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Abstract: World population growth, together with climate changes and increased hidden hunger,
bring an urgent need for finding sustainable and eco-friendly agricultural approaches to improve
crop yield and nutritional value. The existing methodologies for enhancing the concentration of
bioavailable micronutrients in edible crop tissues (i.e., biofortification), including some agronomic
strategies, conventional plant breeding, and genetic engineering, have not always been successful.
In recent years, the use of plant growth-promoting bacteria (PGPB) has been suggested as a promising
approach for the biofortification of important crops, including legumes. Legumes have many beneficial
health effects, namely, improved immunological, metabolic and hormonal regulation, anticarcinogenic
and anti-inflammatory effects, and decreased risk of cardiovascular and obesity-related diseases.
These crops also play a key role in the environment through symbiotic nitrogen (N) fixation, reducing
the need for N fertilizers, reducing CO2 emissions, improving soil composition, and increasing plant
resistance to pests and diseases. PGPB act by a series of direct and indirect mechanisms to potentially
improve crop yields and nutrition. This review will focus on the: (i) importance of legumes in
the accomplishment of United Nations Sustainable Development Goals for production systems;
(ii) understanding the role of PGPB in plant nutrition; (iii) iron biofortification of legumes with
PGPB, which is an interesting case study of a green technology for sustainable plant-food production
improving nutrition and promoting sustainable agriculture.

Keywords: Biofortification; iron; legumes; malnutrition; plant growth-promoting bacteria;
sustainable agriculture

1. Introduction

The world population has considerably increased in the past 10 years and is expected to reach
around 9.5 billion by 2050 [1], with developing countries accounting for much of this increase [2],
and this represents a huge challenge for agricultural sustainability [3]. The population growth is
increasing the pressure on arable land and natural resources, which together with the environmental
stresses associated with climate change, is severely affecting plant growth, productivity, and nutritional
value. Furthermore, the excessive use of fertilizers and pesticides has a great impact on the environment,
causing soil and water deterioration [4–7]. All these issues are reflected in human health, with increased
malnutrition problems, not only in developing economies but also in developed countries where,
although food is available, its nutritional value is poor [8]. Nowadays, consumers in developed countries
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are increasingly concerned with the chemical residues in products, demanding more sustainable
agricultural practices focusing on safer products, free of chemical residues. It is urgent to act in a
sustainable manner to face the current societal challenges to guarantee the production of foods with
high nutritional content combined with low environmental foodprint.

Biofortification appears to be a promising strategy to fulfill the constraints previously described.
It is defined, according to the World Health Organization (WHO) as, “the process by which the
nutritional quality of food crops is improved through agronomic practices, conventional plant breeding,
or modern biotechnology” [9]. Within this context, the agronomical practices aim to improve mineral
uptake, either through fertilizer application or increased nutrient solubilization and mobilization in
the soil [10]. The other two methodologies focus on the improvement of micronutrient contents of
edible plant tissues and their bioavailability for humans [11].

The first steps in biofortification programs were made when rice genetically modified with
beta-carotene, golden rice, appeared [12]. However, golden rice is not yet commercialized as genetically
modified crops are not very well accepted by several societies [13]. The HarvestPlus program is one of
the most significant, systematic, and symbolic breeding programs. It is a large biofortification platform
launched in 2004 to reduce micronutrient malnutrition in Asia and Africa. The program has focused
on seven staple food crops (rice, beans, cassava, maize, sweet potatoes, pearl millet, and wheat) and
targeted three major nutrients (Fe, Zn, and vitamin A) [11].

Carvalho and Vasconcelos [11] and Garg et al. [14] have reviewed these three biofortification
methodologies and performed an analysis of their strengths, weaknesses, opportunities, and threats.
They concluded that the success of the biofortification programs is strongly dependent on the farmers
and public acceptance as well as on political support, which will dictate their cost/benefit. Regarding
future scientific challenges, one of the major issues in this field is the incomplete understanding of the
rate-limiting steps that are involved in translocating minerals to seeds, and further studies in this area
are required. Also, the assurance that careful and systematic safety analyses of these products will be
conducted before they become readily available to consumers is of extreme importance. Metabolomic
studies will provide added value for food safety assessment programs, allied with currently used
analytical methods.

