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Abstract: Mediterranean areas with intensive agriculture are characterized by high salinity of
groundwater. The use of this water in hydroponic cultivations can lead to nutrient solutions
with an electrical conductivity that overcomes the tolerance threshold of many vegetable species.
Plant growth-promoting rhizobacteria (PGPR) were shown to minimize salt stress on several vegetable
crops but the studies on the application of PGPR on leafy vegetables grown in hydroponics are rather
limited and have not been used under salt stress conditions. This study aimed to evaluate the use
of plant growth-promoting bacteria to increase the salt tolerance of leaf lettuce grown in autumn
and spring in a floating system, by adding a bacterial biostimulant (1.5 g L™! of TNC Bactorr®'® a
commercial biostimulant containing 1.3 x 108 CFU g~! of Bacillus spp.) to mineral nutrient solutions
(MNS) with two salinity levels (0 and 20 mM NaCl). Leaf lettuce plants showed a significant reduction
of growth and yield under salt stress, determined by the reduction of biomass, leaf number, and leaf
area. Plants showed to be more tolerant to salinity in autumn than in spring. The inhibition of lettuce
plant growth due to salt stress was significantly alleviated by the addition of the bacterial biostimulant
to the MNS, which had a positive effect on plant growth and fresh and dry biomass accumulation of
the unstressed lettuce in both cultivation seasons, and maintained this positive effect in brackish MNS,
with similar or even significantly higher values of morphologic, physiologic, and yield parameters
than those recorded in control unstressed plants.

Keywords: saline water; leafy vegetables; Lactuca sativa L. var. Crispa; floating system; nutrient
solution; bacterial biostimulant; PGPR; Bacillus

1. Introduction

The need to attend the increasing food demand while protecting the environment and reducing
the use of natural resources led to the search for more sustainable agriculture [1]. This major challenge
of agricultural research is hindered by the rapid growth of the human population and the decreasing
availability of natural resources and land for cultivation [2]. The increasing degradation of agricultural
land and water supplies is linked to the adoption of intensive agricultural practices that can negatively
affect the suitability of these natural resources. The accumulation of soluble salts in soils or groundwater
is the major factor responsible for the loss of productivity of cultivated soils [3], and represents one
of the major environmental stresses for vegetable crops [3,4]. Vegetables are crucial in the human
diet, thanks to their high nutritional value, due to their content in vitamins, carbohydrates, proteins,
and mineral nutrients [2]. All vegetable crops can be influenced more or less severely by salinity [5],
which can limit crop development and yield through modifications of morphology and physiological
functions [2]. Salt stress affects vegetable growth due to the osmotic or water-deficit effect, toxic
accumulation of salts in shoots, nutritional imbalances, or a combination of these factors [6,7].
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To minimize the impact of salt stress on vegetable crops, more rational use of land and water
resources could be adopted [4]. This might allow vegetable production under salt stress but cannot
assure additional gains [8]. Another strategy that could allow overcoming salt stress and other
abiotic and biotic stresses [9-11], and to increase yield and improve quality [10,12-15] for many
vegetable crops, is the adoption of hydroponic cultivation systems. In these cultivation systems,
plants are fed through a mineral nutrient solution and held by mineral or organic materials that
anchor the roots, or by panels that host them and float on the nutrient solution (floating system).
The water used to prepare nutrient solutions must have good quality characteristics, especially with
regards to low salt concentration, as it can influence the electrical conductivity (EC) of the nutrient
solution, once water-soluble mineral fertilizers are added to the water [16]. Mediterranean areas with
intensive agriculture are characterized by high salinity of groundwater, as the considerable use of
irrigation water increases seawater infiltration [17]. The use of this water in hydroponic cultivations
can lead to nutrient solutions with an EC that overcomes the tolerance threshold of many vegetable
species [17]. For these reasons, many researchers focused their attention on the mechanisms of salt
stress adaptation in plants to improve vegetable crop tolerance [6,18]. Ionic/hydraulic re-equilibrium,
detoxification of reactive oxygen species, and modulation of cell growth or cell division are the main
stress response mechanisms that are activated by plants in response to salinity [18]. These mechanisms
are triggered by hormonal signaling, as revealed by the modifications of the endogenous levels of
phytohormones found in plants, which grow under salt stress [19,20]. Thus, some strategies employed
to increase salt tolerance of vegetable crops and mitigate the negative effects of salinity focus on the
exogenous application of plant growth regulators (gibberellins, auxins, and cytokinins) [16,20], or the
inoculation of the rhizosphere with root colonizing bacteria, which produce phytohormones [21,22].
Plant growth-promoting rhizobacteria (PGPR) were shown to minimize salt stress on several vegetable
crops [23,24]. They enhance plant growth by various mechanisms, such as biocontrol and induction
of disease resistance, production of different phytohormones, mineralization and decomposition of
organic matter, and improvement of the bioavailability of some mineral nutrients (P and Fe) [24,25].
Plant growth-promoting bacteria can enhance the growth of many vegetable crops under saline
conditions [25,26] but the studies on the application of PGPR on leafy vegetables grown in hydroponics
are rather limited and are not used under salt stress conditions. Therefore, this study aimed to evaluate
the use of plant growth-promoting bacteria to increase the salt tolerance of leaf lettuce grown in a
floating system.

2. Materials and Methods

2.1. Leafy Vegetable Cultivation

Two experiments were carried out during autumn 2018 and spring 2019 in a greenhouse located
at the Department of Agricultural, Food, and Forest Sciences (SAAF—University of Palermo, Italy)
(38°6'28” N 13°21’3” E; altitude 49 m). In both experiments, leaf lettuce plants (Lactuca sativa L. var.
Crispa) were cultivated in a hydroponic floating system. Four treatments derived from a factorial
combination of two nutrient solution, inoculated or not, with a commercial bacterial biostimulant
(TNC BactorrS!3, The nutrient company, Rochdale, UK) and two NaCl concentrations (0 and 20 mM
NaCl) [16], were tested for each cultivation season.

