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Abstract: This paper focuses on the agronomic evaluation of a synthetic NPK (N in the form of
urea, P and K in the form of phosphate monopotassium) fertilizers blended with four types of pine
(Pinus sylvestris L.) wood biochar prepared at different thermal regimes (300 ◦C, 400 ◦C, 600 ◦C
and 700 ◦C). The evaluation of benefits was done based on crop nutritional status and soil fertility.
The pot experiment was set up with fertile Haplic Luvisol fertilized with 1.85 g kg−1 of blends of
biochar (1.25 g) with urea (310 mg) and KH2PO4 (290 mg), which is equivalent to 500 kg ha−1 (biochar
~67.6%; N ~7.8%; P ~3.6%; K ~4.7%) applied before sowing. Only NPK blends made with biochar
containing 75% or 85% carbon increased the biomass of 27-day old wheat seedlings from 12% to 20%
in comparison to NPK applied alone. These blends raised the content of Mn and Fe in plants but
decreased the contents of Ca and Mg. All the tested mixtures enhanced soil fertility by increasing
the content of humic acids. Additionally, the content of potentially phytotoxic phenolic compounds
was lower. In general, the addition of biochar to NPK fertilizer did not show a negative effect on
crop quality. The overall results of the study suggest that the application of low doses of biochar to
synthetic fertilizer can benefit crops and can support soil fertility.

Keywords: NPK fertilizer; blends; soil organic matter; nutrients uptake; humic acids; phenolic
compounds

1. Introduction

The application of different forms of organic material is a well-known, traditional strategy used to recover
soil fertility by replenishing soil organic matter (SOM), and consequently, stimulating the development,
resistance, and nutrient profile (ionome) of plants. However, the necessity of using bulk quantities
of traditional manure, which has a short life span in soil, limits its effectiveness. Fertilizing with
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biochar (BC), the product of pyrolysis of organic materials in a low or no oxygen environment (see
Antal and Grønli [1]) has become an interesting option for agricultural production. Applying biochar
at high doses can improve soil fertility in different climate zones. The yield-stimulating effect of
biochar is especially beneficial for crop production in the low-nutrient, acidic soils in the tropics [2–8].
In addition, applying biochar to the soil is a potential strategy for carbon sequestration to mitigate
climate change [9,10]. A high proportion of biochar can also increase soil water retention [11]. This effect
has especially been seen in sandy soil enriched with biochar prepared at higher pyrolysis temperatures
due to its high surface area [12,13] and indirectly via subsequent increases in organic carbon (C)
in the soil [14] when plant growth was stimulated. The contradicting positive and negative effects
of applying BC on SOM fractions have been described in the literature. Among others, Cross and
Sohi [15] and Steiner et al. [16] reported that BC can alter the mineralization of organic matter in
the soil. This fact is linked to the microbial release of nutrients such as nitrogen (N) from the SOM to
compensate for high C:N ratios after the use of BC [17,18]. Alternatively, the added organic matter
from plant residues was incorporated more rapidly into stable organic mineral fractions of BC-rich as
opposed to BC-poor soils from the Central Brazilian Amazon [19]. Furthermore, total C mineralization
was lower in BC-rich soils, despite a higher microbial biomass than in BC-poor adjacent soils during
almost 1.5 years of incubation [19]. Demisie et al. [20], Lin et al. [21] and Tian et al. [18] also reported
increases in the microbial biomass of C, the dissolved organic C content (DOC) and the level of
the light fraction of organic C in BC-enriched subtropical soils compared with soils unamended
with BC. In other field studies of temperate zone soils, the application of BC did not affect levels of
either dissolved organic N (DON) or carbon [22], whereas it decreased the DOC concentration in
Chernozem [23]. These contradictory effects of applying BC on SOM fractions may be attributed to
the specific processes governing C and N cycling under specific climatic conditions, as well as to
varying management practices such as adding NPK fertilizer or other plant residues. Moreover, there is
a lack of comparative research on the effects of different qualities of BC produced under various
temperature regimes from the same type of organic substrate, in particular with respect to the content
of C and N, which vary depending on production temperatures [24]. Elzobair et al. [25] demonstrated
that the presence of biochar did not affect the activities of β-glucosidase, β-D-cellobiosidase or
N-acetyl-β-glucosaminidase. In turn, the activity of β-xylosidase, which is essential for the complete
breakdown of xylans, was markedly decreased. Other authors also noted reduced enzyme activities in
biochar-enriched soil [26,27]. Still, others showed the positive impact of biochar on enzymatic activity
in the soil [18,28–31]. The varied effects were probably dependent on both the type and dose of biochar
applied, which may impact the ability to sorb organic compounds and not just enzymes [25,29,30].
The aforementioned studies were mostly done with pure BC applied at high doses ≥10 Mg ha−1

under field conditions or ≥2.5% (w/w) in pot experiments. The use of such high doses of biochar in
agricultural practice on large areas for main cash crops such as cereals, maize or potato is technically
difficult. Moreover, the present market price of BC offered by firms targeting industrial agricultural
application ranges from $300–500 Mg−1 in the US [32], and in Europe, according to Schmidt and
Shackley [33], the cost of biochar was found to be as low as €200 Mg−1. Currently, these obstacles
make it possible to use BC only in small quantities or in high-end specialty markets. One option
for introducing BC into agricultural practice is to combine the application with NPK fertilizers,
as a proposed slow-release fertilizer to enhance soil fertility [34–38] or use as an alternative planting
substrate to replace the conventional black peat [39]. It is also worth emphasizing that there have
been very few comparative studies on the impact of applying NPK fertilization with biochar produced
from pine wood chips either on agricultural crops or on SOM. Among different organic substrates
used for biochar production, the most suitable materials are pine wood chips from forests in temperate
regions of the world. Winter wheat was used for the phytotron bioassay, because it is the main cereal
crop in Central Europe and is grown on good arable soils. Interestingly, it was hypothesized that
the various levels of biochar carbonization used as soil amendment led to different biological activity in
the soil, SOM composition, and nutrient status of plants during short-term incubation. Thus, the aim
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of this study was to investigate in a pot experiment the impact of low doses of four types of biochar
prepared under different thermal regimes together with NPK fertilization on the growth of winter
wheat seedlings, the mineral uptake by the plants, the changes in the quality and quantity of soil
organic matter and the changes in some of the enzymatic activities in the soil.