There is still a long way to go before biofortification is strongly implemented and sustained.
Some efforts have already been made in this direction to integrate biofortification into global standards
and guidelines by the Codex Alimentarius, the food standards-setting agency, together with WHO,
the Food and Agriculture Organization of the United Nations (FAO), and the Sanitary and Phytosanitary
Agreement (SPS) of the World Trade Organization (WTO) [15].

The utilization of biofertilizers—“products that contain living microorganisms, which exert direct
and indirect beneficial effects on plant growth and crop yield through different mechanisms”—[16] is an
important environmentally friendly alternative to the strategies described above. Many studies show
the possible roles of rhizospheric and endophytic microbes in crop biofortification [17]. More recently,
several studies have shown that plant growth-promoting bacteria (PGPB), directly or indirectly, enhance
plant growth, crop nutrition, and tolerance to abiotic stress [18–26] through several mechanisms.
The utilization of these bacteria has been suggested as a promising green technology for increasing the
nutrient content of crops from a biofortification perspective.

Legumes are a good target for increasing the nutritional value of foods, particularly in developing
countries where cereals and legumes are the major food source. The association of legumes with
their natural colonizing microorganisms appears to be a powerful combination for a sustainable and
eco-friendly approach to cope with climate change effects on crops and to improve plant nutrition.
Apart from their rich nutritional value, legumes also play an important ecological role [27].

In this review, we will focus on the: (i) importance of legumes in the accomplishment of United
Nations Sustainable Goals for production systems; (ii) understanding the role of PGPB in plant nutrition;
(iii) iron biofortification of legumes with PGPB, which is an interesting case study of a green technology
for sustainable plant-food production improving nutrition and promoting sustainable agriculture.
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2. The Importance of Legumes in the Accomplishment of the Sustainable Development Goals

The world is facing a time of important agricultural losses in terms of productivity and nutritional
crop value due to the well-known climate change phenomenon, which includes global warming and
more frequent occurrence of severe weather events (heavy rains and drought). As a consequence,
more than two billion people suffer from malnutrition problems due to food shortage (acute hunger)
or insufficient intake of essential micronutrients (hidden hunger) [28]. Deficiency in the main
micronutrients, zinc (Zn), iron (Fe), and selenium (Se), has a great impact on human health. Zn deficiency
reflects in inappropriate physical growth, wound healing, and skeletal development, and is associated
with augmented risk of infection. Fe deficiency is associated with cases of anemia and fatigue,
also affecting the immune system. Se deficiency can affect male fertility, impair the immune system,
increase infection vulnerability, cause mental slowing, and result in cases of hypothyroidism [29].

There has been a growing demand for sustainable agricultural practices to achieve food security
in this milieu, and so-called “climate-smart agriculture”, which aims at using agricultural approaches
that are “resistant” to climate change effects and are environment-friendly, has emerged [28]. In 2015,
the United Nations (UN) outlined 17 goals in a “Sustainable Development Goals Project”, with the
second being to “end hunger, achieve food security and improve nutrition, and promote sustainable
agriculture” [30]. This problem is not only affecting human health and the environment but also
has a great impact on the economy, representing the most important socio-economic challenge
of the century [31]. Amongst the strategies proposed by the UN to improve food nutrition and
fight malnutrition are increases in dietary diversity, food supplementation, food fortification,
and biofortification [32]. Fortification of foods during processing appears to be a promising way to
improve the nutrient composition of meals; however, this strategy is not accessible to all populations [32].