The mineral nutrient solutions (MNS) were prepared by adding the following to tap water
(electrical conductivity - EC 480 uS cm™L; pH 7.6): 4.5 mmol L~! of Ca%*, 2 mmol L™! of H,PO,",
1.25 mmol L~! of NH;*, 1 mmol L™! of Mg2+, 19 mmol L~! of NO5~, 11 mmol L™! of K*, 1.1 mmol L™!
of SO4%~, 40 pumol L1 of Fe3*, 5 umol L1 of Mn?*, 4 umol L™! of Zn?*, 30 umol L™ of BO53~,
0.75 umol L™ of Cu?*, and 0.50 umol L~ of Mo [27]. Four nutrient solutions were prepared,
which differed only in bacterial biostimulant and NaCl concentration. The commercial bacterial
biostimulant (1.5 g L~! of TNC Bactorr®'®) contains plant growth-promoting bacteria (1.3 x 108 CFU g~
of Bacillus amyloliquefaciens, B. brevis, B. circulans, B. coagulans, B. firmus, B. halodenitrificans, B. laterosporus,
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B. licheniformis, B. megaterium, B. mycoides, B. pasteurii, B. subtilis, Paenibacillus polymyxa), as well as
soluble humates, natural plant hormones, amino acids, vitamins, and trace elements derived from
Ascophylum nodosum. The MNS had pH 5.8 and an EC of 2.3 and 4.4 mS cm™! for 0 and 20 mM NaCl,
respectively. Four different tanks (100 cm long X 50 cm wide X 15 cm deep, containing 75 L) were
filled with each nutrient solution. Seedlings of leaf lettuce (cv. ‘Lattuga da Taglio a Foglia Liscia’,
Sementi Dotto—SDD SPA, Udine, Italy), were grown in polystyrene trays (160 holes) and transplanted
(23 October 2018 and 18 April 2019) in drilled polystyrene panels (300 plants m~2) when they had
3—4 true leaves. The panels were then directly placed to float on the MNS (Figure 1).
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Figure 1. Graphical representation of the hydroponic floating system consisting of drilled polystyrene
panels floating on mineral nutrient solutions, with different combinations of bacterial inoculant (Bacteria)
and NaCl levels. () Drilled polystyrene panels (300 plants m~2) floating on a mineral nutrient solution
(MNS). Tanks containing 75 L of MNS added with two concentrations of NaCl and @ not inoculated or
® inoculated with the bacterial inoculant.

Each treatment was composed of four replicated tanks for each combination of bacterial inoculant
and NaCl (150 plants for each tank). The nutrient solutions were aerated during plant growth by
insufflating air through PE pipes of 5 mm diameter, for five minutes, twice every day. The nutrient
solutions in each tank were monitored every day to measure temperature, water consumption,
and changes of EC and pH. When the volume of MNS consumed by plants overcame 20%, the tanks
were refilled with new nutrient solutions, with the same NaCl concentration. The tanks were completely
covered by the polystyrene panels, hence the loss of water due to evaporation was minimal and was
not considered [28]. Water use efficiency (WUE) was calculated as WUE (g DW L1 H,0) = plant dry
weight (g)/HO (L). Soon after harvest, the MNS in the tanks was analyzed to calculate the residual
amount of nitrogen (N-NH4" and N-NO3~ content determined reflectometrically by a Merck RQflex10
reflectometer, according to the company protocols (Merck, Darmstadt, Germany)). From these values
and the volume of nutrient solution consumed by the plants, the total N uptake during the crop cycle
was estimated and the Nitrogen use efficiency (NUE) [29] was calculated as NUE (g DW g~ N) = plant
total dry weight (g)/plant N uptake (g).

Stomatal conductance was estimated 15 days after transplant in each growing season, using a
diffusion porometer (AP4, Delta-T Devices Ltd., Cambridge, UK) on two recently expanded, unshaded
leaves of 20 plant, for each replicate.

All plants were harvested 22 and 20 d after transplant in autumn and spring, respectively.
Marketable yield was calculated after eliminating decayed or yellowed older leaves, then, 20 plants for



Agronomy 2020, 10, 1523 4 of 23

each replicate were randomly selected for destructive testing. Plant height, leaf number, and leaf area
were determined. Leaf area was measured for each plant through digital image analysis. Leaves were
detached from plants, weighed, and immediately scanned with a resolution of 350 dpi (Epson Perfection
4180 Photo, Seiko Epson Corp. Suwa, Japan); the images were analyzed with the Image] 1.52a software
(National Institutes Health, Bethesda, MD, USA). Scanned leaves were dried at 85 °C to a constant
weight and re-weighed, in order to calculate the specific leaf area (SLA cm? g7!) as leaf area/leaf dry
weight. Subsequently, another sample of 20 plants randomly selected for each replicate were weighed
after separation in shoot and roots fractions, and then dried to constant weight at 85 °C, for fresh and
dry biomass determination.

A third sample (20 plants for each replicate) was used for measuring leaf color and determining
soluble solids, ascorbic acid, and nitrate contents. Leaf color was measured with a colorimeter (CR-400,
Minolta corporation, Ltd., Osaka, Japan) at two areas of photosynthetic tissue, on the upper part of
twenty leaves that were randomly selected for each treatment. It recorded L* (lightness), a* (positive
values for reddish colors and negative values for greenish colors), and b* (positive values for yellowish
colors and negative values for bluish colors) parameters that were used to calculate hue angle (h°) and
chroma (C*) as h® = 180° + arctan(b*/a*) [30] and C* = (a*? + b*2)1/2, A sub-sample of leaves (20 g) from
each replicate was then homogenized with H,O (1:2 w/v) and the homogenates were centrifuged at
3500 rpm for 10 min. Total soluble solids (TSS, expressed as °Brix) determination was performed with
a digital refractometer (MTD-045nD, Three-In-One Enterprises Co. Ltd., New Taipei City, Taiwan).
I'and mg kg~! of fresh weight, respectively)
were evaluated with a Merck RQflex10 reflectometer, according to the company protocols (Merck,
Darmstadt, Germany) [31-33].

Ascorbic acid and nitrate contents (expressed as mg 100 g =

2.2. Statistics and Principal Component Analysis

The experimental design consisted of four replicates for each combination of bacterial inoculant
and NaCl, randomly assigned to four blocks. To determine the effect of cultivation season, bacterial
inoculant, and NaCl concentration on leaf lettuce plants, a three-way ANOVA was carried out.
The significance of the differences between treatments and of the interaction between factors was
determined by the least significant differences (LSD) test at p < 5%.

The main parameters that were most effective in discriminating among salt stress levels and
bacterial inoculant in both cultivation seasons were studied by performing a principal component
analysis (PCA) on morpho-physiological and phytochemical parameters of leaf lettuce plants. The input
matrix for the analysis included plant height, whole plant fresh weight (FW), shoot (S) FW, roots (R)
FW, R/S FW, whole plant dry weight (DW), shoot DW, roots DW, R/S DW, dry matter percentage,
yield, minimal processing yield, WUE, NUE, leaf number, plant area, leaf area, SLA, stomatal
conductance, L*, chroma, hue angle, TSS, ascorbic acid, and N-NO3~ content. Only the factors with
eigenvalues higher than 1.0 were retained to assess the optimum number of principal components
(PCs). Additionally, the plot of the PCs allowed investigating the correlations between the variables
of the input data set. In this context, the studied variables were projected into the subspace defined
by the first and second PCs, and the correlated variables were calculated. The principal component
analysis was performed with SPSS version 13.0 (SPSS Inc., Chicago, IL, USA).

3. Results

Leaf lettuce cultivation was carried out in a floating system in both cultivation seasons. The hydroponic
system consisted of polystyrene panels floating on the mineral nutrient solution (MNS).