2. Materials and Methods

2.1. Tested Types of Biochar

Four types of biochar were prepared from pine (Pinus sylvestris L.) wood chips under different
thermal regimes in an electrically-heated furnace in an oxygen-free atmosphere until the end of
the devolatilization process. Biochar type I, biochar type II, biochar type III and biochar type IV were
prepared by the devolatilization of pine wood chips at 300 ◦C for 70 min, at 400 ◦C for 20 min, at 600 ◦C
for 8 min and at 700 ◦C for 7 min, respectively. The porosity determined by a mercury porosimeter
(Quantachrome Instruments model PoreMaster 33, Anton Paar QuantaTec, Inc., Boynton Beach, FL,
USA) of tested biochars were 31.5%, 53.5%, 46.2% and 26.4%, respectively. The chemical characteristics
of the types of biochar tested are summarized in Table 1.

Table 1. Chemical properties of tested types of biochar used in a pot experiment.

Type of Biochar Abbreviations * H (%) C (%) N (%) P (%) K (%) S (%)

Biochar type I BC52% 5.4 a 52 c 0.39 a 0.059 a 0.321 a 0.004 a
Biochar type II BC50% 4.3 a 50 c 0.33 b 0.058 a 0.301 a 0.004 a
Biochar type III BC75% 2.6 b 75 b 0.29 c 0.053 a 0.290 a 0.003 a
Biochar type IV BC85% 1.9 b 85 a 0.26 c 0.054 a 0.294 a 0.003 a

* The percentage values of the abbreviations refer to the C content of biochar. Values are the mean of three replicates
of each sample. Values are followed by different letters in columns indicating significant differences according to
Tukey’s test (p < 0.05).

2.2. Pot Experiment

Caryopses of winter wheat (Triticum aestivum L.) cv. Scirocco were used in the pot experiment.
The pots were filled with soil collected from the organic horizon of a commercial field in Przeworno
(50◦68′ N 17◦18′ E), which was a Haplic Luvisol (loamic) soil (pHKCl 7.1, Ctot. 0.99%). The soil was dried
and sieved using a 2 mm sieve. The granulometric composition of the soil was as follow: sand 62% with
dominant medium and fine fractions, silt 11% and clay 27%. The content of plant-available nutrients
in the soil was as follow: phosphorus P 158 mg kg−1, potassium K 162 mg kg−1 and magnesium Mg
110 mg kg−1. The soil had not been previously manured with biochar. The following groups were set up:
CONTROL—control soil without fertilization; NPK—soil with NPK (24:11:14) fertilization composed
of urea (310 mg kg−1) and KH2PO4 (290 mg kg−1); NPK + BC52%—soil with NPK fertilization as
above mixed with biochar type I; NPK + BC50%—soil with NPK fertilization as above mixed with
biochar type II; NPK + BC75%—soil with NPK fertilization as above mixed with biochar type III;
NPK + BC85%—soil with NPK fertilization as above mixed with biochar type IV. All the tested types
of biochar were applied with a dose of 1.25 g blended with 600 mg of NPK fertilizer, and the mixture
in a dosage of 1.85 g kg−1 of air-dried soil was carefully mixed. This was an equivalent to 500 kg
ha−1 of blend (biochar ~67.6%; N ~7.8%; P ~3.6%; K ~4.7%) applied before sowing. Each plastic pot
(volume 1 dcm3, height 8 cm; circumference 45 cm) was filled with 1 kg of tested soil and the soil layer
was about 6 cm high. The space among pots was kept at a distance of ~5 cm. Each group was set up
with three replications. The experiment was conducted as completely randomized designs after each
watering in three replications. Pots were watered up to 60% of water holding capacity and stored for
3 weeks at 16–18 ◦C in a dark room before sowing. During the incubation period, the constant soil
moisture based on weight loss was kept at 60% of the water holding capacity by adding deionized
water every second day. Such a level of moisture secures a proper proportion of air–water phases.
Thirty seeds of winter wheat were placed in each pot with the soils as described after 30 days of
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incubation. Pots with plants were kept in a controlled growth chamber with a photoperiod 16 h/8 h
light/dark and 26–28 ◦C/16–18 ◦C day/night temperatures for 27 days.

2.3. Plant Analyses

2.3.1. Study of Wheat Germination and Biomass

Observations of germination were conducted 5 and 9 days after sowing the seeds in the pots.
The proportion of seeds that germinated in each soil amendment was calculated. The model provided
a statistical test of the hypothesis that germination was not affected by the amendment, and the standard
error for each proportion was calculated. After the plants germinated, the number of plants was
equalized to 25 seedlings per pot. Tested plants were grown for 27 days and harvested. The fresh
biomass of the tested winter wheat was dried at 105 ◦C and subjected to chemical analysis.

2.3.2. Chemical Plant Analysis

The levels of macronutrients, micronutrients and metals were determined in the dry mass of
the harvested plants, which were ground and subjected to mineralization. The nitrogen content was
determined using the Kjeldahl method, involving wet digestion and distillation [40]. The total sulfur
content was determined with the Butters and Chenery method [41]. Dry mineralization was used to
determine other macro- and micronutrients. The contents of the following elements were assayed in
a mineralized solution: P—according to the colorimetry method, K and Ca by the flame photometry
method. Mg, Mn, Fe, Cu, Zn, Ni, Cd and Pb were assayed using atomic absorption spectrometry (AAS)
(Varian model SpectrAA 220FS, Varian Medical Systems, Inc., Charlottesville, VA, USA).

2.4. Soil Analysis

2.4.1. Preparation of Soil Samples

After cutting off the above-ground parts of winter wheat, bulk soil samples were immediately
frozen in liquid nitrogen and then lyophilized for enzymatic analysis. The lyophilized soil samples
were stored at −72 ◦C. After removing the roots, the remaining bulk soil samples were dried (110 ◦C),
sieved (2.0 mm) and stored at room temperature for later use.

