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Eszter Draskovits 1, Nóra Szűcs-Vásárhelyi 1, Mónika Molnár 2 , Éva Farkas 2, József Kutasi 3

and Márk Rékási 1

1 Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Herman O. út 15.,
1022 Budapest, Hungary; takacs.tunde@atk.hu (T.T.); szili-kovacs.tibor@atk.hu (T.S.-K.);
radimszky.laszlo@atk.hu (L.R.); fuzy.anna@atk.hu (A.F.); draskovits.eszter@atk.hu (E.D.);
szucs-vasarhelyi.nora@atk.hu (N.S.-V.); rekasi.mark@atk.hu (M.R.)

2 Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and
Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3.,
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Abstract: The short-term effects of processed waste materials: sewage sludge compost (up to 0.5%),
biochar made of paper sludge and grain husk (BC) (up to 2%) combined with plant growth-promoting
rhizobacterial (PGPR) inoculum, on the fertility of acidic sandy soil at 65% of field capacity were tested
in a pot experiment in separate and combined treatments. The soil pH, organic matter content, total
and plant-available nutrients, substrate-induced respiration, arbuscular mycorrhizal fungal (AMF)
root colonisation parameters and maize (Zea mays L.) biomass were investigated in experiments
lasting two months. The positive priming (21% organic matter loss) induced by BC alone was
not observed after combined application. The combination of compost and PGPR with 1.5% BC
resulted in 35% higher P and K availability due to greater microbial activity compared to BC alone.
Only compost applied alone at 0.5% gave a 2.7 times increase in maize biomass. The highest microbial
activity and lowest AMF colonisation were found in combined treatments. In the short term the
combined application of BC, compost and PGPR did not result in higher fertility on the investigated
soil. Further research is needed with a wider range of combined treatments on acidic sandy soil for
better understanding of the process.
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1. Introduction

On sandy soils crop production is limited by several factors, the most important of which are low
water retention capacity and nutrient content [1]. Due to the texture of these soils, organic matter (OM)
is mineralised at a higher rate, leading to reduced fertility [2]. Fertilisation is less effective on these
soils, as the nutrients added with mineral fertilisers have low colloid content and are easily leached [3].
On such soils irrigation and/or soil amelioration are prerequisites for safe cultivation, especially in the
case of less drought-resistant crops like maize.

One possible way of improving such degraded or inherently unfavourable soils is to incorporate
organic materials. Composts could be useful amendments for sandy soil, as they may increase the
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OM content of the soil, improve the soil water capacity and aggregation stability, and increase the
cation exchange capacity, and they can also be used as fertilisers [1,4]. The OM from composts has a
significant influence on the status of the soil microbial biomass, as it provides a new energy source [5].
However, these effects may be short-lived in sandy soils due to the fast mineralisation of OM.

A longer term ameliorating effect can be achieved by the application of biochar (BC), which is able
to improve the physical and hydrological properties and buffering capacity of the soil. BC may also
contain a significant amount of humic acid, which could have a positive effect on the physicochemical
properties of the soil [6]. Furthermore, BC influences the abundance and community composition
of soil microbes, including arbuscular mycorrhizal fungi (AMF), though the published findings are
contradictory [7,8].

BC is a recalcitrant material, resistant to biodegradation and chemical decomposition. Depending
on the pyrolysis conditions and feedstock, it may contain a labile OM fraction, but this may be
mineralised in the soil within a month or two of application [9], thus reducing the amount of OM
available. In addition, due to the high C/N ratio of BC, this mineralisation may also cause the positive
priming of the native organic matter in the soil, which has an adverse effect in the long term [10].

The mineralisation of the labile fraction also involves the release of nutrients, which, together
with the soluble inorganic nutrient content of BC, contributes to its fertiliser effect. However, due to its
adsorption capacity, BC may also decrease the mobility of nutrients and their uptake by plants [11].
Contradictory results have therefore been obtained regarding the fertiliser effect of BC [12]. To avoid a
decrease in the availability of nutrients, it is advisable to use BC in combination with fertiliser [13,14].

The positive priming and reduced nutrient availability that may be observed after BC application
can be mitigated by applying an organic fertiliser such as compost. Composts containing sewage
sludge are very appropriate for agricultural utilisation such as fertilisation and soil conditioning due to
their high nitrogen and phosphorus content and organic matter [15]. The availability of the nutrients
in these composts may be moderated by adsorption on BC, making the nutrient content more evenly
available for a longer period [16]. BC may protect the labile OM of compost from mineralisation, which
could again contribute to a balanced nutrient supply [17].

Nutrient availability after BC application can be further improved using plant growth-promoting
rhizobacteria (PGPR), which represent an environmental-friendly way of improving the fertility of
soils. These bacteria are able to fix nitrogen, solubilise phosphorus, sequester iron, produce plant
growth hormones, antibiotics and antifungal compounds, and enhance the competitive exclusion of
plant pathogens [18].

