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Abstract: This study is designed to extract crystalline cellulose from cotton and reinforcing gelatin
film for biomedical applications, especially as a wound dressing material for its exceptional
biocompatibility and bio-activity. Moreover, gelatin helps in wound healing and crystalline cellulose
as additive can improve its properties. Crystalline cellulose was prepared through hydrolysis and the
effects of crystalline cellulose loading on the morphology, mechanical properties, and water sensitivity
of the nanocomposite were investigated by means of scanning electron microscopy, tensile strength
testing, and water absorption testing. Developed biocomposite film showed homogeneous dispersion
of crystalline cellulose within the gelatin matrix and strong interfacial adherence between the matrix
and reinforcement. Samples were tested for biocompatibility and in vitro cytotoxicity and found to
have excellent biocompatibility without having any cytotoxicity. In vivo wound healing study in an
animal model showed 40% increased healing than the model dressed by conventional dressing.
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1. Introduction

Wound care is one of the major healthcare concerns worldwide. An advanced wound dressing
can minimize suffering and treatment charge by reducing the rehabilitation period. Many researchers
have reported techniques to develop advanced wound dressings having suitable infection barriers,
wound exudate absorption, water-vapor permeability, as well as other features [1–3]. Although
there are several commercially-available products, none are adequate and economically friendly.
Therefore, the development of a simple, but effective, wound dressing material using gelatin can be
fabricated by a simple process with an affordable cost, which is a basic requirement for developing
and war-torn countries.

It is possible to derive crystalline rod-like particles from a variety of renewable sources, including
natural fibers of plant sources, [4] wood, cotton, ramie, bacteria, and tunicates [5–7]. Natural fibers are
being used as they are cheap, abundant, renewable, and biodegradable [8]. In recent years, nanocrystals
have been used as fillers in composites due to their interesting low gas permeability [9–12] and
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stiffness-enhancing capacity [13]. They can also be used as reinforcements for adhesives, components
of electronic devices, biomaterials, foams, aerogels, and textiles [14–16].

Gelatin is a film-formable, air-permeable, biocompatible, non-toxic, and haemostatic material
that is beneficial for wound dressings [17]. Although gelatin is an important component of wound
dressings [18], due to its poor mechanical properties and thermal instability, its use is restricted [19,20].
To improve the quality of gelatin, many researchers have incorporated various cross-linking reagents,
such as glutaraldehyde [21], transglutaminase [22], plant polyphenols [23], formaldehyde [24], oxidized
chondroitin sulfate [25], oxidized alginate [26], and dialdehydestarch [27]. However, no previous
studies have focused on biocomposites of gelatin and natural cotton-derived nanocrystalline cellulose
in wound dressings. Additionally, the available studies did not report more than 50% mechanical
property enhancement, as well as increased stability in aqueous medium, which is expected through
crystalline cellulose (CCs) reinforcement. In addition, only one study has focused on chitosan-gelatin
microcapsules on cotton fabrics and its antibacterial effect [28]. Cellulose crystals comprise outstanding
tensile strength and low density. It also has lower abrasion properties. Moreover, crystalline cellulose
has a good dispersion ability in water [29]. Natural cotton is an excellent and cheaper source of cellulose
which can be further converted to CCs for the reinforcement of several biobased matrices. Furthermore,
using cotton-based CCs for the reinforcement of biocomposites may lead to recycling of cotton-based
human-wares which is now a growing concern worldwide. In addition, CCs is biocompatible and
biodegradable, hence it can be an excellent material to further studies. Thus, using this renewable
material is a convenient, cost-effective approach to produce eco-friendly and sustainable products, as
well as to conserve finite non-renewable natural resources.

Chengjun Zhou et al. reported an in situ polymerization process of polyacrylamide-cellulose
nanocrystal composite hydrogels, CNCs accelerated the onset of gelation and acted as a multifunctional
cross-linker during the gelation reaction as a result. The composite hydrogels exhibited enhanced
steady-state elastic modulus and a plateau loss factor compared to those of the pure PAM
(Polyacrylamide) hydrogels, indicating that adding CNCs not only reinforced, but also toughened,
PAM hydrogels [30]. In addition, CCs are biocompatible and biodegradable, which can be essential
to further studies. Therefore, in the present study, we extracted CCs from raw native cotton fromf
Bangladesh which contains high amounts of cellulose. These CCs were then used to reinforce a gelatin
composite film. Moreover, we investigated the reinforcing effect of CCs to gelatin-based biocomposite
film by investigating various properties which were used for wound dressing in mice.