2.4.2. Physicochemical Properties of Soil

Soil acidity was determined in 1:2.5 soil:1 M KCl suspensions using a digital pH meter CP 505
(Elemetron Co., Zabrze, Poland). The total content of C, N and S in the tested samples was determined
by the Dumas method of combustion using a TruSpec analyzer (Leco, Co., St. Joseph, MI, USA).
The product gas, containing CO2, H2O, SOx and NOx, was then passed through a series of infrared
detectors to determine the amount of C and S in the sample. The amount of N was determined with
the use of a thermal conductivity detector. Prior to the analysis, the sample gas was swept through hot
copper to remove oxygen and change NOx to N, and then with Lecosorb and Anhydrone absorbents
to remove carbon dioxide and water. The content of plant-available phosphorus and potassium was
determined with the Egner-Riehm DL method [42] and the content of soluble magnesium with the
Schachtschabel method [43]. The content of soluble micronutrients and heavy metals in the tested
soils, such as manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), nickel (Ni), cadmium (Cd), lead (Pb)
and chromium (Cr), was determined with the Rinkis method [44] using AAS (Varian model SpectrAA
220FS, Varian Medical Systems, Inc., Charlottesville, VA, USA).
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2.4.3. Soil Organic Carbon

Soil Humic Acids

Soil humic acids (HA) were extracted from 30 g of dried soil with the modified Swift [45].
After shaking with 0.1 M NaOH (1:10, w/v) for 24 h, the soil sample was centrifuged (2500× g, 24 ◦C,
20 min). The supernatant was combined with the following supernatants obtained by first washing
soil pellets with 0.1 M NaOH and then with distilled water. Directly afterwards, the whole liquid was
acidified to pH 1.0 with 12 M HCl and left to precipitate the insoluble HAs for another 24 h using
a rotatory shaker at 150 rpm. The decanted pellet of HAs after washing with 0.1 M HCl was suspended
in 0.1 M NaOH for 1 h and then washed with distilled water again. All supernatants separated from
the residue by centrifugation were joined and acidified to pH 1.0 with 0.1 M HCl. Black colored HAs
were precipitated by centrifugation and also washed with distilled water. The obtained sediment was
dissolved overnight in 20 mL of 0.02 M NaHCO3. Finally, the suspension of HAs was precipitated by
acidification with a mixture of HCl/HF acids (100:1, v/v) to pH 1.0. After 24 h, the pellet of HAs was
collected by centrifugation and washed several times with distilled water until the reaction on the Cl-
ions disappeared. The obtained precipitate was dried under a vacuum until the constant weight and
dry mass per 1 kg of tested soil sample was calculated.

Soil Free Phenolic Acids

The extraction procedure of free phenolic acids in the tested soil samples was based on
the Krygier et al. [46] with some modification. Free phenolic compounds were extracted from 50 g soil
samples five times with 100 mL of acetone/methanol/water (7:7:6, v/v). The combined supernatants
were filtered and separated by centrifugation (10 min, 1000× g) at a temperature < 30 ◦C. The organic
fraction of the supernatant was evaporated under a vacuum at 45 ◦C, and the remaining water fraction
was acidified with 6 M HCl to pH 2.0. The precipitate was removed by centrifugation as above.
Then, the supernatant was extracted six times with hexane equal to the water phase and then six
times with a mixture of diethyl ether/ethyl acetate (1:1, v/v). The combined organic fraction of diethyl
ether/ethyl acetate was dehydrated with Na2SO4. After filtration, the solution of diethyl ether/ethyl
acetate was evaporated under a vacuum at 30 ◦C until dry. The residue was dissolved in 2 mL of ethyl
acetate. Absorbance was determined at 320 nm using ferulic acid (Sigma-Aldrich, Inc., Saint Louis,
MO, USA) as a standard. The concentration of phenolic compounds was expressed as µg per 1 g of
dry soil.

Glomalin Concentration

The total glomalin (TG) from the soil samples was extracted in a 50 mM citrate buffer, pH 8.0,
according to Gałązka [47] with some modifications. The soil samples (10 g) were covered with the
buffer and autoclaved at 121 ◦C for 60 min. Extraction was carried out several times until the organic
fraction was totally washed out of the soil. After each autoclaving, the buffer containing the solubilized
glomalin was poured off, and the soil samples were covered with the sterile buffer again. The buffer
extractants, collected after each heating, were combined and supplemented at an equal volume for each
sample and centrifuged at 10,000× g for 10 min at 4 ◦C. The supernatants were stored at 4 ◦C for later
analysis. The glomalin content in the buffer extractants was determined according to Bradford [48] at
595 nm using bovine serum albumin (Sigma-Aldrich, Inc., Saint Louis, MO, USA) as a standard.

Water Extractable Carbon

The level of water extractable C was determined in fresh soil samples modified by Ghani et al. [49]
using the method of Haynes and Francis [50]. The extraction of water extractable C was conducted in
two steps. The first step involved the removal of readily soluble C from the soil that may have come
from recent liming of the soil or from animal excreta or soluble plant residues. Soil samples equivalent to
5 g (oven-dry weight) were weighed into 50 mL polypropylene centrifuge tubes. These were extracted
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with 50 mL of distilled water for 30 min on an end-over-end shaker at ~30 rpm and centrifuged at
20 ◦C for 20 min at 1000× g at 20 ◦C. Then, the supernatant was filtered (0.45 mm cellulose nitrate
membrane) into separate vials for carbon analysis. The fraction of the soil organic carbon was classified
as water soluble C (WSC). The second step involved the extraction of labile components of soil carbon
at 80 ◦C for 16 h. This is subsequently referred to as hot-water extractable carbon (HWC). A further
50 mL of distilled water was added to the sediments in the same tubes. The tubes were shaken on
a vortex shaker for 10 s to suspend the soil in the water. The tubes were capped and left for 16 h in
a hot-water bath at 80 ◦C. At the end of the extraction period, each tube was shaken for 10 s on a vortex
shaker to ensure that HWC released from the SOM was fully suspended in the extraction medium.
The tubes were then centrifuged for 20 min at 1000× g at 20 ◦C. The supernatants were filtered (0.45 mm
cellulose nitrate membrane). The total organic carbon (TOC) content in both fractions was measured
using the Sievers InnovOx Laboratory TOC analyzer (GE Analytical Instruments, General Electric, Co.
Boston, MA, USA). The content of water soluble organic carbon (WSOC) and of the hot water soluble
organic carbon (HWSOC) in the tested samples was estimated as the difference between the content of
total carbon (TC) and inorganic carbon (IC) of WSC and HWC, respectively. A measurement of each
sample was made in four repetitions with a flush of dilution water after each analysis. Before starting
the analysis, the pH of each sample was evaluated in order to determine the volume of acid and
oxidizer needed for measurement. Hydrochloric acid 3 M (HCl) at 5% of the sample volume and
an oxidizer (sodium persulfate Na2S2O8) at 15% of the sample volume was used. The aim of using
the acid was to reduce the pH to 2 to enable the transformation of carbonate salts or bicarbonates to
carbon dioxide. Then, the mixture was pumped to the reactor at 375 ◦C and under 22.1 MPa pressure.
The inorganic C content in the extracts was generally less than 4% of the total hot-water extractable C.