The effect of combining organic amendments with PGPR on soil fertility and other soil services has
already been tested, but data on the joint application and interactive effect of compost, BC and PGPR
are scarce [8,15,19,20]. The combined application of these materials proved successful in alleviating
drought stress and in phytoremedial technologies [4,21,22]. The question raised in the present research
was whether the use of compost and selected PGPRs was able to improve the fertility of a BC-amended
acidic sandy soil with adequate water supplies, by balancing the biological and physicochemical
properties and improving the availability of nutrients.

The objective of the study was thus to test whether the interactive effect of BC, sewage sludge
compost and PGPR on soil OM and nutrient supply was more favourable than the separate effects of
these materials. It was hypothesised that, when jointly applied, sewage sludge compost, PGPR and
BC would complement each other synergistically, resulting in better agronomical effects than the
separate treatments. A decrease in the mineralisation of added OM, an increase in microbial activity
and higher macronutrient availability were expected after combined application, resulting in higher
maize biomass.
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2. Materials and Methods

2.1. Materials

The acidic sandy soil used in the pot experiment was taken from the ploughed layer (0–20 cm) of
a field at the experimental station of the Institute for Soil Sciences and Agricultural Chemistry, Centre
for Agricultural Research, in Nyírlugos, Hungary (47◦43′ N, 22◦00′ E). The particle size distribution
of the soil was >0.05 mm: 85%, 0.05–0.002 mm: 10%, <0.002 mm: 5%. The BC applied was selected
based on the evaluation of Molnár et al. [23]. The BC was made by pyrolysing grain husks and paper
fibre sludge at 450–500 ◦C for 20 min; 60% of the particles had a size of below 2 mm (Sonnenerde
Gmbh, Austria). In the <2 mm fraction the particle size distribution was <6.6 µm: 1.57%, 6.6–52.5 µm:
13.9%, 52.5–2000 µm: 84.52% [24]. The compost, which included green waste and sewage sludge from
municipalities, was produced by FCC Hungary Inc., Gyál (Table 1).

Table 1. Physical and chemical properties of the acidic sandy soil, biochar (BC) and compost.

Parameter Soil BC Compost

pH(H2O) 4.9 10.4 7.08
OM% 0.64 22.5 * 8.12
CaCO3% 0 5.75 6.81
Total N% 0.044 0.959 1.16
Total P (mg/kg) 260 6742 10,259
Total K (mg/kg) 1193 15,380 8243
Plant-available K (AL-K2O, mg/kg) 36.1 12,595 4778
Plant-available P (AL-P2O5, mg/kg) 68.9 5227 8196
Total Ca (mg/kg) 309 34,270 54,207
Total Mg (mg/kg) 1096 3539 9161
Total Zn (mg/kg) 41.6 53.3 449

* Measured by the Walkley-Black method. The total carbon content, determined by incinerating the BC, was 60.4%;
AL—ammonium-lactate soluble.

The bacterial inoculum (non-commercial product from Biofil Ltd. Hungary, based on patent No.
WO 2015/118516) [25] consisted of PGPR isolated from sandy soils in Hungary. According to Patent WO
2012/093374, the composition of the conventional inoculant carrier (IC) is a mixture of perlite, zeolite
and diatomite (1:0.6:0.9 ratio) with Vivapur® 101 microcrystalline cellulose as additive [26]. The PGPRs
were mixed in the following ratio: Bacillus aryabhattai—LU44 (function: phosphate solubilisation;
3.4 × 108 CFU (colony-forming unit)/g IC); Azospirillum brasilense—NF7 (function: nitrogen fixation;
1.4 × 107 CFU/g IC); Azospirillum brasilense—242/9 (function: nitrogen fixation; 4.4 × 108 CFU/g IC);
Paenibacillus peoriae—S284 (function: antimicrobial inhibition, nitrogen fixation; 2.4 × 107 CFU/g
IC); Arthrobacter crystallopoietes—S153 (function: siderophore activity; 1 × 109 CFU/g IC). The PGPR
combination was selected to intensify humification and soil aggregate formation, to improve the
nitrogen, phosphorus and iron supply and to provide plant growth-promoting compounds under sandy
and/or acidic soil conditions [19]. The selected strains have wide pH tolerance, which is favourable in
the presence of biochar, since the latter tends to generate alkaline conditions.

2.2. Experiment Setup

Two experimental layouts were used to test the materials in soil: a completely randomised block
for testing the separate effects of the additives, and a Box-Wilson method for testing their combined
effects. The essence of this last method is that by changing the amendment doses in a specific order the
number of treatment combinations can be significantly reduced [27]. In both experiments the pots
contained 1.5 kg soil (pot volume: 1l). The highest dose of additives used in separate applications
was determined on the basis of the quantities used in practice. Based on earlier experiments [28] the
applied maximum dose was 45 t/ha = 1.5%wieght/weight (%w/w) for BC, while the manufacturer
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recommended a maximum dose of 15 t/ha = 0.5%w/w for compost. The doses of PGPR were determined
by preliminary experiments performed on maize by the manufacturer. The lower doses were tested
because measurable effects may already occur at these application rates on this low fertility soil.
The treatment combinations in the experiments are shown in Table 2. The highest dose of BC and
PGPR was the same in the separate and combined treatments, but the highest dose of compost in the
combined treatments was only 0.33%w/w, to prevent the compost from suppressing the expected effects
of the other amendments. Each treatment was performed in three or 10 replicates according to the
experimental layout (Table 2). The soil and compost were air-dried, then sieved through a 2 mm mesh.

