

Supporting information for



## Synthesis, Chemosensory properties, and Self-Assembly of Terpyridine-Containing Conjugated Polycarbazole through RAFT Polymerization and Heck Coupling Reaction

## Po-Chih Yang\*, Si-Qiao Li, Yueh-Han Chien, Ta-Lun Tao, Ruo-Yun Huang and Hsueh-Yu Chen

Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan

E-mail address: pcyang@saturn.yzu.edu.tw (P. C. Yang). Tel: +886 3 4638800 Ext. 3556, Fax: +886 3 4559373

## Synthesis of 3,6-Dibromo-9-(4-methylbenzyl)-9H-carbazole (2)

3,6-Dibromo-9-(4-methylbenzyl)-9*H*-carbazole (2) was prepared by a procedure similar to that for 1, using 1-(bromomethyl)-4-methylbenzene instead of 4-vinylbenzyl chloride. Yield: 65.6%. <sup>1</sup>H NMR (acetone- $d_6$ , 500 MHz):  $\delta_{\rm H}$  (ppm) = 2.22 (s, 1H, -CH<sub>3</sub>), 5.61 (s, 2H, -CH<sub>2</sub>-), 7.05 (d, 4H, aromatic, Ar-H), 7.55 (d, 4H, aromatic, Ar-H), 8.39 (s, 2H, aromatic, Ar-H). Anal. Calcd. (%) for C<sub>20</sub>H<sub>15</sub>Br<sub>2</sub>N: C, 55.97; H, 3.52; N, 3.26. Found: C 56.06; H, 3.48; N, 3.30.

## Synthesis of Carbazole-functionalized alternating conjugated polymer (PCT)

A mixture of 3,6-dibromo-9-(4-methylbenzyl)-9*H*-carbazole (2) (0.21 g, 0.50 mmol), 3 (0.28 g, 0.55 mmol), Pd(OAc)<sub>2</sub> (2.2 mg, 0.01 mmol),  $p(\text{otol})_3$  (13.1 mg, 0.05 mmol), trimethylamine (136.6 mg, 1.35 mmol) and DMF (3 mL) was carefully degassed. The mixture was stirred for 48 h at 100 °C under N<sub>2</sub>. Then, bromobenzene (0.08 g, 0.5 mmol) and styrene (0.052 g, 0.5 mmol) were added for the end capping by refluxing subsequently for 6 h each. The mixture was cooled to room temperature. After removal of the solvent, the residue was filtered in excess methanol to precipitate out the polymer. The resulting precipitate was placed in a Soxhlet apparatus and extracted with refluxed methanol for 48 h and then was dried in vacuum to give PCT (35.6%).  $T_g = 159.8$  °C,  $T_{d5} = 268.7$  °C.  $M_w = 1.22 \times 10^4$  g/mol, PDI = 1.65. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta_{\text{H}}$  (ppm) = 2.25-2.30 (br, -CH<sub>3</sub>), 5.43 (br, -CH<sub>2</sub>-), 6.95-7.90 (br, aromatic, Ar-H), 8.14-8.18 (br, aromatic, Ar-H), 8.63-8.85 (br, aromatic, Ar-H).



**Figure S1.** <sup>1</sup>H NMR spectra of monomers (a) 1 and (b) 3.







Figure S3. <sup>1</sup>H NMR spectra of polymers (a) PC2Br and (b) PCaT.



Figure S4. TGA curves of PC2Br and PCaT.



Figure S5. Energy dispersive spectroscopy (EDS) data of polymer PCaT-Fe<sup>3+</sup> in THF.



Figure S6. Dynamic light scattering (DLS) measurement of PCaT in THF.