In Figure 10 transpiration in open chamber mode in two cabins is illustrated. In this case,
evaporation from surfaces can be disregarded as the root environment was covered (chipboard) and
the air in the root zone was close to saturation. Increasing variation in transpiration occurred as global
radiation increased (Figure 10a). Most data points were obtained at supply air rates of 60 m3 h−1 at
night and 200 m3 h−1 during the day. Under such conditions, transpiration did not exceed a rate of
120 g m−2 h−1. However, in order to cool and dehumidify the cabin air, the supply air rate was on
several days increased to a maximum of 1800 m3 h−1 (Figure 6). Dehumidification was accompanied
by a remarkable increase in VPD and a lower VPD gradient close to the leaf surface. This resulted
in a strong increase in transpiration (Figure 10b). Interestingly, no effect of the supply air rate on
photosynthesis was observed (Figure 7). Similar to the crop CO2 exchange measurements, the level
of transpiration for both cabins was almost equal. Figure 11 depicts the time-related resolution of
the transpiration measurements under rapidly changing radiation conditions. Monitoring H2O gas
exchange directly allows for a much higher time resolution of the transpiration compared to the
traditional methods, i.e., lysimeters on intact plants [32].

Figure 10. Cont.
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Figure 10. Transpiration of a tomato crop measured in the open chamber mode affected by global
radiation (a) and vapor pressure deficit (VPD) (b). Data shows hourly averages of measurements in the
period from 1 April to 16 May 2016. Leaf area index increased during this period from 1.5 to 2.2 m2 m−2.
Air temperature ranged between 15 ◦C at night and 30 ◦C in the middle of sunny days. The continuous
and dotted lines depict the empirical quadratic (a) and linear (b) response curves fitted with the data of
the two cabins separately.

Figure 11. Daily course of transpiration of a tomato crop measured in the open chamber mode and
global solar radiation on the top of the crop on 24 November 2015 under two different light regimens.
Data shows measurements taken in 9-min intervals. Leaf area index was 1.4 m2 m−2. H2O concentration
in the cabin air ranged between 8 mmol mol−1 during the dark and 14 mmol mol−1 during the light
phase. In two cabins, lamps emitted radiation of 78 W m−2 from 15:00 to 24:00 while plants in two other
cabins received radiation of the same intensity from 15:00 to 18:00, 20:00 to 23:00, and 01:00 to 04:00.
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In contrast to photosynthesis, there are no observations of precise changes in transpiration as a
response to the rapid changes in radiation intensity. One explanation is the time delay of transpiration
to changes of environmental conditions [33]. In addition, interaction between crop transpiration and
VPD may have caused the delay in the response of the transpiration to the variation in global radiation.

3.7. Separating the Gas Exchange of the Shoot and of the Root Zone

Spatial separation of crop shoot and root environment enables the measurement of crop gas
exchange of the shoot and root zone independently (Figure 12). To our best knowledge, such systems
for greenhouses have not yet been reported in the literature. Kläring et al. (2014) [10] described such an
approach for a plant cuvette that contained one fruit-bearing cucumber plant. The order of magnitude
of their data is comparable with that of the present tomato experiment both for the shoot and root
environment. In particular, the coupling of shoot assimilation and soil respiration in beech saplings in
six connected shoot/root cuvettes positioned in a growth chamber was investigated [34]. These scholars
studied the saplings’ gas fluxes and carbon isotope discrimination. In contrast to the systems described
in the literature [10,11], the present facility offers the possibility to control the environmental conditions
of the shoot and the root environment independently, and concurrently for any cabin and trough.

Figure 12. CO2 gas exchange in the shoot and root zone of a tomato crop on 10 May 2016. Shoot (stem,
leaves and fruit) and root dry matter were 615 and 104 g m−2, respectively, and leaf area was 2.2 m2

m−2. Temperature in the root environment was kept constant at 19 ◦C, while cabin temperature rose
from 15 ◦C at night to 30 ◦C in the middle of the day.

3.8. Models and Measurements

For the use in crop model validation, the block-shaped 3-dimensional photosynthesis model was
used. For that, the tomato cultivar ‘Pannovy’ was parameterized and fitted to the photosynthesis
parameters. The resulting model was used to compare the pure measured photosynthesis (i.e., CO2

gas exchange) as discussed above with simulated photosynthesis. The results show a good fit between
measured and simulated crop gross photosynthesis (Figure 13). The overall agreement as calculated
with adjusted R2 is with 0.976 very high. However, larger differences and underestimations of the
modeled CO2 gas exchange exist. Especially a difference between morning and afternoon fits are
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evident (Figure 13c), which is probably the lack of a mid-day repression or hysteresis in the model.
These discrepancies have been observed in earlier measurements of the same system, while however no
model comparison was made [35]. However, the combination of physical gas-exchange measurements
in a crop stand in combination with parameterized photosynthesis models is a powerful tool for
improvement of crop photosynthesis predictions. The next steps are among others screening and
parameterization of different cultivars and crops.

Figure 13. Measured and Simulated crop gross photosynthesis (Pgc) of tomato cv ‘Pannovy’ for four
selected days in Experiment 3 with a)simulated vs. measured values (a; R2 0.967), time course of
measured (red) and simulated (blue) (b), simulated vs. measured values before 12 h (red) and after
12 h (blue) (c), and crop gross photosynthesis (Pgc) as function of hour per day for measured (red) and
simulated (blue) (d).

4. Conclusions

A multi-cabin greenhouse for measuring the gas exchange of crops was designed and constructed.
CO2 and H2O gas exchange of complete stands of plants can be measured in parallel in up to eight
greenhouse cabins, each of which can be accessed and controlled independently. This allows for
continuous monitoring of the effects of different treatments on photosynthesis, dark respiration,
and transpiration without any time delay. Except for some conditions with high ambient temperatures
in combination with high global radiation in summer, gas exchange measurements are possible all
year round. In addition to the typical climate control options and the possibility to manipulate the
conditions in the root environment, this facility provides, in particular, the possibility of introducing
air pollutants and other specific plant-relevant gases into the cabins. In addition to the aboveground
components, the temperature can be controlled and the gas release from the root zone can be measured
independently in four troughs per cabin. This final aspect opens up new options for studying the
interactions of the canopies’ root and shoot metabolisms as well as a powerful tool for crop growth
modeling improvement.
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