Table 2. Biochar (BC), compost and plant growth-promoting rhizobacteria (PGPR) treatments applied in
the experiment. Separate applications: only one material added to the soil in different doses; combined
application: at least two materials added to the soil in different doses. (“n”: number of replications for
each treatment level).

Treatment Treatment
Level Code

Amounts of Each Material Applied

BC
(%w/w)

PGPR
(CFU/pot)

Compost
(%w/w)

SEPARATE APPLICATION (completely randomised block design)

Control treatment
(n = 3) - 0 0 0

Compost
treatments (n = 3)

C1 0 0 0.16
C2 0 0 0.33
C3 0 0 0.5

BC treatments
(n = 3)

BC1 0.5 0 0
BC2 1 0 0
BC3 1.5 0 0

PGPR treatments
(n = 3)

PGPR1 0 3.7 × 106 0
PGPR2 0 7.5 × 106 0
PGPR3 0 1.2 × 107 0

COMBINED APPLICATION (Box and Wilson design)

Alternating
treatments

(n = 3)

1 1.5 1.2 × 107 0.25
2 0.5 1.2 × 107 0.25
3 1.5 3.7 × 106 0.25
4 0.5 3.7 × 106 0.25
5 1.5 1.2 × 107 0.08
6 0.5 1.2 × 107 0.08
7 1.5 3.7 × 106 0.08
8 0.5 3.7 × 106 0.08

Extreme
treatments

(n = 3)

9 2 7.5 × 106 0.16
10 0 7.5 × 106 0.16
11 1 2.4 × 107 0.16
12 1 0 0.16
13 1 7.5 × 106 0.33
14 1 7.5 × 106 0

Central treatment
(n = 10) 15 1 7.5 × 106 0.16

The treatments were set up in 1l pots, 13 cm in height, 13 cm wide at the top and 9 cm at
the base. The bottoms of the pots were sealed so that no leaching occurred during the experiment.
The component(s) of a given treatment were mixed thoroughly with 1.5 kg soil, then placed in the pots
and wetted to 65% of maximum field capacity. Each pot was then weighed and kept in a dark room for
two weeks at a temperature of 20 ◦C for incubation. During incubation and plant growth the water
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loss was monitored by the gravimetric method twice a week and the missing moisture was replaced
by irrigation. According to Kang et al. [29] 65% of field capacity can be considered as a satisfactory
moisture content for maize growth. After incubation, the pots were placed in a growth chamber
with a 12/12 h photoperiod and a temperature setting of 26/16 ◦C, representing day (600 µmol/m2/s
photon flux density) and night phases. The test plant was maize (Zea mays L., Mv 277), for which the
tested soil was relatively unfavourable, so more pronounced treatment effects could be expected [30].
Two dressed seeds of maize were sown in each pot, the less developed of which was removed after
germination. At the end of the two-month growth period the above-ground biomass of the plants was
harvested and weighed, after which soil and plant samples were prepared for analysis.

2.3. Chemical and Biological Analysis

The pH was measured according to ISO 10390:2005 in a 1:2.5 soil:water suspension 12 h after
mixing [31]. The OM content was determined using the modified Walkley-Black method [32]. The organic
carbon content of BC was measured by incineration [33]. The CaCO3 content was measured using
the Scheibler gas-volumetric method [34]. The carbonates present in the sample were converted into
CO2 by the addition of hydrochloric acid. The plant-available phosphorus (P) and potassium (K)
contents in the soil were determined in ammonium-acetate lactate extract (AL-P2O5, AL-K2O) using the
Egner–Riehm–Domingo method [35]. The total nitrogen (N) content of soil and plants was determined
with the Kjeldahl method [36], digesting the organic matter so that both total organic and inorganic N
content could be measured. The NH4-N and NO3-N contents were measured in KCl extracts using
the titrimetric method [35]. The pseudo total element contents were determined with the ICP-AES
method (Jobin-Yvon Ultima 2) after microwave teflon bomb digestion with aqua regia [37] using Merck
calibration standards and following the manufacturer’s instructions. In each ICP measurement session
the extract of a standard soil sample was also analysed as a control. The calibration curves were
determined after every 12th sample.

Substrate-induced respiration (SIR) [38] was measured according to Szili-Kovács et al. [39].
Samples with a 2:1 water to soil ratio were incubated after the addition of glucose. The intensity of AMF
colonization (M%) and the arbusculum richness (A%) in the roots were calculated using a five-class
system [40] after observing 30 randomly selected root segments, each 1 cm in length. Root samples
from the pots were cleared in KOH solution (15%w/w) and stained with aniline blue [41].