The average temperature outside the greenhouse, during the experiments, ranged between
314+ 0.6 °C (day) and 10.1 £ 0.3 °C (night) in autumn and between 27.7 + 0.5 °C (day) and
11.4 + 0.3 °C (night) in spring. The average net solar radiation at noon was 445 and 695 W-m~2
in autumn and spring, respectively. The day length during the autumn cultivation period ranged
between 8 and 9 h and lasted 11-12 h in spring. During the first experiment (autumn), the mean
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air and MNS temperatures inside the greenhouse were 21.9 + 0.6 °C and 21.4 + 0.3 °C, respectively
(Figure 2); the air temperature ranged between 36.6 (day) and 11.9 °C (night); relative humidity
was on average 86.0% and ranged between 59.9% and 100%; the highest light intensity inside the
greenhouse was 38,728 lux on average, ranging from 55,221 to 1,286 lux as a function of the cloudiness.
During the second experiment (spring), the mean air and MNS temperatures inside the greenhouse
were 22.1 £ 0.5 °C and 20.6 + 0.4 °C, respectively; the air temperature ranged between 36.9 (day)
and 11.1 °C (night); relative humidity was on average 75.2% and ranged between 49.2% and 99.0%;
the highest light intensity inside the greenhouse was 59,271 lux on average, ranging from 83,586 to
12,462 lux, as a function of the cloudiness.

40 -

35 -
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----- T.Min MNS = ===-=-T. Max MNS

0

23/10 28/10 2/11 7/11 12/11 18/4 23/4 28/4 3/5 8/5
2018 2019

Figure 2. Daily average maximum and minimum temperatures of the air and mineral nutrient solutions
(MNS) inside the greenhouse during autumn 2018 and spring 2019 cultivations.

The EC and pH values of the nutrient solutions in the tanks varied during plant growth and
between growing seasons. The pH increased up to 6.89 and 6.50 for autumn and spring cultivations,
respectively, regardless of the bacterial inoculum or salt content. The EC of MNS had significant
differences due to water absorption and refills of the tanks with MNS with different NaCl concentrations.
The MNS decreased their EC, during autumn cultivation, in control tanks (1.82 mS cm™! on average for
0 mM NaCl), whereas, it increased in the MNS with 20 mM NacCl (6.26 mS cm_l). Slightly higher EC
values were found for the MNS of the second experiment, which raised up to 3.07 and 6.56 mS cm™1

for 0 and 20 mM NaCl, respectively.

3.1. Morphophysiological Parameters and Yield of Leaf Lettuce

The characteristics of lettuce plants evaluated during the experiments were influenced by the
season of cultivation. Moreover, the climatic condition of the cultivation periods significantly interacted
with one or both experimental factors (bacterial biostimulant and NaCl). The height of the plants
at harvest was higher in autumn than in spring. The highest plant height in autumn was measured
in all inoculated plants and in the uninoculated plants grown with 0 mM NaCl in the nutrient
solution (25.1 cm on average), whereas control plants under salt stress reduced their height by 14.3%
(Table 1, Figure 3). At the end of the second experiment (spring), plant height was reduced by salt
stress, in both control and inoculated plants (—15.6% and —15.3%, respectively), but inoculated and
salt-stressed lettuce plants were 19.4 cm high and did not differ significantly from uninoculated and
unstressed plants.
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Table 1. Morphological parameters of leaf lettuce plants grown during autumn and spring in nutrient
solutions containing different levels of NaCl and bacterial biostimulant.

Fresh Weight (g plant~1) Dry Weight (g plant~1)
Source of Variance Plan(tcll;lsight Shootg Ig{oot l'yShoft gRoot Dry(l;:)atter
Total ) ®) R/S Total ) ®) R/S
Season
Autumn 2242 19.0 14.1 49 0.35 1.20 0.93 0.27 0.29 6.6
Spring 19.2 14.7 12.6 21 0.17 0.99 0.86 0.13 0.15 6.8
PGPR
-B 20.3 14.7 11.7 3.0 0.25 0.94 0.77 0.16 0.21 6.7
+B 23.1 19.0 15.0 4.0 0.27 1.26 1.02 0.24 0.24 6.8
NaCl (mM)
0 22.9 18.3 14.8 3.5 0.23 1.14 0.96 0.18 0.19 6.4
20 20.5 15.5 11.9 3.6 0.29 1.05 0.83 0.23 0.26 7.0
Season x PGPR
Autumn -B 233 17.5b 13.0 45 0.35 1.06 0.84b 0.22 0.26 6.5
+B 25.1 20.6a 15.2 5.4 0.36 1.35 1.02a 0.33 0.32 6.7
Spring -B 17.2 12.0¢c 104 1.6 0.15 0.81 0.70c 0.10 0.15 6.9
+B 21.1 17.5b 14.8 2.7 0.18 1.17 1.01a 0.16 0.16 6.8
Season x NaCl
Autumn 0 25.1 19.2a 14.9 4.3b 029 1.17ab 096a  0.21b  0.22b 6.4
20 234 18.8ab 13.3 5.5a 0.42a 1.24a 0.90a 0.34a  0.37a 6.8
Spring 0 20.8 17.3b 14.7 2.6¢ 0.18¢ 1.11b 096a 0.15bc  0.16b 6.5
20 17.6 12.2¢ 10.5 1.7d 0.16¢ 0.87¢ 0.75b 0.11¢ 0.15b 7.2
PGPR x NaCl
-B 0 21.9 15.7 12.8 29 0.22 0.92¢ 0.78¢ 0.14 0.18 6.1b
20 18.7 13.7 10.6 3.1 0.27 0.95¢ 0.77¢ 0.18 0.23 7.3a
+B 0 23.9 20.9 16.9 4.0 0.24 1.36a 1.14a 0.22 0.19 6.8a
20 223 17.2 13.1 4.1 0.30 1.15b  0.89b 0.27 0.29 6.8a
Significance *
Season L L L L % HH% * % EE ns
PGPR AN Rt AN L2t ns A HH g ns ns
NaCl Rt Rt EE L ns EE s * Ea s * *3% LR
Season X PGPR ** ** *>* ns ns ns * ns ns ns
season X NaCl * L L L A Rk * % EE 3 ns
PGPR x NaCl * ns * ns ns ** o ns ns i
Season X PGPR x NaCl ** ns * ns ns ns ns ns ns ns

* Each value is the mean of 4 replicated samples of 20 plants each. For each factor, values in a column followed
by the same letter are not significantly different, according to the LSD test. * Significance: ns = not significant;
* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.
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Figure 3. Height of leaf lettuce plants grown during autumn and spring in nutrient solutions containing
different levels of NaCl (0 mM and 20 mM) and with (+B) or without (—B) bacterial biostimulant (bars
with different letters are significantly different at p < 0.05, according to the LSD test).
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The total fresh biomass accumulated by the plants was influenced by all experimental factors but
the effect of PGPR and salt stress showed some differences as a function of cultivation season (Table 1).
In the first experiment, the total fresh weight (FW) of lettuce plants was 17.5 g FW plant™! on average,
in non-inoculated nutrient solutions, and increased by 17.8% in the plants grown in inoculated MNS.
In the second cultivation season, the fresh biomass was lower than the first in the uninoculated plants
and showed a greater effect of the bacterial biostimulant that increased the plant fresh weight by 46.0%
(Table 1, Figure 4a). With regards to salt stress, a small and non-significant reduction was determined
during the first experiment, whereas its effect was greater in the second experiment which recorded the
lowest fresh weight in salt-stressed plants (12.2 g FW plant™! on average, —29.9%) (Table 1, Figure 4b).