Biofortification appears to be a feasible approach to improve the nutritional value of foods, with a
special significance for the most deprived populations [11,33]. Plants are an important source of
essential minerals and vitamins, and in developing countries grains and legumes are the primary,
and often the only, source of food [34]. In particular, legumes are excellent sources of amino acids,
nutrients, and vitamins, being similar to or even better than cereals [32]. Their inclusion in the
human diet has been reported as having many potential health benefits (Table 1). The presence of
some particular compounds in legumes, such as soluble fibers, antioxidants, flavonoids, etc., seems
to be associated with reduced cases of diabetes, cardiovascular diseases, and some types of cancers,
among others [35,36]. However, these types of studies are still not conclusive as the effect of legume
consumption on human health seems to be dependent on the type, amount, and frequency of legume
consumption, and they also do not consider the effects of processing [35]. In the environment, legumes
are part of the symbiotic N fixation process, reducing the need for N fertilizer, decreasing agricultural
CO2 emissions, and improving soil composition [37]. The inclusion of legumes in crop rotation systems,
besides conferring pest and disease resistance to the succeeding crops [38], can reduce greenhouse gas
emissions by up to 25% [39].

Table 1. Summary of the potential beneficial effects of legume consumption on human health.

Potential Beneficial Health Effects References

Increased immunological, metabolic, and hormonal regulation [40,41]
Anticarcinogenic (breast, colorectal, endometrium, and prostate cancers)
and anti-inflammatory effects [42–46]

Reduced risk of cardiovascular and obesity-related diseases, and
metabolic syndrome [47–50]

Reduced cholesterol levels [51,52]
Reduced risk of type 2 diabetes mellitus [53–55]
Reduced risk of osteoporosis and depression [56–59]
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In 2014, the UN highlighted the importance of legume biofortification programs, making them
a good target in the fight against hidden hunger. However, little has been done since then, and the
biofortification of legumes remains little explored [32]. Also, 2016 was considered the International
Year of the Pulses by the UN. Pulses are legume crops harvested for dry grain production and are
the cheapest source of vitamins, micronutrients, and proteins, making them available for everyone
and the perfect target for biofortification [60]. Although legume consumption and cultivation have
clear benefits, their cultivation has decreased considerably in the last 50 years compared to cereals [38].
One of the reasons for this decrease might be related to their high susceptibility to climate stresses,
making them less attractive to farmers. Research working towards improved legume cultivars less
susceptible to environmental stresses and with increased yield is therefore essential in a climate change
era [32,61].

3. The Role of PGPB in Legume Nutrition

Relationships between plants and microorganisms occur, generally, in the rhizosphere and exert
beneficial effects on plant nutrition and growth, providing plant resistance and/or protection against
biotic and abiotic stresses [62]. Bacteria are the most predominant microorganisms in the soil (95%)
and the greater concentration is found in the rhizosphere [63].

There is a special type of bacteria, the PGPB, which includes either free-living bacteria or those
that establish symbiotic relationships with plants in the rhizosphere or via endophytic colonization [64],
that are very promising to be used in plant-based biofortification programs for the nutritional
improvement of food crops. Plant growth promotion can be achieved by a series of mechanisms that
can be direct: N fixation [65], nutrient (Fe, K, P, and Zn) solubilization [66,67], production of several
phytohormones (auxins, cytokinins, gibberellins, ethylene, and abscisic acid) [68–70], and production
of siderophores and organic acids [19,71,72], or indirect: biocontrol activity through Fe chelation,
induced resistance, production of antibiotic, extracellular enzymes and cyanide, and competition
for niches in the rhizosphere [73,74]. This promotion involves a series of bacterial components
that act in very specific ways. Molecules produced by PGPB are involved in several overlapping
mechanisms, influencing plant growth and nutrition and resistance simultaneously. This subject
has been reviewed by Premachandra et al. [75] and Rosier et al. [76]. Figure 1 illustrates the main
mechanisms underlying plant growth promotion by bacteria, regarding important molecules involved
in the different mechanisms.
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Figure 1. Schematic representation of the main processes and relevant molecules underlying
plant growth promotion by bacteria. Abbreviations: AHL = N-acyl homoserine lactone; DAPG
= 2,4-diacetylphloroglucinol; DMDS = dimethyl disulfide; HMB = 3-hydroxy-5-methoxy benzene
methanol; IAA = indole-3-acetic acid; ISR = induced systemic resistance; N = nitrogen; Nod = nodulation;
PAA = phenylacetic acid; SA = salicylic acid.
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Apart from all these mechanisms, PGPB have an important impact on the control of several abiotic
stresses and in the bioremediation of polluted soils [77–79].