2.4. Statistical Analysis

The separate treatment effects were analysed using one-way ANOVA. Significant differences
between the treatment means were calculated using the least significant difference (LSD) test at the
p < 0.01, p < 0.05 and p < 0.1 levels. The results of the combined applications were evaluated using
analysis of variance and regression analysis [28]. As the coefficient of determination (R2) shows
whether the model fits the data, only variables for which the Box-Wilson model gave R2 values higher
than 60% are discussed here, since this indicates that changes in these variables could be explained to at
least a moderate extent by the model equation. The variance of these variables was determined using
the F-test. Variability between the samples was determined by means of principal component analysis
(PCA). Statistica v.9 (StatSoft Inc., Tulsa, OK, USA) software was used for the statistical evaluation.

3. Results

3.1. Soil pH and OM Content

The application of 1.5%w/w BC alone significantly increased the soil pH to 5.9, while it rose to 5.5
in the 0.5%w/w compost treatment (Tables 3–5). Table 6 presents the R2 and p values for parameters
exhibiting R2 values greater than 60% in the combined treatments, while Table 7 contains the mean
values and LSD5% values of these parameters for each treatment combination. In combined treatments
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compost and PGPR had an additive effect, but BC was decisive for pH change due to its application
rate (Tables 6 and 7).

Table 3. Significant effect of individual biochar (BC) treatment levels (%w/w) on the properties of acidic
sandy soil and maize. Data are mean ± sd of the replicates.

Properties
Levels

LSD5% p
Control BC1 BC2 BC3

Soil

pH (H2O) 4.93 ± 0.1 5.29 ± 0.02 5.71 ± 0.07 5.94 ± 0.05 0.18 ***
OM% 0.642 ± 0.06 0.67 ± 0.06 0.70 ± 0.06 0.77 ± 0.05 0.10 *
Total K mg/kg 1193 ± 14 1261 ± 217 1386 ± 85 1521 ± 171 148 ***
AL-K2O
mg/kg 36.1 ± 4.0 62.8 ± 1.1 93.0 ± 4.3 145.3 ± 8.9 10.2 ***

Total P mg/kg 260 ± 2 279 ± 14 301 ± 19 302 ± 12 36 *
AL-P2O5
mg/kg 68.9 ± 1.3 85.9 ± 7.8 101.2 ± 7.5 111.3 ± 8.6 13.8 ***

NO3-N mg/kg 1.93 ± 0.20 2.27 ± 0.00 3.29 ± 0.17 3.75 ± 0.24 0.50 ***
SIR (µg
CO2-C/g
soil/hour)

0.72 ± 0.07 0.94 ± 0.12 1.07 ± 0.06 1.12 ± 0.10 0.25 **

Maize

AMF–M% 52.1 ± 2.3 59.3 ± 2.0 58.4 ± 8.2 76.1 ± 6.8 9.5 **
AMF–A% 38.6 ± 1.5 49.0 ± 5.0 48.2 ± 5.0 64.1 ± 5.4 9.9 **
Maize P mg/kg 1596 ± 233 2196 ± 98 3096 ± 144 3865 ± 358 625 ***
Maize K
mg/kg 10,804 ± 1184 24,270 ± 1050 32,728 ± 305 37,034 ± 1387 2913 ***

BC levels: BC1: 0.5 w/w%; BC2: 1 w/w%; BC3: 1.5 w/w%; AL—ammonium-lactate soluble; SIR: substrate-induced
respiration; AMF-M and AMF-A: arbuscular mycorrhizal fungi, intensity of colonization and arbusculum richness;
LSD5%: least significant difference at p < 0.01: ***; p < 0.05: **; p < 0.1: *.

Table 4. Significant effect of individual compost treatment levels (%w/w) on the properties of acidic
sandy soil and maize. Data are mean ± sd of the replicates.

Properties
Levels

LSD5% p
Control C1 C2 C3

Soil

pH (H2O) 4.93 ± 0.1 5.08 ± 0.03 5.32 ± 0.01 5.51 ± 0.03 0.14 ***
Total K mg/kg 1193 ± 14 1255 ± 136 1144 ± 73 1353 ± 108 139 **
Total P mg/kg 260 ± 2 273 ± 5 286 ± 4 294 ± 6 12 ***
AL-P2O5 mg/kg 68.9 ± 1.3 78.8 ± 2.1 101.3 ± 4.7 120.7 ± 7.0 10.5 ***
Total N %w/w 0.044 ± 0.002 0.039 ± 0.002 0.040 ± 0.002 0.041 ± 0.000 0.003 **
NO3-N mg/kg 1.93 ± 0.20 0.73 ± 0.21 0.87 ± 0.36 0.90 ± 0.37 0.71 **
SIR (µg CO2-C/g soil/hour) 0.72 ± 0.07 1.06 ± 0.11 1.12 ± 0.12 1.40 ± 0.10 0.28 ***

Maize

AMF–A% 38.6 ± 1.5 24.5 ± 4.4 17.5 ± 1.4 9.3 ± 1.8 5.7 ***
Maize dry biomass (g/pot) 2.68 ± 0.29 4.53 ± 0.21 5.89 ± 0.48 7.30 ± 0.25 0.75 ***
Maize N %w/w 0.478 ± 0.013 0.379 ± 0.011 0.389 ± 0.034 0.421 ± 0.015 0.052 **

Compost levels: C1: 0.16 w/w%; C2: 0.33 w/w%; C3: 0.5 w/w%; AL—ammonium-lactate soluble; SIR: substrate-
induced respiration; AMF-A: arbusculum richness of arbuscular mycorrhizal fungi; LSD5%: least significant
difference at p < 0.01: ***; p < 0.05: **.
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Table 5. Significant effect of individual plant growth-promoting rhizobacteria (PGPR) treatment levels
(colony forming units (CFU)/pot) on the properties of acidic sandy soil and maize. Data are mean ± sd
of the replicates.