Enzymatic Activity

Lyophilized soil samples were used to estimate soil enzyme activities with the method described by
Schinner and von Mersi [51]. The enzyme activity was measured after incubating 1 g of toluene-treated
soil (0.5 mL) with 3 mL of 2% (w/v) suspension of the respective substrate, i.e., carboxymethyl cellulose
sodium salt (Sigma-Aldrich, Inc., Saint Louis, USA) or xylan from birch wood (Fluka Chemie GmbH,
Buchs, Switzerland) prepared in a 2 M sodium acetate buffer (pH 5.5) at 40 ◦C. The resulting Prussian
blue was measured at 690 nm. One unit of CMC-ase and Xylanase activity was defined as the amount
of enzyme that released 1 nmol of reducing sugars as glucose equivalents per hour in 1 g of lyophilized
soil. All enzyme activity was determined using a calibration curve for D-glucose.

2.5. Statistical Analysis

All tests were done in three replications. A variance analysis with a single classification was
carried out and significant differences among the means were revealed through Tukey’s test with a 95%
level of significance [52].

3. Results

3.1. Germination and Yield of Winter Wheat Seedlings

Wheat germination was not noticeably affected by most of the tested treatments. After 5 days,
the emergence capacities in the control soil without fertilization (CON) and with mineral fertilization
(NPK) ranged from 84.3% to 87.8% and were significantly lower than in all the examined variants
with biochar, in which the emergence capacity ranged from 93.3% to 94.4%. However, after 9 days,
the germination capacity was not significantly different and ranged from 95.8% to 96.7% (data not
shown). The application of NPK fertilization alone or with the four tested types of biochar significantly
improved the yield of the fresh and dry biomass of seedlings in comparison to the control plants
grown in unfertilized soil (Figure 1A,B). The application of BC52% or BC50% blended with NPK
fertilization did not significantly change the growth of winter wheat seedlings in comparison with NPK
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fertilization applied alone. However, blended NPK fertilization with BC85% significantly improved
the yield of the fresh and dry biomass of wheat seedlings, by 12% and 20%, respectively (Figure 1A,B);
additionally, the application of NPK fertilization blended with BC75% significantly improved the yield
of dry biomass 20% in comparison with NPK fertilization alone (Figure 1B).Agronomy 2020, 10, x FOR PEER REVIEW 7 of 16 

 

 

Figure 1. Average yield of above-ground (A)—fresh biomass, (B)—dry biomass. Treatments: control 
soil without fertilization (Control), soil fertilizer with NPK alone (NPK), soil fertilized with NPK and 
biochar type I containing 50% of C (NPK + BC52%), soil fertilized with NPK and biochar type II 
containing 52% of C (NPK + BC50%), soil fertilized with NPK and biochar type III containing 75% of 
C (NPK + BC75%) and soil fertilized with NPK and biochar containing 85% of C (NPK + BC85%). 
Different letters on the bars indicate significant differences according to Tukey’s test (p < 0.05). Bars 
indicated the ±SD (p < 0.05). 

3.2. The Amount of Macro- and Micronutrients and Heavy Metals in Winter Wheat Seedlings 

As with the increase of the yield of the fresh and dry biomass of seedlings after the application 
of NPK fertilization alone, there was a significant increase in the content of macronutrients N, P, K 
and Mg but not of Ca in the seedlings of winter wheat in comparison to control plants grown in 
unfertilized soil (Table 2). However, the amounts of S were significantly lower after applying NPK 
alone or with any of the tested types of biochar. The application of the four tested types of biochar 
with NPK in most cases did not significantly change the content of N, P, K and S in seedlings 
compared to plants grown in soil fertilized with NPK alone (Table 2). However, noticeable decreases 
were observed in the amount of Mg after adding all four types of biochar and in Ca after applying 
BC50%, BC75% and BC85% types of biochar, in comparison with plants grown in soil with NPK 
alone. 

Table 2. Amount of macronutrients in 27-day old winter wheat seedlings. 

Groups * 
N tot. P K S tot. Mg Ca 

g kg−1 
Control 39.4 c 6.92 c 67.7 a 4.79 a 2.64 c 12.0 ab 

NPK 45.5 ab 8.01 ab 61.7 b 4.05 bc 3.59 a 13.9 a 
NPK + BC52% 48.4 a 7.57 bc 58.9 bc 4.02 bc 3.14 b 11.5 ab 
NPK + BC50% 42.5 bc 7.46 bc 54.7 c 3.68 c 2.96 bc 9.86 bc 
NPK + BC75% 42.1 bc 8.11 ab 58.5 bc 3.84 bc 2.80 bc 9.56 bc 
NPK + BC85% 43.7 abc 8.79 a 58.9 bc 4.16 b 2.86 bc 8.49 c 

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone, NPK + BC52%—soil 
fertilized with NPK and biochar type I containing 50% of C; NPK + BC50%—soil fertilized with NPK 
and biochar type II containing 52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III 
containing 75% of C; NPK + BC85%—soil fertilized with NPK and biochar containing 85% of C. Values 
are the mean of three replicates of each sample. Values followed by different letters in columns 
indicate significant differences according to Tukey’s test (p < 0.05). 

Figure 1. Average yield of above-ground (A)—fresh biomass, (B)—dry biomass. Treatments: control soil
without fertilization (Control), soil fertilizer with NPK alone (NPK), soil fertilized with NPK and biochar
type I containing 50% of C (NPK + BC52%), soil fertilized with NPK and biochar type II containing 52%
of C (NPK + BC50%), soil fertilized with NPK and biochar type III containing 75% of C (NPK + BC75%)
and soil fertilized with NPK and biochar containing 85% of C (NPK + BC85%). Different letters on
the bars indicate significant differences according to Tukey’s test (p < 0.05). Bars indicated the ±SD
(p < 0.05).

3.2. The Amount of Macro- and Micronutrients and Heavy Metals in Winter Wheat Seedlings

As with the increase of the yield of the fresh and dry biomass of seedlings after the application of
NPK fertilization alone, there was a significant increase in the content of macronutrients N, P, K and
Mg but not of Ca in the seedlings of winter wheat in comparison to control plants grown in unfertilized
soil (Table 2). However, the amounts of S were significantly lower after applying NPK alone or with
any of the tested types of biochar. The application of the four tested types of biochar with NPK in
most cases did not significantly change the content of N, P, K and S in seedlings compared to plants
grown in soil fertilized with NPK alone (Table 2). However, noticeable decreases were observed in
the amount of Mg after adding all four types of biochar and in Ca after applying BC50%, BC75% and
BC85% types of biochar, in comparison with plants grown in soil with NPK alone.