Focusing on nutrient uptake, in particular, PGPB can act in three different ways: replacing soil
nutrients, increasing nutrient availability, and/or improving plant access to nutrients [80].

Several studies have shown the importance of PGPB in the uptake of B, Cu, Fe, Mn, and Zn, through
the release of organic acids or the production of siderophores [22]. Furthermore, these microorganisms
excrete chelating agents and potentiate redox changes and acidification of the rhizosphere, improving
the mobility and availability of plant nutrients [18,20,81]. Inoculation with PGPB has had notable
success in several crops such as cereals, oil crops, vegetables, and legumes [23–26].

The utilization of PGPB in the improvement of nutrient content in plants is an example of a
biofortification strategy that seems to be very promising. Regarding legume biofortification with
PGPB, some studies are showing their potential, most of them in chickpeas, mung beans, and soybeans
(Table 2). Co-inoculation with Rhizobium galegae bv. orientalis HAMBI 540 and Pseudomonas trivialis
3Re27 increased the nodule numbers and N content of fodder galega plants [82]. Two similar studies
in lentils and peas proved that co-inoculation with Rhizobium leguminosarum-PR1 and Pseudomonas
sp. NARs1 or Pseudomonas sp. PGERs17 improved nodulation, leghemoglobin, Fe and chlorophyll
contents, and N and P uptake [83,84]. A study in common beans showed that co-inoculation with
Pseudomonas sp. LG and Rhizobium phaseoli strain 123 potentiated plant growth and contents of N and
phosphorus (P) [85]. Also, inoculation with two Bacillus aryabhattai strains (MDSR7 and MDSR14)
improved the Zn uptake of soybeans and wheat in Zn-deficient soils [86]. Gopalakrishnan et al. [87]
tested seven PGPB in a study with chickpeas and pigeon peas and found Enterobacter ludwigii SRI-229
to be the strain better promoting root and shoot development, nodule formation, crop productivity,
and soil nutritional factors, followed by Brevibacterium antiquum SRI-158 and Acinetobacter tandoii
SRI-305. In that study, E. ludwigii and A. tandoii strains significantly increased Fe, Zn, copper (Cu),
manganese (Mn), and calcium (Ca) uptake in chickpeas and pigeon peas, respectively. Pantoea dispersa
MPJ9 and Pseudomonas putida MPJ6 isolates have been tested for their ability to produce siderophores,
showing a great Fe chelating potential under Fe deficient conditions; in this study, the Fe content of
mung beans was increased 3.4-fold, protein content 2-fold, and carbohydrate content 1.5-fold after
inoculation with the strain of P. dispersa [88]. Co-inoculation with Bradyrhizobium japonicum SAY3-7 and
Streptomyces griseoflavus P4 improved N, P, K, Ca, and magnesium (Mg) uptake in soybean plants [89].
A recent study showed that seed coating with Zn solution in combination with a Zn solubilizer PGPB,
Enterobacter sp. MN17, improved plant and grain yield and bioavailable Zn, rather than Zn application
alone, in chickpeas [90]. Co-inoculation of mung beans with Bacillus aryabhattai S10 and B. subtilis
ZM63 proved to be effective in the improvement of plant growth and nutritional composition; N, P,
and potassium (K) concentrations were significantly increased in shoots [91]. Also, inoculation of two
varieties of chickpeas with five different PGPB (Symbion-K (Frauteria aurantia), Pseudomonas sp. RA6, P.
citronellis (PC), Serratia sp. S2, and Serratia marcescens CDP-13) increased macro- and micronutrient
concentrations in plants [92].
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Table 2. Summary of studies showing the potential of some bacterial genera for legume biofortification.