Properties
Levels

LSD5% p
Control PGPR1 PGPR2 PGPR3

Soil

AL-K2O mg/kg 36.1 ± 4.0 27.5 ± 1.8 30.7 ± 0.9 24.4 ± 1.1 6.3 **

Maize

AMF–M% 52.1 ± 2.3 64.8 ± 0.5 65.7 ± 6.3 71.6 ± 4.4 10.4 *
Maize P mg/kg 1596 ± 233 1861 ± 66 2020 ± 76 2033 ± 249 362 *
Maize K mg/kg 10,804 ± 1184 12,580 ± 102 14,007 ± 373 13,414 ± 523 1302 ***

PGPR levels: PGPR1: 3.7 × 106 CFU/pot; PGPR2: 7.5 × 106 CFU/pot; PGPR3: 1.2 × 107 CFU/pot;
AL—ammonium-lactate soluble; AMF-M: arbuscular mycorrhizal fungi, intensity of colonization; LSD5%: least
significant difference at p < 0.01: ***; p < 0.05: **; p < 0.1: *.

The OM% of BC, measured with the Walkley-Black method, was almost three times higher than
that of compost and can be considered as a labile fraction that can be mineralised in the soil [42].
The maximum dose of BC alone caused a 19% increase in OM%. There was no significant OM% increase
in response to compost alone, because the standard deviation of the OM% values (0.06%) exceeded the
OM increase that could be expected in compost treatments (0.01–0.04%) (Table 3). The measured OM%
increment in treatments with BC alone were 70% lower on average than the expected value based on
the amount of OM added (Figure 1). This means that, on average, the soil OM content in BC-treated
soils after harvest was 21% lower than expected. In the combined treatments (1–9, 11, 13 and 15) when
compost and PGPR were applied with BC, around 100% of the added OM could be found in the soil
after harvesting the maize biomass. The exception was treatment No. 9, in which the highest BC dose
(2%) was applied (Figure 1). In the case of treatments 4 and 7 the high OM values measured may have
been caused by undetectable plant residues in the soil sample.
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Figure 1. Comparison of soil OM content measured at the beginning of (B) and after (A) the
experiment in the different treatments. Treatments 1–15: combined treatments, BC1–3: separate biochar
treatments. Treatment doses can be seen in Table 2. Legend: light grey: original soil OM content;
dark grey: OM added in individual treatments; medium grey: OM content measured in the soil after
the experiment.
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Table 6. Coefficient of determination (R2) and p values for parameters with R2 values greater than 60% in the combined treatments.

Treatment

Soil Maize

pH
(H2O)

OM
(%)

AL-K2O
(mg/kg)

Total P
(mg/kg)

AL-P2O5
(mg/kg)

NO3-N
(mg/kg)

Ratio of Plant-
Available K to Total K

(%)

Ratio of Plant-
Available P to Total P

(%)

K
(mg/kg)

P
(mg/kg)

BC + *** + *** + *** + *** + *** + *** + *** + *** + *** + ***
PGPR
Compost + * + ** + ***
BC × PGPR + *
BC ×
Compost + **

Compost ×
PGPR

R2 92.56 62.86 93.59 70.46 83.79 63.98 89.47 75.71 81.77 74.11

BC—biochar; PGPR—plant growth-promoting rhizobacteria; +—positive effect; p < 0.01: ***; p < 0.05: **; p < 0.1: * AL—ammonium-lactate soluble.
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Table 7. Mean values of significant parameters and LSD5% values from the biochar (BC), compost and plant growth-promoting rhizobacteria (PGPR) combined
treatments. Data are mean ± sd of the replicates.

Treatment

Soil Maize

pH
(H2O)

OM
(%)

AL-K2O
(mg/kg)

Total P
(mg/kg)

AL-P2O5
(mg/kg)

NO3-N
(mg/kg)

Ratio of Available K to
Total K Content

(%)

Ratio of Available P to
Total P Content

(%)

K
(mg/kg)

P
(mg/kg)