25 1 25 1 B Autumn B Spring
. a
20 - 20 | 4 ab
<
o9
3
3915 . 15 -
"5
o)
210 10
=
[0}
£
=
B 5 A 5
H

0 - 0 A

-B +B 0 mM NaCl 20 mM NaCl
(a) Bacterial biostimulant (b) NaCl

Figure 4. Total fresh weight of leaf lettuce plants grown during autumn and spring in nutrient solutions
(a) with (+B) or without (—B) bacterial biostimulant or (b) containing different levels of NaCl (for each
interaction, bars with different letters are significantly different at p < 0.05, according to the LSD test).

The main part of the biomass was represented by the shoot (leaves and stem). The fresh biomass of
the shoots was higher in the first season. In both seasons, inoculated salt-stressed plants accumulated
more fresh biomass in the shoots (Table 1, Figure 5). Salt stress determined modest and non-significant
reductions in the first season (—11.3% and —10.7% for uninoculated and inoculated plants, respectively),
when salt-stressed inoculated plants had a shoot fresh weight similar to the unstressed uninoculated
plants. During spring cultivation, the shoot of the uninoculated plants weighed 11.8 g FW plant~!,
under no salt stress and dropped by 23.4% in the salt stress conditions. The shoot fresh weight of
the inoculated unstressed plants showed no significant difference against the same treatment of the
first growing season and, even if salt stress determined a reduction of 32.7% in the second season,
the shoot weight of salt-stressed inoculated plants was comparable to that of uninoculated unstressed
plants (Table 1, Figure 5). The fresh biomass of the roots was greater during autumn than spring and
was significantly stimulated by the bacterial inoculum (+33.4% on average). Salt stress determined
a contrasting effect on root fresh weight as a function of cultivation season. Salinity increased the
fresh biomass of the roots during the first experiment (+27.8%), whereas it decreased in the second
experiment (—35.1%) (Table 1).

The modification of fresh biomass partitioning due to the experimental factors was shown by the
root/shoot ratio of the fresh weight (Table 1). During spring, the allocation of biomass in the roots was
lower than in autumn. The bacterial biostimulant did not affect the R/S ratio, whereas salinity had a
different effect in each growing season, as it increased the R/S ratio in autumn (from 0.29 to 0.42 on
average for 0 and 20 mm NaCl, respectively) but had no significant effect in spring.
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Figure 5. Shoot fresh weight of leaf lettuce plants grown during autumn and spring in nutrient
solutions containing different levels of NaCl (0 mM and 20 mM) and with (+B) or without (—B) bacterial
biostimulant (bars with different letters are significantly different at p < 0.05, according to the LSD test).

The experimental factors also affected the dry weight (DW) of lettuce plants (Table 1). During the
first experiment, the plants accumulated 1.17 g DW plant™ with 0 mM NaCl in the MNS and showed
a slight but not significant increase under salt stress, whereas, in the second cultivation season,
salinity determined a significant decrease of total dry weight (22.1%) as compared to the unstressed
plants. The plants not inoculated with the bacterial biostimulant had a lower dry biomass accumulation
(0.94 g DW plant™! on average), irrespective of salt stress. The bacterial biostimulant promoted the
accumulation of dry biomass up to 1.36 g DW plant™! without salt stress, and, even if salt stress
reduced the total dry weight of lettuce plants by 15.3%, the dry biomass accumulated in those plants
was significantly higher than that of uninoculated plants (Table 1). The dry biomass accumulated in the
shoot of the uninoculated plants was 0.84 and 0.70 g DW plant™ in autumn and spring, respectively.
The bacterial biostimulant increased the dry weight of the shoot up to 1.02 g DW plant~! on average
in both seasons. The dry weight of the shoot was 0.96 g DW plant™! on average in both seasons,
when plants were grown without NaCl in the MNS. Salt stress did not significantly affect this parameter
in the first season, whereas it decreased down to 0.75 ¢ DW plant~! on average during spring cultivation.
Moreover, similar to what was observed for the total dry weight, salt stress negatively affected only the
shoot dry weight of the inoculated plants, which in any case, had a higher biomass accumulation than
the uninoculated plants. PGPR had a positive effect on dry biomass accumulation in the roots. The dry
weight of the roots increased under salt stress during autumn but was not influenced by salinity.

The variations recorded during the experiments on dry matter percentage were mainly found
in the plant not inoculated with PGPR, which increased up to 7.3% under salt stress (+19.9% than
unstressed plants), whereas the plants inoculated with the bacterial biostimulant did not change their
dry matter percentage as a function of salt stress (Table 1).

The plants grown without bacterial biostimulant in the MNS yielded 3.0 kg m~2 on average in
autumn and significantly less in spring, while those grown in MNS inoculated with PGPR yielded
significantly more in both season (3.4 kg m~2 on average) (Table 2, Figure 6a). The plants of lettuce not
subjected to salt stress yielded 3.5 kg m™2 on average in both cultivation seasons (Table 2, Figure 6b);
the use of MINS with NaCl determined a reduction of the crop yield that was lower in autumn (-18.3%)
than in spring (—28.6%). The supply of bacterial biostimulant in brackish MNS allowed the plants to
reach a crop yield similar to those grown without PGPR and 0 mM NaCl in both seasons. The minimal
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processing yield was affected only by the salt stress, which slightly increased the percentage of leaves
suitable to be processed as fresh-cut vegetables. Despite this increase, the yield of minimally processed
leaves were affected by the experimental factor in the same way as that of the crop yield (Table 2).

Table 2. Yield parameters of leaf lettuce plants grown during autumn and spring in nutrient solutions
containing different levels of NaCl and bacterial biostimulant.

Minimal

Source of Variance Cfﬁg ;{11;)1 d Proces?(i)/n)g Yield Lf]j; Eg;d “;EFI(-;O)Z B)VV ngil(gN]))W
0
Season
Autumn 232 89.5 2.9 3.2 23.2
Spring 29 90.6 26 26 111
PGPR
-B 2.7 90.7 24 2.6 154
+B 3.4 89.4 3.0 3.2 18.8
NaCl (mM)
0 3.5 89.0b 3.0 2.9 16.6
20 2.7 91.0a 24 2.8 17.7
Season X PGPR
Autumn -B 3.0b 90.6 2.7b 3.0b 21.6
+B 3.5a 88.3 3.0a 3.4a 24.7
Spring -B 2.5¢ 90.9 2.2¢ 2.2¢ 9.3
+B 3.3a 90.4 3.0a 3.0b 129
Season X NaCl
Autumn 0 3.6a 87.7 3.0a 3.1a 21.4b
20 2.9b 91.2 2.7b 3.3a 24.9a
Spring 0 3.4a 90.4 3.0a 2.7b 11.8¢
20 2.4c¢ 90.9 2.2¢ 2.4c¢ 10.4¢
PGPR x NaCl
-B 0 3.1 89.6 2.7 2.3¢c 13.6¢
20 2.4 91.9 2.2 2.8b 17.3b
+B 0 3.9 88.5 34 3.5a 19.6a
20 3.0 90.2 2.7 2.8b 18.0ab
Significance *
Season R ns *3% %o %ot
PGPR s ns L EE EE
NaCl o * o ns ns
Season X PGPR * ns ** ex ns
Season X NaCl * ns b b b
PGPR x NaCl ns ns ns o o
Season X PGPR x NaCl ns ns ns ns ns

# Each value is the mean of 4 replicated samples of 150 plants each. For each factor, values in a column followed
by the same letter are not significantly different, according to the LSD test. * Significance: ns = not significant;
* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.