Bacterial Genera Crops Contribution to
Biofortification References

Rhizobium galegae bv. orientalis
HAMBI 540 + Pseudomonas trivialis

3Re27
Fodder galega Increase N content [82]

Rhizobium leguminosarum-PR1 +
Pseudomonas sp.

NARs1/Pseudomonas sp. PGERs17
Lentil, Pea Increase Fe, N, and P

uptake [83,84]

Pseudomonas sp. LG + Rhizobium
phaseoli strain 123 Common bean Increase P and N uptake [85]

Bacillus aryabhattai MDSR7 and
MDSR14, Enterobacter sp. MN17.

Chickpea, Soybean,
Wheat Increase Zn uptake [86,90]

Acinetobacter tandoii SRI-305,
Enterobacter ludwigii SRI-229 Chickpea, Pigeonpea Increase Fe, Zn, Cu, Mn,

and Ca uptake [87]

Bradyrhizobium japonicum SAY3-7
and Streptomyces griseoflavus P4 Soybean Increase N, P, K, Ca, and

Mg uptake [89]

Pantoea dispersa MPJ9, Pseudomonas
putida MPJ6 Mung bean Increase Fe uptake [88]

Bacillus aryabhattai S10 + B. subtilis
ZM63 Mung bean Increase N, P, and K

uptake [91]

Symbion-K (Frauteria aurantia),
Pseudomonas sp. RA6, P. citronellis

(PC), Serratia sp. S2, Serratia
marcescens CDP-13

Chickpea Increase macro- and
micronutrient uptake [92]

In recent years, the investigation into the role of PGPB as biofertilizers (BF) for biofortification
programs has intensified, although it is still rare. BF, also termed biostimulants, are considered “any
substance (of biological origin) or microorganism or their combination applied to plants, seeds, or soil
to enhance nutrient uptake efficiency, stress tolerance activation, and crop quality improvement” [93].
Their ability to improve crop quality, productivity, and nutrient uptake is of particular interest at
present. BF act in the recycling of nutrients between plant roots, microorganisms, and soils and are key
components of integrated nutrient management [94].

Commercial rhizobia-based bioinoculants have existed for more than 100 years, and it is estimated
that only 5% of the total fertilizer market includes BF, with about 150 microbe-based registered products
available for use in agriculture [95,96]. There are several types of BF including N fixers and solubilizers
of boron, P, potash, sulfur, Zn, among others [79]. N fixer BF are the most predominant in the market
(78%), followed by P solubilizer BF (15%) [97]. Phytohormone-based BF are also used in agriculture
as plant growth regulators [70]. Some examples of commercially available BF are Bio-N, Azonik,
Green Earth Reap N4, Get-Phos, BioPotash, Siron, MicroZ-109, and BioSilica, which include strains of
Azospirillum, Azotobacter, Rhizobium, Bacillus, and Thiobacillus and contribute to increased crop yields
and soil fertility, showing their potential to be used in sustainable agriculture practices [98,99].

Crop yield can be improved up to 10%–40% with the inclusion of BF, mainly through increases in
nutrient uptake [100].

The contribution of PGPB as BF is still very limited at a global level, and it is expected that in the
near future the BF market will increase substantially to cope with population growth, the requirements
of sustainable agricultural, consumer awareness of product residues, and the environmental impact of
crop production. Furthermore, most of the research in this area is focused on rhizobacteria, and the
role of endophytic bacteria is still little explored or understood.

4. Iron Biofortification of Legumes with PGPB: A Case Study

In the human diet, Fe is one of the most important micronutrients, being involved in the proper
functioning of hemoglobin [31]. Human Fe deficiency is associated with cases of anemia, especially
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prevalent in pregnant women and preschool children. This micronutrient deficiency is the only one
common to developing and developed economies [101].