1 6.4 ± 0.1 0.98 ± 0.04 196.7 ± 6.9 342 ± 9 184 ± 14.2 4.75 ± 0.49 11.14 ± 0.67 23.7 ± 1.58 61,566 ± 4210 3300 ± 500
2 5.7 ± 0.0 0.82 ± 0.05 93.2 ± 4.0 307 ± 9 122.0 ± 2.2 2.36 ± 0.21 6.09 ± 0.14 17.5 ± 0.40 38,474 ± 360 1627 ± 135
3 6.3 ± 0.0 1.00 ± 0.03 184.7 ± 4.5 356 ± 11 188.0 ± 5.0 3.79 ± 0.25 10.69 ± 0.29 23.2 ± 1.37 51,718 ± 307 2804 ± 63
4 5.7 ± 0.0 0.89 ± 0.03 81.7 ± 7.6 308 ± 9 129.7 ± 7.7 2.23 ± 0.39 5.93 ± 0.67 18.5 ± 1.09 39,365 ± 4768 2046 ± 290
5 6.2 ± 0.0 1.01 ± 0.04 177.3 ± 8.1 352 ± 4 166 ± 13.3 4.41 ± 0.36 11.13 ± 0.38 20.8 ± 1.47 47,364 ± 1062 3352 ± 144
6 5.4 ± 0.0 0.76 ± 0.00 74.9 ± 5.8 286 ± 7 102.0 ± 2.4 2.38 ± 0.54 5.94 ± 0.56 15.7 ± 0.44 36,828 ± 1842 2101 ± 274
7 6.2 ± 0.0 1.09 ± 0.02 153.7 ± 8.7 320 ± 8 147.3 ± 2.4 4.01 ± 0.41 9.75 ± 0.73 20.3 ± 0.73 46,200 ± 3020 3216 ± 334
8 5.4 ± 0.0 0.73 ± 0.04 67.5 ± 3.8 280 ± 6 101.5 ± 2.7 3.49 ± 0.25 4.61 ± 0.70 16.0 ± 0.76 38,245 ± 2988 2305 ± 88
9 6.3 ± 0.1 0.95 ± 0.03 199 ± 13.7 344 ± 13 169 ± 15.3 5.44 ± 0.12 13.56 ± 1.71 21.7 ± 1.15 48,114 ± 3068 3612 ± 425

10 5.1 ± 0.1 0.71 ± 0.04 49.7 ± 3.4 269 ± 8 93.2 ± 1.3 1.76 ± 0.38 3.64 ± 0.32 15.2 ± 0.57 22,846 ± 566 1422 ± 273
11 6.1 ± 0.2 0.88 ± 0.12 130 ± 10.0 311 ± 9 127 ± 13.5 5.18 ± 0.40 8.16 ± 0.51 18.1 ± 1.71 47,896 ± 2853 2740 ± 228
12 5.9 ± 0.1 0.87 ± 0.03 128.7 ± 9.7 304 ± 9 134.0 ± 5.1 6.03 ± 0.75 8.05 ± 0.88 19.4 ± 0.83 49,954 ± 1638 2645 ± 460
13 6.1 ± 0.1 0.88 ± 0.05 128.7 ± 5.7 313 ± 5 162 ± 16.9 4.95 ± 0.42 7.83 ± 0.29 22.8 ± 2.62 45,830 ± 2825 2275 ± 114
14 5.9 ± 0.1 0.92 ± 0.01 119 ± 10.2 293 ± 7 114.0 ± 4.2 4.45 ± 0.60 7.80 ± 0.64 17.1 ± 1.03 48,398 ± 1562 2721 ± 620
15 6.0 ± 0.1 0.87 ± 0.07 115.6 ± 8.5 312 ± 18 132.2 ± 6.7 3.80 ± 0.72 7.73 ± 0.90 18.6 ± 0.98 44,006 ± 3180 2724 ± 291

LSD5% 0.1 0.08 11.3 17 12.5 0.74 0.54 0.82 3933 449

AL—ammonium-lactate soluble; LSD5%: least significant difference at p < 0.05.
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3.2. N, P and K Contents in Soil and Plants

BC2 and BC3 treatments significantly increased the plant-available NO3-N and the total and
plant-available P and K contents in the soil, but not that of total N (Table 3). PGPR application caused
a decrease in plant-available K in the soil, while compost increased the total P, K and plant-available
P contents. In response to BC alone the AL-P2O5 and AL-K2O contents rose to a greater extent than
the total P and K contents in soil, since about 80% of both the P and K content was in plant-available
form (Tables 1 and 3). In these treatments the P and K contents also increased in maize (Tables 3–5).
Although compost raised the K (treatment C3) and P (treatments C1–3) contents of the soil, there was
no significant change in the plant P and K contents. However, the K and P uptake of maize increased
almost three and two times, respectively, in the 0.5%w/w compost treatment compared to the control
(data not shown). The inoculum itself was capable of improving the nutrient-supplying ability of the
soil: as a result of PGPR treatment the plant P and K concentrations rose significantly (Table 5).

The combined treatments indicated that BC was decisive for changes in the ratio of plant-available
K to total K content, as it increased plant-available K to a greater extent (Tables 6 and 7). Both BC
and compost led to a rise in the ratio of plant-available P to total P content, indicating increased P
availability (Table 6).

Compost and PGPR had different effects on P and K availability when applied alone or in combined
treatments. Compost alone did not affect the ratio of available and total K in the soil compared to the
control (ratio: 2.4%), while the inoculum decreased it to a value of 1.6%. However, when combined
with 1.5%w/w BC (combined treatments 1, 3, 5 and 7) both compost and PGPR improved P and K
availability. In these treatments the ratio of available to total K was 35% higher on average (10.7%)
compared to 1.5%w/w BC alone (7.9%). A 35% difference was also found in these treatments for
P availability.

