
Supplementary Materials: Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery

Qing-Ying Yu, Yu-Rong Zhan, Ji Zhang, Chao-Ran Luan, Bing Wang, and Xiao-Qi Yu

Figure S1. DNA condensation by polycations at various weight ratios evaluated by agarose gel retardation assay.

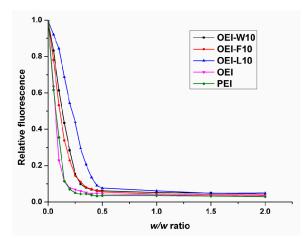
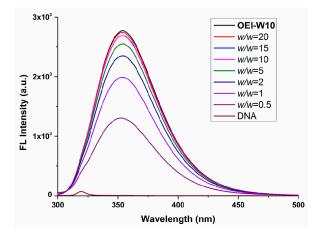



Figure S2. Fluorescence quenching assay of EB/DNA by addition of polycations.

Figure S3. Fluorescence spectra of **OEI-W10** upon the addition of CT DNA in 2.5 mL Hepes solution (excited at 288 nm) at room temperature.

0 0.25 0.5 1 2 4 8 16 32 64	0 0.25 0.5 1 2 4 8 18 32 64	0 0.25 0.5 1 2 4 8 16 32 64	
			سر در در ایر ایر ایر
OEI-W10	OEI-F10	OEI-L10	OEI

Figure S4. Release of DNA from polyplxes with the addition of heparin at various heparin/DNA weight ratios. w/w = 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64; polymer/DNA: w/w = 1

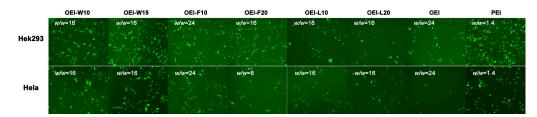
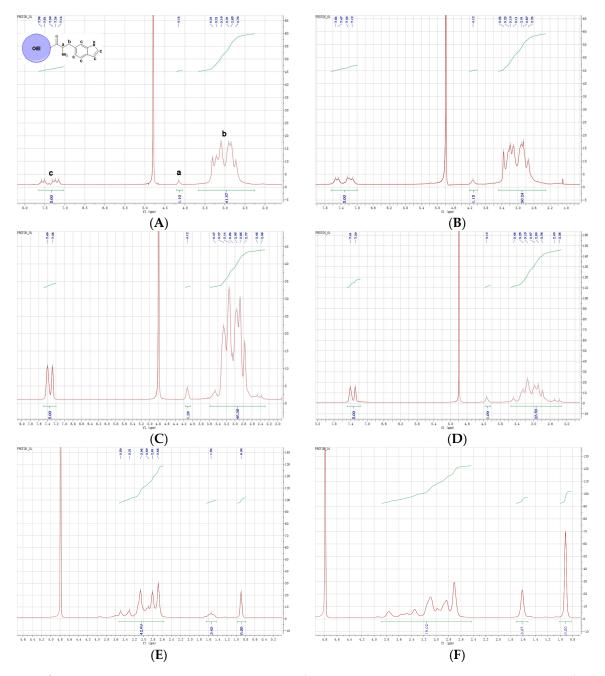



Figure S5. Fluorescence microscopy image of pEGFP-transfected HEK293 and HeLa cells in the absence serum.

Figure S6. (**A**)¹H NMR spectra (400 MHz, D₂O) of **OEI-W10**; (**B**) ¹H NMR spectra (400 MHz, D₂O) of **OEI-W15**; (**C**) ¹H NMR spectra (400 MHz, D₂O) of **OEI-F10**; (**D**) ¹H NMR spectra (400 MHz, D₂O) of **OEI-F20**; (**E**) ¹H NMR spectra (400 MHz, D₂O) of **OEI-L20**. The characteristic multiplet of δ 7.58-7.16 represents the 5H on indole ring of tryptophan (W), while the broad multiplet represents the C-H of PEI (4H for each ethylenimine unit) and 2H on the -CHCH₂- on W. The SD can be calculated from the ratio between these peak areas. e.g.: In this case, for **OEI-W10**, SD = n (W)/n(ethylenimine units on OEI) = (5/5)/[(41.87-2)/4] \approx 0.10, i.e. 10%.