During plant growth in every cultivation season, the MNS consumed by the plants was regularly
recorded and reintegrated for each tank. From these consumptions, we calculated the water use
efficiency (WUE) and nitrogen use efficiency (NUE) (Table 2). WUE was higher during autumn than
spring when the salt stress determined a significant reduction. The lowest WUE of the inoculated
plants grown in spring or under salt stress was higher than that in the uninoculated plants grown in
autumn or under salt stress. NUE was higher in the first experiment when salt stress was effective in
increasing it. Salt stress also increased NUE in the plants grown without bacterial biostimulant in the
MNS, whereas the plants inoculated with PGPR showed the highest NUE that was not significantly
reduced by brackish MNS.
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Yield (kg m?)
N

-B +B 0mM 20 mM
(a) Bacterial biostimulant (b) NaCl

Figure 6. Yield of leaf lettuce plants grown during autumn and spring in nutrient solutions (a) with (+B)
or without (—B) bacterial biostimulant or (b) containing different levels of NaCl (for each interaction,
bars with different letters are significantly different at p < 0.05 according to the LSD test).

The bacterial biostimulant and salt stress also affected the leaf characteristics of lettuce plants
(Table 3). Salt stress significantly reduced the number of leaves per plant (—6.6% on average), whereas the
bacterial inoculum positively affected this parameter in the first experiment increasing the number of
leaves from 7.6 to 10.0. This positive effect was not recorded in the second cultivation season when the
plants showed no significant difference between uninoculated and inoculated plants. The bacterial
inoculum also significantly influenced the leaf morphology, enlarging leaf height, as shown by the
increase in plant height, and leaf area (Table 3). The latter was higher during autumn (49.1 cm? leaf ™! on
average, +14.5% than spring) and due to the presence of PGPR in the nutrient solution (51.1 cm? leaf ™!
on average, +24.7% than uninoculated plants), whereas it was negatively affected by salt stress that
reduced it by 19.7%, compared to the unstressed plants. The total leaf area was negatively affected by
salt stress, but the amplitude of this parameter and the reduction due to salinity, varied as a function of
growing season and bacterial inoculant (Table 3, Figure 7). The lowest total leaf area of the unstressed
plants was recorded in autumn-grown uninoculated plants (354.6 cm? plant~!) that showed a small
reduction due to salt stress (—8.4%). The highest leaf area per plant was measured in the same season in
the inoculated plants grown without NaCl in the MNS (640.0 cm? plant™!); these plants reduced their
leaf area under salt stress by 29.5%, but despite this, they still resulted in a higher photosynthetic area
than uninoculated plants. In spring, the plants grown without the bacterial biostimulant in the MNS
were leafier and thus increased their total leaf area (481.7 cm? plant™!) but were also more susceptible
to the brackish nutrient solution, recording a reduction of 41.6% under salt stress. In the same season,
the inoculated plants grown without salt stress reduced their leaf expansion compared to autumn,
leading to a less wide total leaf area. When these plants were grown in brackish MNS, they reduced
the plant leaf area by 17.3% but maintained a total leaf expansion (476.9 cm? plant™!) similar to that
found in uninoculated unstressed plants.

The specific leaf area (SLA) recorded the main differences as a function of the growing season
with higher leaf thickness in autumn than spring, whereas the increases due to the bacterial inoculum
and the reductions due to salt stress were modest and showed little significance (Table 3).
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Table 3. Leaf characteristics of leaf lettuce plants grown during autumn and spring in nutrient solutions
containing different levels of NaCl and bacterial biostimulant.

Source of Variance Number of Leaf Area Leaf Area SLA Stomatal Conductance
Leaves (cm? plant-1) (cm? leaf-1) (cm? g DW-1) (mmol m? s71)
Season
Autumn 8.8 442.6 49.1a 904.7a 617.3
Spring 10.5 4541 42.9b 662.8b 646.5
PGPR
-B 9.2 360.6 40.9b 774.9 550.8
+B 10.1 536.1 51.1a 7925 713.0
NaCl (mM)
0 10.0a 513.2 51.0a 798.4 648.9
20 9.3b 383.5 41.0b 769.1 614.9
Season X PGPR
Autumn -B 7.6¢ 339.7 44.4 917.0 579.7bc
+B 10.0b 545.5 53.8 892.3 654.8b
Spring -B 10.8a 381.5 37.5 632.9 521.9¢
+B 10.1ab 526.7 48.3 692.8 771.1a
Season x NaCl
Autumn 0 9.2 497.3 52.8a 926.8 6154
20 8.5 387.9 45.4b 882.5 619.1
Spring 0 10.8 529.1 49.2a 670.0 682.4
20 10.1 379.1 36.6¢ 655.6 610.7
PGPR x NaCl
-B 0 9.5 418.2 452 791.1 591.7b
20 9.0 303.0 36.6 758.8 509.9¢
+B 0 10.5 608.2 56.8 805.7 706.0a
20 9.7 464.0 453 779.4 719.9a
Significance *
Season e ns ** ek ns
PGPR R Easd R ns AN
NaCI EEd Eesd Kkt ns ns
Season X PGPR e ns ns ns o
Season x NaCl ns ns ns ns ns
PGPR x NaCl ns ns ns ns *
Season X PGPR x NaCl ns ek ns ns ns

% Each value is the mean of 4 replicated samples of 20 plants each. For each factor, values in a column followed
by the same letter are not significantly different, according to the LSD test. * Significance: ns = not significant;
* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.
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Figure 7. Total leaf area of leaf lettuce plants grown during autumn and spring in nutrient solutions
containing different levels of NaCl, with (+B) or without (—B) bacterial biostimulant (bars with different
letters are significantly different at p < 0.05, according to the LSD test).

Nutrient solutions added with the bacterial biostimulant and NaCl affected the leaf physiology
as well as leaf morphology, as resulted by measuring the stomatal conductance (Table 3). The plants
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grown on nutrient solutions added with the bacterial biostimulant had a higher stomatal conductance,
especially during spring, and retained this level of stomatal conductance even under salt stress
(713.0 mmol m? s~!, on average), whereas the control plants had a lower stomatal conductance
(591.7 mmol m? s~1) that was further reduced by the salt stress (—13.8%).

The leaves of lettuce plants changed their color characteristics mainly as a function of the growing
season but also showed some change due to the bacterial inoculant in the spring cultivation (Table 4).
In autumn, the leaves had higher L*, chroma, and hue angle than in spring, when the bacterial
biostimulant determined a slight reduction of L* and a significant increase of hue angle.

Table 4. Leaf color and chemical characteristics of leaf lettuce plants grown during autumn and spring
in nutrient solutions containing different levels of NaCl and bacterial biostimulant.

