Supporting information for

Synthesis, Chemosensory properties, and SelfAssembly of Terpyridine-Containing Conjugated Polycarbazole through RAFT Polymerization and Heck Coupling Reaction

Po-Chih Yang*, Si-Qiao Li, Yueh-Han Chien, Ta-Lun Tao, Ruo-Yun Huang and Hsueh-Yu Chen
Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan
E-mail address: pcyang@saturn.yzu.edu.tw (P. C. Yang).
Tel: +886 34638800 Ext. 3556, Fax: +886 34559373

Synthesis of 3,6-Dibromo-9-(4-methylbenzyl)-9H-carbazole (2)

3,6-Dibromo-9-(4-methylbenzyl)-9H-carbazole (2) was prepared by a procedure similar to that for 1, using 1-(bromomethyl)-4-methylbenzene instead of 4vinylbenzyl chloride. Yield: 65.6\%. ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 500 \mathrm{MHz}$): $\delta \mathrm{f}(\mathrm{ppm})=2.22$ (s, 1H, -CH3), 5.61 (s, 2H, -CH2-), 7.05 (d, 4H, aromatic, Ar-H), 7.55 (d, 4H, aromatic, Ar-H), 8.39 (s, 2H, aromatic, Ar-H). Anal. Calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Br} 2 \mathrm{~N}$: C, 55.97; H, 3.52; N, 3.26. Found: C 56.06; H, 3.48; N, 3.30.

Synthesis of Carbazole-functionalized alternating conjugated polymer (PCT)
A mixture of 3,6-dibromo-9-(4-methylbenzyl)-9H-carbazole (2) (0.21 g, 0.50 $\mathrm{mmol}), 3(0.28 \mathrm{~g}, 0.55 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc}) 2(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}), p(\mathrm{otol})_{3}(13.1 \mathrm{mg}, 0.05$ mmol), trimethylamine ($136.6 \mathrm{mg}, 1.35 \mathrm{mmol}$) and DMF (3 mL) was carefully degassed. The mixture was stirred for 48 h at $100^{\circ} \mathrm{C}$ under N_{2}. Then, bromobenzene $(0.08 \mathrm{~g}, 0.5 \mathrm{mmol})$ and styrene $(0.052 \mathrm{~g}, 0.5 \mathrm{mmol})$ were added for the end capping by refluxing subsequently for 6 h each. The mixture was cooled to room temperature. After removal of the solvent, the residue was filtered in excess methanol to precipitate out the polymer. The resulting precipitate was placed in a Soxhlet apparatus and extracted with refluxed methanol for 48 h and then was dried in vacuum to give PCT (35.6\%). $T_{\mathrm{g}}=159.8^{\circ} \mathrm{C}, T_{\mathrm{d} 5}=268.7^{\circ} \mathrm{C} . M_{\mathrm{w}}=1.22 \times 10^{4} \mathrm{~g} / \mathrm{mol}$, $\mathrm{PDI}=1.65 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta н(\mathrm{ppm})=2.25-2.30\left(\mathrm{br},-\mathrm{CH}_{3}\right), 5.43\left(\mathrm{br},-\mathrm{CH}_{2}-\right.$), 6.95-7.90 (br, aromatic, Ar-H), 8.14-8.18 (br, aromatic, Ar-H), 8.63-8.85 (br, aromatic, Ar-H).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of monomers (a) 1 and (b) 3.

Figure S2. FABMS of monomer 4.
(a)

(b)

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of polymers (a) PC2Br and (b) PCaT.

Figure S4. TGA curves of PC 2 Br and PCaT.

Figure S5. Energy dispersive spectroscopy (EDS) data of polymer PCaT-Fe ${ }^{3+}$ in THF.

Figure S6. Dynamic light scattering (DLS) measurement of PCaT in THF.