In the combined treatments the P and K contents of the maize biomass were primarily dependent
on the BC treatment, but the K content was also influenced by PGPR (Table 6).

Regarding soil N, there was no significant change in the NH4-N content (14 mg/kg in the control
soil), but the NO3-N content rose significantly in response to BC2 and BC3 treatments and decreased
significantly after treatment with compost alone (treatments C1–3) (Tables 3 and 4). The combined
treatments revealed that the change in soil NO3-N content was mainly influenced by BC (Table 6).
The C1–3 treatments decreased the maize N content, but the N uptake tripled in the 0.5%w/w (treatment
C3) treatment compared to the control.

3.3. Maize Biomass, SIR and AMF Colonisation

In the separate treatments only compost (treatments C1–3) significantly increased the maize
biomass. In the combined treatments there was no significant difference between the dry weights of the
plants (Tables S1 and S2). The average biomass in the combined treatments was 2.9 g dry matter/pot,
which was statistically equal to the value of the control treatment (Table 3).

The 1.5%w/w dose of BC alone resulted in a 1.5 times increase in SIR, while the 0.5%w/w dose of
compost alone doubled it (Tables 3 and 4). SIR was not influenced by PGPR addition. The combined
application of the materials led to an increase in microbial biomass compared to the untreated soil
(data not shown due to the low coefficient of determination). The lowest SIR value (1.18 ± 0.03 µg
CO2-C/g soil/hour) was recorded in treatment 2, given a 0.5%w/w BC dose combined with 0.25%w/w
compost and PGPR, and the highest (1.86 ± 0.22 µg CO2-C/g soil/hour) in treatment 7, given a 1.5%w/w
BC dose with 0.08%w/w compost and PGPR (Table 2).

The application of BC alone caused an increase in the colonization intensity in treatment BC3
(M%) and arbuscular richness in treatments BC1–3 (A%) of indigenous AMF, while the arbuscular
richness declined considerably in soils treated with compost (treatments C1–3) (Tables 3 and 4).
In combined applications the mycorrhizal parameters indicated that the infectivity of the indigenous
AMF community had been inhibited (data not shown due to the low coefficient of determination).
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Even the highest value of M% (17.84) was considerably lower than in any of the treatments where BC,
compost and PGPR were applied alone.

4. Discussion

Each of the materials applied had several positive effects on soil properties, but only compost
resulted in an improvement in soil fertility, defined here as the plant biomass produced on it. Differences
in early growth stages may determine the final biomass and yield of maize [43]. Thus, in contrast with
expectations, the combined application of BC, compost and PGPR had no positive synergistic effect on
soil fertility on this acidic sandy soil in the short term, when the water supply was satisfactory for
maize [4,21,22,30]. The failure of BC to influence soil fertility can probably be attributed to the short
experiment time and the laboratory conditions [44].

Though BC is basically used to amend physical soil properties, in the short term it may significantly
influence chemical soil properties, though this depends on the type of BC [4,12,22]. In a similar short-term
pot experiment, reported by Wang et al. [14], the application of BC without fertiliser resulted in plant
yield depression. In the present experiment this adverse effect was not observed for BC alone,
probably due to its significant labile fraction, which provided nutrients, thus avoiding the need for
fertiliser addition.

BC and compost influenced the availability of nutrients in three ways: through their own nutrient
and OM content, their pH-enhancing effect and the changes induced in the activity of the microbes
present in the soil. PGPR exerted its effect by influencing the soil microbial community.

The most important of the possible longer term effects of the amendments is their effect on soil
OM. Although BC is a recalcitrant material, it may induce the decomposition of soil OM due to its
labile fraction. The application of BC alone probably triggered a positive priming effect in the soil,
causing the native OM to be mineralised and resulting in lower OM% than in combined treatments
with compost and PGPR. The 21% discrepancy between measured OM% and the expected value fits
into the range described by Whitman et al. [45]. The OM% of the BC was relatively high (22.5%),
and this labile fraction can be mineralised in the soil within a short time [46,47]. The N content of
the BC was also comparatively high (0.96%), which may also have facilitated positive priming in the
soil [6,48]. In the combined treatments the priming could have been inhibited by PGPR, which had an
antibacterial impact due to the presence of Paenibacillus peoriae, and may thus have had a negative
effect on the soil microbe community [49]. Compost may also have alleviated priming by decreasing
the C/N ratio of the added organic materials in the soil [50].