Agronomy 2020, 10, 1903 8 of 16

Table 2. Amount of macronutrients in 27-day old winter wheat seedlings.

Groups *
N tot. P K S tot. Mg Ca

g kg−1

Control 39.4 c 6.92 c 67.7 a 4.79 a 2.64 c 12.0 ab
NPK 45.5 ab 8.01 ab 61.7 b 4.05 bc 3.59 a 13.9 a

NPK + BC52% 48.4 a 7.57 bc 58.9 bc 4.02 bc 3.14 b 11.5 ab
NPK + BC50% 42.5 bc 7.46 bc 54.7 c 3.68 c 2.96 bc 9.86 bc
NPK + BC75% 42.1 bc 8.11 ab 58.5 bc 3.84 bc 2.80 bc 9.56 bc
NPK + BC85% 43.7 abc 8.79 a 58.9 bc 4.16 b 2.86 bc 8.49 c

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone, NPK + BC52%—soil fertilized with NPK
and biochar type I containing 50% of C; NPK + BC50%—soil fertilized with NPK and biochar type II containing
52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III containing 75% of C; NPK + BC85%—soil
fertilized with NPK and biochar containing 85% of C. Values are the mean of three replicates of each sample.
Values followed by different letters in columns indicate significant differences according to Tukey’s test (p < 0.05).

A comparison of the content of micronutrients and heavy metals in the seedlings of winter
wheat are summarized in Table 3. The application of NPK alone noticeably decreased the content
of micronutrients such as Fe and Cu as well as of heavy metals such as Cd and Pb, but increased
the amount of Zn in the plant biomass compared to the unfertilized control plants. The combined
applications of all types of biochar with NPK did not change the amount of Cu and Zn or heavy
metals such as Ni, Cd and Pb in comparison with NPK fertilization applied alone. However, there was
a noticeable increase in the concentration of Mn and Fe in the tested seedlings after using biochar BC75
and BC85 in comparison to all others tested plants (Table 3).

Table 3. Amount of micronutrients and heavy metals in 27-day old winter wheat seedlings.

Groups *
Mn Fe Cu Zn Ni Cd Pb

mg kg−1

Control 67.3 ab 938 b 18.3 a 64.2 b 6.87 a 1.08 a 2.35 a
NPK 59.3 b 655 cd 15.0 bc 73.7 a 5.38 a 0.58 b 1.09 b

NPK + BC52% 55.0 b 568 d 14.6 bc 72.7 a 4.93 b 0.67 b 1.33 b
NPK + BC50% 65.7 ab 861 bc 16.2 ab 72.4 ab 6.27 a 0.62 b 1.25 b
NPK + BC75% 76.0 a 1 419 a 14.3 bc 69.6 ab 6.87 a 0.56 b 1.23 b
NPK + BC85% 74.0 a 1 425 a 13.6 c 72.3 ab ND 0.62 b 1.07 b

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone; NPK + BC52%—soil fertilized with NPK
and biochar type I containing 50% of C; NPK + BC50%—soil fertilized with NPK and biochar type II containing
52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III containing 75% of C; NPK + BC85%—soil
fertilized with NPK and biochar containing 85% of C. Values are the mean of three replicates of each sample.
Values followed by different letters in columns indicate significant differences according to Tukey’s test (p < 0.05).

3.3. The Physicochemical Parameters of Soil

The application of NPK fertilization alone or with the four tested types of biochar on the physical
and chemical parameters of the soil after collecting 27-day old winter wheat seedlings did not
significantly change soil acidity, the total content of carbon, nitrogen, sulfur or the amount of soluble
magnesium in the soil in comparison with the unfertilized control groups (Table 4). The levels of plant
available phosphorus were higher in all soil samples after NPK fertilization. Applying the tested
types of biochar with NPK did not significantly change phosphorus availability in comparison to NPK
fertilization applied alone. The amount of plant available potassium was higher in soil samples after
applying NPK alone and after applying NPK with two types of biochar containing lower amounts
of carbon, BC52% and BC50%, compared to the unfertilized control soil (Table 4). A noticeable
decrease in plant available potassium was observed in the soil fertilized with NPK and biochar BC85%,
which contained the highest amount of carbon (Table 4).
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Table 4. The acidity and total amount of C, N and S, and amount of plant available macronutrients in
the tested soils after harvesting 27-day old winter wheat seedlings.

Groups * pHKCl
C tot N tot S tot P pa K pa Mg sol

mg kg−1

Control 6.99 a 9810 a 1313 a 16 a 184 b 173 c 90.2 a
NPK 6.84 ab 9520 a 1003 a 13 a 225 a 243 a 92.1 a

NPK + BC52% 6.70 b 9750 a 1293 a 14 a 238 a 251 a 91.6 a
NPK + BC50% 6.77 ab 9530 a 1213 a 11 a 222 a 225 ab 92.2 a
NPK + BC75% 6.81 ab 9930 a 1050 a 13 a 229 a 213 abc 95.4 a
NPK + BC85% 6.79 ab 9720 a 1050 a 11 a 234 a 192 bc 94.3 a

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone; NPK + BC52%—soil fertilized with NPK
and biochar type I containing 50% of C; NPK + BC50%—soil fertilized with NPK and biochar type II containing
52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III containing 75% of C; NPK + BC85%—soil
fertilized with NPK and biochar containing 85% of C; tot—total content; pa—plant available content; sol—soluble
content. Values are the mean of three replicates of each sample. Values followed by different letters in columns
indicate significant differences according to Tukey’s test (p < 0.05).

For the tested fertilizers, NPK alone or NPK plus different types of biochar, there was no significant
change in the amount of most soluble micronutrients and heavy metals in comparison to the unfertilized
control soil samples after 27 days of winter wheat growth (Table 5). Among the tested micronutrients,
only the amount of soluble Cu was significantly lower in soil samples from pots fertilized with NPK
alone or in from pots fertilized with NPK plus two types of biochar (Table 5).

Table 5. Amount of soluble micronutrients and heavy metals in tested soils after harvesting 27-day old
winter wheat seedlings.