In plants, Fe is an essential micronutrient required for multiple biological events, being the fourth
most abundant element in the soil. It is required for photosynthesis, respiration, chlorophyll synthesis,
and N fixation [102]. Ferric Fe (Fe3+), the form present in the soil, cannot be absorbed by plants,
especially in calcareous soils with pH ranging from 7.5 to 8.5 [103,104]. Fe deficiency compromises the
production of crops growing on alkaline soils around the world [102,105], and to mitigate this problem
plants have evolved two strategies for Fe uptake. Strategy I, found in non-graminaceous monocots and
dicots, is characterized by the release of protons, which results in the acidification of the rhizosphere,
followed by the reduction of Fe3+ to Fe2+ through the activity of the ferric chelate reductase (FC-R)
FRO2, and transportation to the root epidermal cells by the iron-regulated transporter 1 (IRT1) [102].
Strategy II, found in graminaceous monocots, is characterized by the production of phytosiderophores,
which are responsible for Fe chelation, being the Fe-chelating complexes transported to the root
epidermic cells [106].

In the Fe uptake process, there are specific low-molecular-weight organic compounds (1–2 kDa)
produced by PGPB, under Fe-limiting conditions, called microbial siderophores [107]. They can
bind Fe3+ at high specificity, increasing Fe solubility, and when this complex connects to specific
bacterial receptors, Fe is more easily absorbed and converted to Fe2+ [108]. They are classified into
three groups: hydroxamates, catecholates (phenolates), and carboxylates, according to the ligands that
bind to Fe3+ [109]. It has been proposed that bacterial siderophores are involved in the promotion
of Fe uptake by Strategy I plants (where legumes are included) through three different approaches:
(1) sharing of ferric ions between microbial siderophores and plant FC-R, thus promoting Fe reduction
and transport into the plant, (2) influence on the plant’s perception of Fe deficiency conditions through
the production of indole-acetic acid and ethylene, or (3) sequestration of the Fe required for the growth
of phytopathogens [3,110–112]. Gram-positive and Gram-negative bacteria can produce siderophores
under Fe deficiency [113,114]. These iron-chelating compounds are produced by several bacterial
genera such as Agrobacterium, Bacillus, Burkholderia, Citrobacter, Enterobacter, Escherichia, Klebsiella,
Pseudomonas, Rhizobium, and Stenotrophomonas [115].

As previously discussed, PGPB help in the uptake of several macro- and micronutrients,
particularly of Fe. Few studies have shown the potential of legume biofortification regarding Fe
uptake. Inoculation of chickpeas with siderophore-producer PGPB increased the Fe concentration
by 81% and 75% in grains and shoots, respectively [116]. Also, in chickpeas, a study proved that
inoculation with 19 Acinetobacter species increased overall seed nutrient content, with an increase of
10%-38% in Fe composition [117]. Also, pigeon peas and chickpeas treated with Enterobacter ludwigii
SRI-229 and Pseudomonas monteilii SRI-360 had augmented nutrient composition and plant biomass;
Fe content was increased up to 18% [87].

Both studies warn of the effects of postharvest processing and cooking on Fe concentration. Patel
et al. [88] showed that the Fe content of mung beans could be improved 3.4-fold when inoculated with
a Pantoea dispersa MPJ9 isolate. Biofortification of Fe using PGPB is a potential reality. Further studies
are needed to assess the feasibility of using such types of bacteria at large scale and in field conditions.
Efforts for Fe biofortification should also combine strategies to reduce the loss of Fe content during
postharvest and processing.

5. Conclusions

Legumes are undoubtedly highly important targets to improve human nutrition while promoting
sustainable agriculture. Biofortification of legumes with PGPB is potentially a cost-effective and
environmentally safe approach to reduce dependency on chemical fertilizers and on costly
biofortification techniques. We face an era where climate changes and increasing population are
prevailing, and the combination of PGPB and legumes will most probably be a powerful tool to cope
with hidden hunger and a trend for sustainable modern agriculture. Nonetheless, further investigation
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on which legumes, bacteria, and specific traits are needed and how they work under different soil
compositions and environmental conditions is still essential. There are several studies regarding
plant–microbe interactions and their important role in the environment; however, their transposition to
agroecosystems and all their implications are still little explored. Furthermore, although the importance
of legumes in providing essential nutrients is obvious, the lack of investigation limits the extent of
their application in comparison with cereals.
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