BC and compost had similar CaCO3% contents, so both materials increased the soil pH due to the
liming effect. This may be the main beneficial effect on soil fertility on this acidic sandy soil, as also
reported in the study of van Zwieten et al. [11]. As a result, the liming effect directly influenced the N
cycle in the soil. Both BC and compost influenced the NO3-N content, but in contrasting ways as a
function of their liming effect. Ammonification is a less pH-dependent process than nitrification, so the
higher pH in the BC treatments could have facilitated an increase in NO3-N content, while NH4-N
remained unchanged [19]. In the case of compost the slighter pH increment could have resulted in
less intensive nitrification. In response to compost the NO3-N content in the soil declined, which
could be attributed to plant uptake, since a considerable quantity of plant biomass was formed in this
treatment, resulting in greater N uptake [51]. The ability of BC to promote nitrification and raise pH
was also manifested in the combined treatments, resulting in higher NO3-N contents than when BC
was applied alone, due to the joint N content of compost and BC [52]. In the combined treatments
the high C/N ratio of BC could have led to the immobilisation of N, resulting in limited uptake by
maize [52]. Despite the satisfactory P and K content, this may have inhibited biomass growth.

The increase in soil pH also had a certain effect on P and K availability. In combined treatments
changes in the P and K concentrations in plant biomass and soil were mostly related to the nutrient
content of BC, the pH-enhancing effect of which resulted in the optimum pH range for nutrient
availability and plant uptake [44,53]. These treatments not only supplied rapidly utilisable carbon
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sources from the compost, but also provided protection to microorganisms due to the pore volume of a
high dose of BC [54]. The consequent higher microbial activity and mineralisation could explain the
35% higher P and K availability values in these treatments compared to BC alone.

The exogenous OM provided by compost was more favourable for microbial decomposition,
having a lower C/N ratio than BC. In addition, the compost itself contained a substantial number of
microorganisms, resulting in higher SIR values in compost treatments than in BC treatments [5,55].
As also reported by Hussain [4], the microbial activity was higher in treatments with BC, compost
and PGPR than when these materials were applied alone, but no significant differences were observed
between the combined treatments. There was also a significant increase in plant biomass in the compost
treatment, probably associated with the greater quantity of roots and root exudates, which may also
have increased the microbial biomass in this treatment [56].

The ability of compost to influence P content and availability could be related to its high P content,
but could also be attributed to the fact that the enhanced microbial activity induced by the compost
solubilised organically bound P [57]. Separate PGPR application was also able to mobilise the soil
P content through the activity of mineral phosphate-solubilising strains (Bacillus aryabhattai) [58],
though this effect was only manifested in the maize P content. Although the inoculum did not contain
K-solubilising bacteria, it promoted K uptake by maize and might have created more favourable
conditions for mycorrhizal symbiosis (Table 5), thus enhancing both P and K mobilisation and
plant uptake. In combined treatments this strengthened the effect of BC on the AL-K2O content
(Table 6) [59,60], but for the other soil properties the effect of inoculum was suppressed by that of
compost and BC, as also observed by Ohsowski et al. [22].

The availability of P has a direct effect on the AMF colonization of the roots. The compost
treatment significantly decreased the value of AMF-A%, indicating that an improvement in nutrient
supplies could substantially reduce the dependence of plants on symbiotic organisms [61]. BC may
stimulate symbiosis on such low fertility soil, but high soil P content may inhibit AMF infectivity and
colonisation [62]. When BC was applied alone symbiosis was stimulated, but in combined treatments
the enhanced nutrient availability limited fungal growth.

PCA was performed on all the treatments to obtain a better understanding of the interactions
taking place in the combined treatments, and the data showed that two principal factors explained
68.61% of the variance (Figure 2).
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While Factor1 correlated primarily with BC, Factor2 correlated with compost treatment. Except in
the case of AL-K2O, significant changes that could be attributed to PGPR were only observed when it
was applied alone. These results show that BC had a significant effect on macronutrient availability,
which is decisive for plant production. The compost had the greatest influence on the soil biota, which
may be related to the easier mineralisation of the organic compounds in this material due to its lower
C/N ratio [16].

5. Conclusions

The main benefit of the combined application of BC, compost and PGPR on this acidic sandy soil
was that it prevented the positive priming effect observed when BC was applied alone. When combined
with BC, compost and PGPR increased the ratio of available to total P and K concentrations via the
intensification of soil microbial activity, while compost and PGPR alone did not increase P and K
availability. The microbial activity in the soil was mainly stimulated by the OM content of BC and
compost and by the pH changes they caused, while the negative influence of the high P content of
compost on the AMF parameters was mitigated by BC. In a sandy soil of this type, if the water supplies
are adequate, an increase in biomass can only be achieved in the short term in response to the easily
accessible nutrient content of the compost, while BC and PGPR are ineffective in this respect at the
applied doses. When applied in combination with BC, the ability of compost to increase plant biomass
may be counteracted by N immobilisation by BC, so on BC-amended soils with adequate water supplies
it may be necessary to use more than the recommended doses of compost or other organic fertilisers in
order to increase yields. Further research in connection with the use of biochar on low fertility soil
will need to include a wider range of organic fertiliser and inoculum doses. Experiments carried out
under field conditions over a number of growing periods can be expected to give a better picture of the
possible synergistic effects of the tested materials on soil fertility, which could not be detected in the
present study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/10/1612/s1,
Table S1: Dry biomass weight from the separate application experiment, Table S2: Dry biomass weight from the
combined application experiment.
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