Source of variance L* Chroma Hue® (ogii) (n?gscl(:)r()b;—f ?3\7) (mgNkl\gI?lglFW)
Season
Autumn 2476 56.9a 123.1 2.7 116.7 3749.6
Spring 54.0 40.8b 122.1 4.0 69.1 1348.5
PGPR
-B 51.2 49.8 122.1 3.5 91.7 2495.2
+B 50.4 47.9 123.0 3.2 94.1 2602.9
NaCl (mM)
0 50.9 50.0 122.5 3.1 91.1 2693.3
20 50.7 47.7 122.7 3.6 94.8 2404.9
Season X PGPR
Autumn -B 46.7b 57.7 123.3a 2.7 118.8 3635.8
+B 48.6b 56.2 122.9a 2.7 114.7 3863.3
Spring -B 55.8a 419 121.0b 4.2 64.6 1354.5
+B 52.3ab 39.6 123.1a 3.8 73.6 1342.5
Season X NaCl
Autumn 0 48.2 58.9 122.9 2.7 118.1 3715.8a
20 47.0 55.0 123.3 2.8 115.3 3783.3a
Spring 0 53.6 41.1 122.1 3.6 64.0 1670.7a
20 54.5 40.5 122.1 44 74.2 1026.4c
PGPR x NaCl
-B 0 515 50.4 122.1 3.3 92.6 2631.5
20 51.0 49.2 122.2 3.6 90.7 2358.9
+B 0 50.4 49.6 122.8 3.0 89.5 2755.0
20 50.5 46.2 123.2 35 98.8 2450.9
Significance *
Season R X% * Rl 3%t *
PGPR ns ns * ns ns ns
NaCl ns ns ns hid ns *
Season X PGPR * ns * ns * ns
Season X NaCl ns ns ns * ns **
PGPR x NaCl ns ns ns ns ns ns
Season X PGPR x NaCl ns ns ns i * ns

% Each value is the mean of 4 replicated samples of 20 plants each. For each factor, values in a column followed
by the same letter are not significantly different, according to the LSD test. * Significance: ns = not significant;
* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001.

The quality of the leaves of leaf lettuce, which represent the edible part of this plant, was
evaluated at the end of each growing season, by measuring the total soluble solids (TSS) and nitrate
and ascorbic acid content (Table 4). TSS showed small variations during the first growing season
(2.7 °Brix on average), whereas in spring it increased up to 4.3 °Brix on average for uninoculated plants
and inoculated stressed plants (Figure 8). On the contrary, the ascorbic acid content was higher in
autumn (116.7 mg 100 g~! FW) than in spring, when it almost halved in uninoculated plants and
inoculated unstressed plants (63.6 mg 100 g~! FW) and increased up to 85.6 mg 100 g~! FW in the
inoculated stressed plants (Figure 9). Lettuce leaves accumulated a higher amount of nitrate in autumn
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(3749.6 mg kg~! FW on average) when the experimental treatments did not influence this parameter,
whereas in spring the nitrate content of lettuce leaves dropped down to 1670.7 mg kg~! FW on average,
in the plants grown without NaCl in the MNS, and was further reduced by salt stress (—38.6%) (Table 4).
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Figure 8. Total soluble solids of the leaf of lettuce plants grown during autumn and spring in nutrient
solutions containing different levels of NaCl and with (+B) or without (—B) bacterial biostimulant
(bars with different letters are significantly different at p < 0.05, according to the LSD test).
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Figure 9. Ascorbic acid content of the leaf of lettuce plants grown during autumn and spring in nutrient
solutions containing different levels of NaCl and with (+B) or without (-B) bacterial biostimulant
(bars‘with different letters are significantly different at p < 0.05, according to the LSD test).

3.2. Principal Components Analysis

The principal component analysis (PCA) detected four principal components (PCs) with
eigenvalues higher than 1 (Table 5), assessing 57.91%, 22.11%, 7.33%, and 5.60% of the total variance,
respectively. Thus, the initial 26 variables could be represented by a linear combination of four PCs,
which explained 90.94% of the total variance. PC1 was mainly related to plant height, whole plant
fresh weight (FW), shoot (S) FW, roots (R) FW, R/S FW, whole plant DW, shoot DW, roots DW, R/S DW,



Agronomy 2020, 10, 1523 14 of 23

crop yield, leaf yield, WUE, NUE, leaf area, SLA, leaf color components, TSS, ascorbic acid, and nitrate
content. PC2 was related to shoot FW, R/S FW, R/S DW, crop yield, leaf yield, leaf number, plant area,
stomatal conductance, and ascorbic acid content. PC3 was related to plant dry matter percentage and
minimal processing yield. PC4 was related to plant dry matter percentage and hue angle (Table 5).
Projecting the original variables on the plane of the two main PCs could betoken such a relationship,
as shown in the plot of loadings (Figure 10a). The discrimination of the experimental factors applied to
leaf lettuce plants could be studied in the plot of scores (Figure 10b), where two main clusters could be
visibly distinguished. The scores of lettuce plants grown in the autumn season and those grown in
spring in nutrient solutions without NaCl and inoculated with the bacterial biostimulant were located
in the positive part of the PC1 axis, and were clearly separated from the other spring treatments located
in the negative part of the PC1 axis.

Table 5. Correlation of variables to the factors of the principal components analysis (PCA) based on
factor loadings.

Variable PC1 PC2 PC3 PC4
Plant height 0.953 0.080 -0.234 -0.048
Whole plant FW 0.942 0.312 0.039 0.017
Shoot FW 0.767 0.619 —0.025 -0.022
Root FW 0.932 -0.277 0.124 0.072
R/SFW 0.787 —0.545 0.212 —-0.005
Whole plant DW 0.870 0.353 0.285 0.168
Shoot DW 0.718 0.617 0.212 0.143
Roots DW 0.826 -0.263 0.294 0.170
S/R DW 0.671 —0.508 0.291 0.074
Plant DM -0.274 -0.157 0.619 0.568
Crop Yield 0.757 0.624 -0.175 -0.014
Minimal processing Yield —0.438 -0.379 0.611 —-0.368
Leaf Yield 0.737 0.634 -0.039 -0.111
WUE 0.835 0.150 0.378 0.218
NUE 0.907 -0.350 0.116 0.183
Leaf No. -0.414 0.703 0.023 0.409
Plant area 0.427 0.804 0.013 0.000
Leaf area 0.796 0.561 -0.136 0.000
SLA 0.863 -0.398 -0.268 -0.004
Stomatal conductance 0.381 0.647 0.314 —0.499
L* —0.863 0.413 -0.039 0.214
Chroma 0.748 -0.499 -0.362 0.148
Hue angle 0.726 —-0.089 0.320 —-0.541
SSC -0.913 0.152 0.213 -0.110
Ascorbic acid 0.764 —0.544 -0.182 —0.098
Nitrate content 0.865 -0.414 —0.205 0.101

Values in bold within the same factor indicate the variable with the largest correlation.

The response of lettuce varied in the two growing seasons, as it was observed mainly an increase
of the PC2 values due to the bacterial biostimulant and a decrease of the PC2 values due to salt stress
in the autumn cultivation, whereas there were also increases or reduction due to bacterial biostimulant
and salt stress, respectively, for the PC1 values in the spring cultivation.