Groups *
Mn Fe Cu Zn Ni Cd Pb

mg kg−1

Control 148 a 1185 a 11.6 a 14.58 a 1.44 a 0.15 a 8.50 ab
NPK 148 a 1199 a 7.16 bc 20.07 a 1.41 a 0.15 a 9.18 ab

NPK + BC52% 152 a 1219 a 7.15 bc 16.49 a 1.45 a 0.17 a 9.61 a
NPK + BC50% 144 a 1148 a 5.93 c 15.25 a 1.43 a 0.16 a 8.56 ab
NPK + BC75% 151 a 1166 a 10.2 ab 16.60 a 1.41 a 0.14 a 7.90 b
NPK + BC85% 138 a 1101 a 9.09 abc 18.89 a 1.41 a 0.14 a 8.24 ab

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone; NPK + BC52%—soil fertilized with NPK
and biochar type I containing 50% of C; NPK + BC50%—soil fertilized with NPK and biochar type II containing
52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III containing 75% of C; NPK + BC85%—soil
fertilized with NPK and biochar containing 85% of C. Values are the mean of three replicates of each sample.
Values followed by different letters in columns indicate significant differences according to Tukey’s test (p < 0.05).

3.4. Soil Organic Carbon

Soil amendments with NPK alone did not change the levels of humic acids, free phenolic acids
or glomalin, but significantly increased the content of WSOC, and at the same time significantly
decreased the content of HWSOC in comparison with the unfertilized control soil (Table 6). The biochar
applied together with NPK fertilization resulted in significant changes in the amount of most of
the aforementioned soil organic carbon compounds, except for the content of HWSOC, in comparison
with the control and NPK fertilized soils after 27 days of winter wheat cultivation. All four types of
biochar significantly increased the humic acid content in soil samples ranging from 15.7% to 21.4%,
while simultaneously decreasing the amount of free phenolic acids in the same soil samples ranging
from 21.0% to 34.3% in comparison to soil fertilized with NPK alone. Moreover, adding the tested
types of biochar, except for BC50%, to the NPK fertilization reduced the amount of glomalin’s in
the tested soils from 17.5% to 46.2% in comparison to soil fertilized with NPK alone. Only BC85%
significantly lowered the amount of WSOC in comparison with soil fertilized with NPK alone, but it
was still significantly higher than in the unfertilized control soil (Table 6).
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Table 6. Number of organic carbon fractions in tested soils after harvesting 27-day old winter
wheat seedlings.

Groups *
Humic Acids Free Phenolic Acids Glomalin’s WSOC HWSOC

mg kg−1

Control 3810 b 1.428 a 588.8 ab 307 c 1020 a
NPK 4200 b 1.431 a 683.8 a 443 a 864 bc

NPK + BC52% 5100 a 0.975 cd 317.0 b 441 ab 915 b
NPK + BC50% 4860 a 1.022 c 450.9 ab 427 ab 858 bc
NPK + BC75% 4990 a 0.936 d 322.4 b 409 ab 862 bc
NPK + BC85% 4930 a 1.112 b 367.9 b 400 b 815 c

* Control—soil without fertilization; NPK—soil fertilizer with NPK alone; NPK + BC52%—soil fertilized with NPK
and biochar type I containing 50% of C; NPK+BC50%—soil fertilized with NPK and biochar type II containing
52% of C; NPK + BC75%—soil fertilized with NPK and biochar type III containing 75% of C; NPK + BC85%—soil
fertilized with NPK and biochar containing 85% of C; WSOC—water soluble organic carbon; HWSOC—hot water
soluble organic carbon. Values are the mean of three replicates of each sample. Values followed by different letters
in columns indicate significant differences according to Tukey’s test (p < 0.05).

The enzymatic activity in bulk soil samples after 27 days of winter wheat cultivation showed
that CMC-ase and xylanase activities were not noticeably different in most of the tested soils.
Only the CMC-ase activity (2.13 nmol Glu h−1 g−1) in soil from pots fertilized with NPK and BC52%
was significantly higher in comparison to all other samples (data not shown).

4. Discussion

The aim of this study was to evaluate the agronomic efficiency of pre-sowing NPK fertilization
mixed with four types of biochar produced from pine wood chips under different thermal regimes and
containing different amounts of carbon. We tested blends of different types of biochar with the same
amount of NPK fertilization. The tested mixtures were applied in dosages of 1.85 g kg−1, containing N
~7.8%, P ~3.6% and K ~4.7%, and the majority of nutrients were easily water-soluble. These blends in
dosage of about 500 kg ha−1 can be used in place of pre-sowing mineral fertilization of fertile soils
in the temperate climate European zone. The effects of these blends in comparison to NPK applied
alone or to unfertilized soil on soil properties, winter wheat seedling growth, the biomass yield or
the ionome of seedlings were studied in a growth chamber experiment. As expected, the blending
of various types of biochar differentiated by the amount of carbon with the same dose of inorganic
fertilizer elicited different responses. The tested blends of NPK with biochar containing 52%, 50%,
75% or 85% carbon had a stimulative effect on winter wheat seedling emergence, but the overall effect
on germination was not statistically significant in comparison with the control. The stimulation of
seedling emergence could have been related to the slower release of nutrients from the NPK blended
with biochar, resulting in lower osmotic pressure, as was described by Gwenzi et al. [53]. Similarly,
no statistically significant effect of applying biochar in low doses on wheat seed germination was
observed by Alburquerque et al. [54]. However, Solaiman et al. [55] showed that biochar generally
increased the germination of wheat at application rates ranging from 10 to 50 Mg ha−1, although
they applied biochar alone as a single nutrient source. Despite no significant impact from the tested
NPK biochar blends on germination, there was a significant stimulative effect on the fresh biomass
yield of wheat seedlings observed after the use of an NPK blend with biochar containing 85% C, as
well as on the dry biomass yield after the use of NPK blends with biochar containing 75% or 85%
C compared to the application of NPK fertilizer alone. A meta-analysis done by Ye et al. [38] also
showed similar results to our study, with an average of a 15% (CI: 11%–19%) increase in yield of
several grain crops after the addition of biochar along with inorganic fertilization. They concluded that
biochar was as effective as fertilizers in increasing crop yields when added in combination with mineral
fertilizers. However, the improvement in the growth of winter wheat seedlings in our experiment
cannot be related to the nutritional value of two high carbon biochars, because the amounts added to
the soil of nitrogen, phosphorus and potassium were almost equal in all four types of biochar used
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for the preparation of the blends. Moreover, nutrients added to the NPK fertilizers with 1.25 g of the
tested biochar delivered only about 2.5%, 1.0% and 4.6% of the total amount of N, P and K, respectively.
The stimulation of seedling development by BC75% and BC85% produced at a high temperature can
be explained by the fact that such types of biochar generally have high surface areas [56,57] and are
good adsorbents of different ions [58]. Moreover, biochar of plant origin can lower the activity of
soil urease [59], slow down the release to the soil of adsorbed ammonium [60] and have remarkable
adsorption capacity of nitrate ions, which is probably what led to the longer availability of N and
others nutrients from the tested blends and supported better growth of the plants.