Combining the data from the plot of loadings and scores, it could be concluded that the experimental
factor influenced leaf lettuce in different ways (Figure 10a,b). The autumn cultivation was related to all
parameters positively related to PC1. The presence of the bacterial biostimulant in the nutrient solution
was positively related mainly to PC2 in spring, and to both PC1 and PC2 in autumn. The addition of
NaCl to the MNS was negatively related to PC2 in autumn and to PC1 and PC2 in spring.
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Figure 10. Plot of (a) loadings (morphophysiological and quality characteristics of leaf lettuce plants)
and (b) scores (trials) formed by the two principal components from the Principal Component Analysis
(PCA). A: autumn cultivation (blue color); S: spring cultivation (red color); 0 NaCl, 20 NaCl: mM
of NaCl in the nutrient solution; C: nutrient solutions not inoculated with the bacterial biostimulant

(empty symbol); and B: nutrient solutions inoculated with the bacterial biostimulant (full symbol).
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4. Discussion

Poor quality water due to high salt content is one of the most important problems worldwide for
vegetable growers, as it causes reductions of crop yield or even makes it very difficult to grow sensitive
crops. Among leafy vegetables, lettuce is one of the most used for salads and can be classified as a
relatively salt-sensitive crop [5,34]. The tolerance of vegetable crops to salinity is generally defined as
the ability of plants to hold out against the negative effects of high salt concentration, without significant
detrimental effects [5]. These effects should be considered mainly on the portion of the plant to be
marketed [35]. Thus, the measurement of salt tolerance in lettuce plants should be based mainly on yield
decline caused by shoot fresh weight reduction, or leaf fresh weight decrease, in the case of leaf lettuce.
Xu and Mou [34] found that leaf lettuce varieties can suffer shoot fresh mass reduction of up to about
60%, under salt stress conditions, due to fertigation with a nutrient solution with an EC of 8.4 mS cm~ L
In our experiments, we found a lower effect of salt stress, which on average determined a reduction
by 17.3% of shoot fresh weight for uninoculated plants, probably due to a lower EC (4.4 mS cm™!) of
the brackish nutrient solution. Vegetables grown under salt stress usually show a visible reduction of
the growth rate, smaller leaves and fruits, shorter plants, and modification of other morphological
traits that end in the reduction of plant biomass [2,5]. These modifications were also found in leaf
lettuce [16] and mainly consisted of the reduction of plant and leaf development (shorter plants and
smaller leaves) and plant water content. The higher dry matter content could be linked to the increased
osmotic stress caused by the high salt concentration of the MNS, which might limit water uptake and
cause changes in plant metabolism and nutrient uptake. The reduced availability of the nutrients in
the MNS due to salinity can lead to a severe reduction of plant growth [5,36]. This reduction induced
by the exposure to salt stress was mainly recorded in terms of shoot fresh biomass and was mostly due
to osmotic effects and changes in the water status of the plants, as shown by the low effect of salinity
on the accumulation of dry biomass in the shoots.

The sensitivity of leaf lettuce plants to salinity showed some differences according to the growing
seasons, which also influenced the growth potential of leaf lettuce plants. There was a significant
difference in the reduction in shoot fresh weight, under salt stress recorded in leaf lettuce plants grown
in autumn or spring. Control plants were more tolerant to salinity in autumn than in spring, as shown
by the greater reductions of shoot fresh weight and crop and leaf yield, which were —11.3%, —19.6%, and
—7.6% in autumn and —23.4%, —27.5%, and —27.9% in spring, respectively. The salt tolerance threshold
of vegetable crops and the severity of salt stress effects might vary greatly among species or even
among varieties within a species and are very sensitive to environmental conditions [5]. Among the
environmental factors, temperature, wind, relative humidity, light, and atmosphere composition might
significantly affect plant growth and interact with salinity [37]. The sensitivity to salinity increases
in most crops under high temperatures and dry conditions [5,37], which might also negatively affect
CO; assimilation and the efficiency of the photosynthetic process, determining a reduction of growth
and yield. This could explain the reduction in plant growth and the lower salt tolerance of leaf lettuce
recorded in spring cultivation. Even if the average daily temperatures were similar in autumn and
spring cultivation periods, the analysis of average hourly temperatures and relative humidity showed
some important climatic differences. The differential between hourly air temperatures in autumn
and spring was greater than 1 °C for five hours, every day on average, and reached 4 °C during the
day. The mean hourly relative humidity was 10.8% lower in spring than autumn on average and
the differential between the values recorded in spring and autumn overcame —10% for ten hours
daily and —25% for two hours daily. Thus, during spring, there was a higher vapor-pressure deficit
(VPD) that probably increased the stomatal resistance and enhanced the osmotic stress determined
by salinity. This hypothesis could be confirmed by the modifications of stomatal conductance and
total leaf area that were significantly lowered during spring, especially under salt stress (—23.8%
and —41.6%, respectively). Osmotic stress can strongly reduce stomatal conductance [38], thus also
decreasing photosynthesis and plant growth [39]. The decrease in water availability during spring
due to the interaction between VPD and salinity, probably limited leaf expansion and consequently
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determined the reduction of light interception and photosynthesis more than that in the autumn
experiment [40]. The effects of the salinity level used in the present study carried out with a floating
system, were probably mainly due to osmotic stress, although the effects of ionic stress could not be
fully separated [6].

Leafy vegetables tend to accumulate high levels of nitrates in the leaves, thus limiting their
nutritional quality, as nitrates can be negative to human health [41-43]. Moreover, lettuce can lose
marketability if its nitrate content overcomes the thresholds imposed by EU regulations [44]. The lower
light duration and intensity during autumn, probably limited the activity of nitrate reductase and
increased the nitrate content of lettuce leaves up to 3749.6 mg kg~! FW. This value, although high,
was well below the thresholds imposed by EU regulations, for lettuce plants grown under protected
cultivation in autumn [44]. The more favorable light condition recorded during spring increased the
nitrate reductase activity [45] and almost halved the leaf nitrate content, which was further reduced
under salt stress condition. The salinity of nutrient solutions can make the absorption of essential
cations and anions like K* and NO3~ problematic [46,47]. Moreover, osmotic stress can determine a
reduction of water uptake, thus also reducing nitrate uptake. These effects on nitrate uptake determined
by moderate salt stress could help in improving the nutritional quality and market value of some leafy
vegetables [16], as found in our spring experiment.

Leaf lettuce showed a reduction by 40.8% of the ascorbic acid content, on average, during spring
cultivation, as compared to autumn cultivation. The concentration of vitamin C in some fruits and
vegetables seems to be related to nitrogen metabolism, as high nitrogen availability often corresponds
to lower vitamin C content, even if variations could occur according to species, climate, and other
factors [48,49]. Thus, the more active nitrogen metabolism recorded in spring and revealed by the
lower nitrate accumulation could have limited the ascorbic acid content in the leaves.