The influence of biochar was also noticeable in the ionome status of seedlings. The most noticeable
effects were observed in the case of Ca and Mg, the value of which decreased, and simultaneously,
the content of Mn and Fe noticeably increased in the presence of BC75% and BC85%. The increase of
the content of Mn and Fe in the seedlings may have been related to the reported solubilization of these
nutrients in soils at pH values below 8 with extracts of high-temperature biochar [61].

The higher content in plants of Fe can also explain the enhanced development of the seedlings in
soil enriched with a blend of NPK and biochar. Fe is involved in the synthesis of chlorophyll and is
essential for the maintenance of the chloroplast structure and function [62] as well as of Mn, which is
involved in the water-oxidizing enzyme system [63]. Although there was a noticeable decrease in the
content of Ca and Mg in the plant tissues after applying biochar with NPK, the contents of both nutrients
were at a sufficient level [64]. Similar decreases in the content of Ca and Mg and a stimulative effect on
growth were reported for spinach and mustard by Zemanova et al. [65], for soybean plants [66] and for
lettuce [67] after applying biochar alone or with fertilizers. Additionally, the application of nutrient-rich
biochar produced from animal wastes reduced Ca in the leaves of corn [68]. These reported effects,
in general, can be explained by the higher accumulation of K from biochar applied in higher doses,
which is antagonistic to Mg in the translocation step from the root to the shoot, according to Ohno
and Grunes [69]. Additionally, Rhodes et al. [70] reported that applying K substantially reduced
the content of Ca and Mg in the leaves of sugarcane. However, the content of K in the wheat seedlings
in our study was not higher after applying NPK blends with biochar than after NPK was used alone.
The phenomenon of a lower content of Ca and Mg in the tested seedlings can be indirectly explained by
the findings of Angst and Sohi [71], who reported a slower release of Mg than of K and P from biochar.

The tested biochar added to synthetic fertilizer in an amount equivalent to 170–287 kg of biochar
carbon per ha did not significantly change the physical and chemical properties of the soil except for
the composition of the organic soil matter. Negative or positive effects on soil properties from different
types of biochar applied in doses equivalent to a few up to hundreds of Mg ha−1 have been summarized
in the scientific literature in several reviews, e.g., [23,38,72,73]. The impact of high quantities of biochar
on soil properties described in these reviews is not comparable with our observations, due to the fact
that such high doses improved plant access to soil nutrients and promoted plant growth and root
structure, changed the soil acidity, soil structure, ion exchange capacity and water retention capacity.

Even the low doses of BC mixed with synthetic fertilizers that were used in this study can
noticeably change the SOM status of the soil in the surface layer. The increase of the content of
humic acids in the soil in the presence of BC can be attributed to the phenomenon described by
Wang et al. [74] and Zhang et al. [75], who suggested that a wood biochar amendment might be
a potential method to enhance humification from manure composting. Moreover, Kasozi et al. [76]
found greater sorption of both catechol and HA from biochar, especially those with nanopores,
i.e., biochar made at higher temperatures.

These findings suggest that the observed increase in humic acids and decrease in free phenolic
compounds in the soil after the addition of biochar with NPK was the effect of the sorption of
these compounds and may correspond to a faster formation of aromatic polymers on the surface of
the biochar. Several phenolic compounds of low molecular weight, particularly p-hydroxybenzoic,
vanillic, p-coumaric and ferulic acids, are of widespread occurrence in soils and, at certain concentrations,
they may negatively influence the growth of plants [77]. High concentrations of some phenolic acids
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have also been reported to impair root elongation and affect the metabolism of indole-3-acetic acid,
a major auxin [78]. The decline in the amount of FPH compounds after adding biochar to the soil
could be an additional factor that stimulated the development of the seedlings in our experiment,
because the application of biochar to the soil resulted in the adsorption of toxic compounds of natural
origin, which decreased their activity, as was described by MacKenzie and DeLuca [79], Cheng and
Lehmann [80] and Pignatello et al. [81]. In addition to the influence of the tested biochar on the content
of HA and FPH, there was a noticeable decrease in glomalin, a glycoprotein produced by arbuscular
mycorrhizal fungi (AMF); this finding similar to what was found by Warnock et al. [82]. Additionally,
Brantley et al. [66] concluded that biochar application may have improved plant access to soil nutrients
by promoting plant growth and root structural features, rather than by enhancing mycorrhizal infection
rates. The fact that the tested biochar added to synthetic fertilizer had no effect on the level of WSOC
and HWSOC as well as on the CMC-ase and xylanase activities suggests that there were no significant
changes in the microbial biomass and microbial activity in the soil.

5. Conclusions

The pot experiment provided data to evaluate the efficacy of synthetic NPK blends with pine
wood chip biochar produced under different temperature regimes. The results confirm the potential of
biochar, especially those produced at a high temperature (≥600 ◦C) and used in a low dose to improve
the growth and development of winter wheat seedlings. No negative effects of the addition of biochar
to NPK were observed on soil or crop quality. This confirmed that the biochar used was not a direct
source of nutrients. The role of biochar in blends with NPK, which stimulated the growth of wheat
seedlings, was indirect and we suggest that this effect was related to a later release of nitrogen adsorbed
on the biochar, as well as an enhanced uptake of Mn and Fe by the plants. Moreover, changes in
the SOM composition, the increase of HA content and the decrease of the FPH content promoted
the development of winter wheat seedlings.

Considering all the observed effects and the acknowledged positive impact of biochar additives
on synthetic fertilizer efficacy and on soil properties, a pre-sowing co-row soil application of
biochar-blended NPK represents a promising technical option for increasing the environmental
sustainability of agricultural systems. This primary agronomic evaluation provides useful information
for fertilizer industry managers to integrate biochar into conventional synthetic fertilizers for agricultural
practices, and for policymakers to develop measures promoting innovative technologies more
environmentally friendly for use in agriculture.
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65. Zemanova, V.; Břendová, K.; Pavlíková, D.; Kubátová, P.T.; Lustoš, P. Effect of biochar application on
the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard.
Plant Soil Environ. 2017, 63, 322–327. [CrossRef]

66. Waqas, M.; Kim, Y.-H.; Khan, A.L.; Shahzad, R.; Asaf, S.; Hamayun, M.; Kang, S.-M.; Khan, M.A.; Lee, I.-J.
Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and
modulate nutritional parameters. J. Zhejiang Univ. Sci. B 2017, 18, 109–124. [CrossRef] [PubMed]

67. Woldetsadik, D.; Drechsel, P.; Keraita, B.; Marschner, B.; Itanna, F.; Gebrekidan, H. Effects of biochar and
alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce
(Lactuca sativa) in two contrasting soils. SpringerPlus 2016, 5, 397. [CrossRef] [PubMed]

68. Brantley, K.E.; Savin, M.C.; Brye, K.R.; Longer, D.E. Nutrient availability and corn growth in a poultry litter
biochar-amended loam soil in a greenhouse experiment. Soil Use Manag. 2016, 32, 279–288. [CrossRef]

69. Ohno, T.; Grunes, D.L. Potassium-Magnesium Interactions Affecting Nutrient Uptake by Wheat Forage.
Soil Sci. Soc. Am. J. 1985, 49, 685–690. [CrossRef]

70. Rhodes, R.; Miles, N.; Hughes, J.C. Interactions between potassium, calcium and magnesium in sugarcane
grown on two contrasting soils in South Africa. Field Crops Res. 2018, 223, 1–11. [CrossRef]

http://dx.doi.org/10.1016/S0038-0717(03)00186-X
http://dx.doi.org/10.1111/j.1365-2389.1993.tb02331.x
http://dx.doi.org/10.1016/0038-0717(90)90187-5
http://www.r-project.org/index.html
http://dx.doi.org/10.1007/s13762-017-1399-7
http://dx.doi.org/10.1007/s13593-012-0128-3
http://dx.doi.org/10.1007/s11104-011-1031-4
http://dx.doi.org/10.1021/es9031419
http://dx.doi.org/10.1016/j.biortech.2004.02.015
http://dx.doi.org/10.1021/acs.est.8b00672
http://dx.doi.org/10.1007/s11104-011-0870-3
http://dx.doi.org/10.1111/ejss.12071
http://dx.doi.org/10.1080/01904168409363238
http://dx.doi.org/10.1016/j.ccr.2007.08.026
http://dx.doi.org/10.1088/1755-1315/170/2/022168
http://dx.doi.org/10.17221/318/2017-PSE
http://dx.doi.org/10.1631/jzus.B1500262
http://www.ncbi.nlm.nih.gov/pubmed/28124840
http://dx.doi.org/10.1186/s40064-016-2019-6
http://www.ncbi.nlm.nih.gov/pubmed/27047723
http://dx.doi.org/10.1111/sum.12296
http://dx.doi.org/10.2136/sssaj1985.03615995004900030032x
http://dx.doi.org/10.1016/j.fcr.2018.01.001


Agronomy 2020, 10, 1903 16 of 16

71. Angst, T.E.; Sohi, S.P. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 2013,
5, 221–226. [CrossRef]

72. Wu, P.; Ata-Ul-Karim, S.T.; Singh, B.P.; Wang, H.; Wu, T.; Liu, C.; Fang, G.; Zhou, D.; Wang, Y.; Chen, W. A
scientometric review of biochar research in the past 20 years (1998–2018). Biochar 2019, 1, 23–43. [CrossRef]

73. Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil
fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [CrossRef]

74. Wang, C.; Tu, Q.; Dong, D.; Strong, P.J.; Wang, H.; Sun, B.; Wu, W. Spectroscopic evidence for
biochar amendment promoting humic acid synthesis and intensifying humification during composting.
J. Hazard. Mater. 2014, 280, 409–416. [CrossRef]

75. Zhang, J.; Lü, F.; Luo, C.; Shao, L.; He, P. Humification characterization of biochar and its potential as
a composting amendment. J. Environ. Sci. China 2014, 26, 390–397. [CrossRef]

76. Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and Humic Acid Sorption onto a Range
of Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [CrossRef]

77. Hartley, R.D.; Whitehead, D.C. Phenolic Acids in Soils and their Influence on Plant Growth and Soil Microbial
Processes. In Soil Organic Matter and Biological Activity. Developments in Plant and Soil Sciences; Vaughan, D.,
Malcolm, R.E., Eds.; Springer: Dordrecht, The Netherlands, 1985; Volume 16.

78. Marschner, P. Mineral Nutrition of Higher Plants; Elsevier Ltd.: Amsterdam, The Netherlands; Academic Press:
Cambridge, MA, USA, 2012. [CrossRef]

79. MacKenzie, M.D.; DeLuca, T.H. Charcoal and shrubs modify soil processes in ponderosa pine forests of
western Montana. Plant Soil 2006, 287, 257–266. [CrossRef]

80. Cheng, C.-H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009,
75, 1021–1027. [CrossRef]

81. Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction
Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 273–275.
[CrossRef]

82. Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts
and mechanisms. Plant Soil 2007, 300, 9–20. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/gcbb.12023
http://dx.doi.org/10.1007/s42773-019-00002-9
http://dx.doi.org/10.1007/s13593-016-0372-z
http://dx.doi.org/10.1016/j.jhazmat.2014.08.030
http://dx.doi.org/10.1016/S1001-0742(13)60421-0
http://dx.doi.org/10.1021/es1014423
http://dx.doi.org/10.1016/b978-0-12-384905-2.00030-3
http://dx.doi.org/10.1007/s11104-006-9074-7
http://dx.doi.org/10.1016/j.chemosphere.2009.01.045
http://dx.doi.org/10.1080/10643380500326564
http://dx.doi.org/10.1007/s11104-007-9391-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Tested Types of Biochar 
	Pot Experiment 
	Plant Analyses 
	Study of Wheat Germination and Biomass 
	Chemical Plant Analysis 

	Soil Analysis 
	Preparation of Soil Samples 
	Physicochemical Properties of Soil 
	Soil Organic Carbon 

	Statistical Analysis 

	Results 
	Germination and Yield of Winter Wheat Seedlings 
	The Amount of Macro- and Micronutrients and Heavy Metals in Winter Wheat Seedlings 
	The Physicochemical Parameters of Soil 
	Soil Organic Carbon 

	Discussion 
	Conclusions 
	References