The inhibition of lettuce plant growth due to salt stress was significantly alleviated by the addition
of the bacterial biostimulant to the MNS. This had a positive effect on plant growth and fresh and dry
biomass accumulation of the unstressed lettuce in both cultivation seasons. It also maintained this
positive effect in brackish MNS, with similar or even significantly higher plant growth (plant height,
biomass accumulation, leaf number, leaf area) than unstressed control plants. The positive effects of
PGPR on vegetable growth are well-known [50], but only a few studies focused on PGPR application
in hydroponic culture [51-53]. PGPR can exert their effect on vegetables in different mechanisms
that could vary according to bacteria species [54]. Some of these mechanisms determine changes in
hormonal content, production of volatile compounds, increased nutrient availability or enhanced
tolerance to abiotic stress [55]. In our study, the bacterial biostimulant showed a clear growth-promoting
activity on leaf lettuce plants, in the absence of salt stress in both seasons, but to a greater extent
during spring. The percentage increase of shoot and root fresh weight, shoot dry weight, yield,
WUE, and NUE, due to bacterial biostimulant in the unstressed plants, almost doubled in spring
compared to autumn, mainly because inoculated plants maintained higher values in both seasons,
whereas control plants reduced their growth in spring. A positive effect was also recorded on leaf
area and stomatal conductance; both these enhancements could have increased light interception and
CO, assimilation, as the decrease in intercellular CO, partial pressure increases the net photosynthetic
rate [56]. Improvements in growth and yield were widely reported in many crops, as a consequence
of inoculation with PGPR [50,57,58]. The species belonging to the genera Pseudomonas and Bacillus
were most extensively studied and used for commercial products, among the bacteria that showed
growth-promoting activity [59]. Many species of Bacillus and Paenibacillus, like those present in
Bactor®!3, can exert plant growth-promoting activity through different mechanisms like the production
of growth-promoting phytohormones or inhibition of plant ethylene synthesis, nitrogen fixation,
phosphate solubilization and mobilization, production of siderophore and antibiotics, and induction
of systemic resistance to pathogens in plants [60,61]. Bacillus strains application proved to be effective
in enhancing plant growth crops under greenhouse or field conditions for several vegetable crops
like broccoli, cucumber, pepper, tomato, and lettuce [50,62,63]. The inoculation of lettuce plants with
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Bacillus subtilis can determine the increase of the cytokinin content of shoots and roots, and influence
the content of abscisic acid (ABA) and indole acetic acid (IAA) [64]. The hormonal substances produced
by PGPR can stimulate endogenous hormones and can play a key role in improving salt tolerance [65].
These modifications were associated with an increase in shoot and root weight of approximately 30%,
which was in agreement with the growth promotion determined by the bacterial biostimulant used in
our study. Other Bacillus spp. such as B. velezensis, B. amyloliquefaciens, and B. methylotrophicus showed
to increase the plant growth and food values through different mechanisms when applied to lettuce
plants [52,66-68].

Bacillus spp. and other PGPR were also studied and applied to increase the tolerance to abiotic
stresses of many crops [69-71]. Besides promoting plant growth, PGPR also have the ability to enhance
crop tolerance to salinity [20,25]. It was reported that vigorous plants can better deal with salinity;,
through the increase of salt tolerance threshold or by procrastinating its onset [72]. The application
of PGPR can effectively increase plant growth and vigor, as shown in our work, and can affect plant
metabolism, as previously described, thus aiding plants to better cope with salt stress. The ability of
PGPR to enhance crop tolerance to salinity and other abiotic stresses could be determined by various
mechanisms involving changes in phytohormone content, antioxidant defense, osmolyte production,
ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, and biofilm formation [73-77].

The bacterial biostimulant containing Bacillus spp. added to the nutrient solution successfully
mitigated salt stress and improved the salt tolerance of leaf lettuce plants grown on floating panels.
Almost all morphological, physiological, and yield parameters evaluated in the plants grown under salt
stress and inoculated with the bacterial biostimulant were similar or even higher than those recorded
in control unstressed plants in both growing seasons. Hence, the negative effect of salinity was fully
overcome, thanks to the PGPR added to the MNS.

Under salt stress, the plants are forced to reduce the stomatal opening, to compensate for the
reduced ability to take up water. However, this results in reduced volume of air exchanged with
the environment and intercellular CO; concentration, leading to lower photosynthetic rates and
limited growth [78]. Plants supplemented with the bacterial biostimulant showed a higher stomatal
conductance than the control plants, under salt stress, and this could be one of the beneficial mechanisms
of salt tolerance induced by the PGPR. Ethylene content increases in plants under abiotic stress and
it negatively affects photosynthesis and stomatal conductance [79]. Some Bacillus spp., such as
Bacillus amyloliquefaciens, have the ability to control ethylene formation in roots, through the enzyme
ACC-deaminase [80,81]. This enzyme converts ACC, the immediate precursor of ethylene synthesis in
plants, to ammonia and x-ketobutyrate [82]. Thus, ACC exuded from plant roots is metabolized by
PGPR and the efflux from roots decreases ACC and ethylene concentration, resulting in increased root
growth and development, and lower translocation to leaves. This, together with the IAA produced
by rhizobacteria, could explain the greater root biomass under salt stress of inoculated plants than
control plants, and the significant improvement in stomatal conductance of the plants treated with
ACC-deaminase producing PGPR [82].

Plants react to salt stress by producing reactive oxygen species (ROS), which functions as a signal
during salt stress and simultaneously damages root and shoot tissues by altering the enzyme, cell wall,
and membrane function. ROS might accumulate during salt stress, inducing an increase of superoxide
dismutase (SOD) and ascorbate peroxidase, and the use of ascorbic acid and glutathione, to prevent
oxidative damage in plants that determine the reduction of antioxidant and ascorbic acid content in
the leaves. On the contrary, we found an increase in the ascorbic acid content during spring, in the
inoculated plants subjected to salt stress. PGPR might have a role in ROS management by improving
enzymatic and nonenzymatic antioxidant activities [83], and this could have allowed inoculated
stressed plants to improve ascorbic acid metabolism.

As shown before, the severity of salt stress effects might vary greatly according to species and it
might be alleviated or accentuated by climatic or agronomic factors [5,9,16,84,85]. The differences in
the modification to salt tolerance due to cultivation season and bacterial biostimulant were well-shown
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by the PCA analysis that underlined the different growth potential of lettuce plants and their different
responses to salt stress during autumn and spring. It also showed that the inoculation of the MNS with
the bacterial biostimulant, counterbalanced the salinity, acting on different plant adaptation systems.
Moreover, the effects of salinity and bacterial biostimulant had a different extent in the cultivation
seasons, thus, confirming that the response to these factors might vary according to environmental
conditions [16,59,86].

5. Conclusions

Leaf lettuce plants grown in a hydroponic floating system with a brackish mineral nutrient
solution suffered significant reductions of growth and yield and were more sensitive to salinity in
spring than autumn. The initial inoculation of the MNS with the bacterial biostimulant was successful
in promoting vigorous plant growth in both seasons and allowed substantial counterbalancing of the
salt stress, by improving various morphological and physiological traits, such as biomass accumulation,
leaf expansion, stomatal conductance, WUE, NUE, etc.. Thus, the use of the bacterial biostimulant
with Bacillus spp. in hydroponic cultivation of leaf lettuce, proved to be a sustainable mean to increase
crop yield and to alleviate salt stress when difficulties in finding water of good quality makes the use
of brackish water a necessity.
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