2. Experimental

2.1. Materials

Gelatin (Bloom Strength-240) of pharmaceutical grade was supplied by the Global Capsule
Limited (GCL), Dhaka, Bangladesh. Cotton was collected from the pharmaceutical store of a local
market. Sulfuric acid and sodium hydroxide were purchased from Merck, Darmstadt, Germany.
All other reagents used were of analytical grade.

2.2. Methods

2.2.1. Extraction of CCs

Twenty grams of commercial-grade raw cotton was cut into small pieces at about 2 cm lengths
with scissors. Then the cut linter was put in a beaker filled with 1000 mL (10% w/w) NaOH. It was
then boiled at 100 ◦C for 30 min to remove lignin from the cotton. This boiled cotton was washed until
the complete removal of the NaOH solution. After that the cotton was rinsed with distilled water
2–3 times. After overnight drying at room temperature, the sample was weighed and acid hydrolysis
was carried out by using 40% w/w H2SO4. This mixture was heated for 6 h at 55 ◦C. The extraction
process is based on the fact that crystalline regions remain unsolved in acid solution; in other words,
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the disordered structure of the cellulose in the amorphous regions are sensitive to acid hydrolysis [31].
The solution was then neutralized with 10% NaOH solution and allowed to settle the cellulose layer.
The supernatant was then collected and centrifuged for 6 h at 8000 rpm in a high-speed refrigerated
centrifuge. Then a thick layer containing CCs was obtained at the bottom of test-tube. The CCs layer
was collected by washing out the upper layer.

2.2.2. Preparation of Gelatin Solution

Fixed amount (10% w/v) of pure gelatin solution was prepared by dissolving 10 g gelatin in 90 mL
distilled water. The pH of the solution was around 4.5 and the resulted solution was placed on a hot
plate with constant stirring with a magnetic stirrer wherein the solution was heated at 50–60 ◦C for
40–60 min.

2.2.3. Preparation of Gelatin Film

The gelatin solution prepared by the above process was cast onto a releasing sheet (silicon
cloth)-covered frame mounted on a flat glass plate for film formulation and then dried in an oven at
50 ◦C for 8 h at 45% relative humidity. The dried films (about 0.30 mm thickness) thus prepared were
peeled off and cut into small pieces (50 mm × 10 mm) using conventional scissors.

2.2.4. Preparation of CC/Gelatin Biocomposite Film

Three formulations were prepared at three ratios, where 2 mL, 5 mL, and 10 mL CCs were added
with 100 mL gelatin solution. The resulting solutions were mixed with a magnetic hot plate stirrer at
40 ◦C for 30 min. Then they were further homogenized by sonication. Then the solutions were casted
in a casting plate and dry CCs/gelatin composite films were obtained after one overnight drying.

2.3. Characterization

2.3.1. Scanning Electron Microscopy (SEM)

External morphology (texture), crystalline structure, and orientation of materials in the samples
were observed by a Philips XL30 scanning electron microscopy (SEM) at an accelerating voltage of
10 keV. Data were collected over a selected area of the surface of the sample, and a two-dimensional
image was generated that displayed spatial variations.

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) studies were conducted by modifying
Vicentini et al. method [32]. To identify the functional groups present in the synthesized gelatin/CCs
biocomposite samples, using a Prestige 21 (SHIMADZU) FTIR, Kyoto, Japan. The samples were
oven-dried at 105 ◦C for 4–5 h, mixed with KBr in a ratio of 1:100 (w/w), and pressed under vacuum to
form pellets. The FTIR spectrum of the samples was recorded in the transmittance mode in the range
of 4000–400 cm−1 with an average of 30 scans. The resolution of the spectrometer was 4 cm−1.

2.3.3. Mechanical Properties

Mechanical properties or tensile properties, such as tensile strength (TS), percent elongation at
break (Eb), and tensile modulus (TM) of the biocomposite films, were measured by a Universal Testing
Machine (Hounsfield, model H50 Ks 0404, Redhill, UK). The load capacity was 500 N and the efficiency
was within ±1%. The speed of the tensile testing (crosshead speed) was 10 mm/min and the gauge
length between two tensile grips was 40 mm. Fifty percent relative humidity at room temperature was
maintained to enable an identical moisture content. All of the data regarding the mechanical properties
are the average values of at least five individual readings and the percentage of accuracy is about ±1%.
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2.3.4. Buffer Uptake Properties

The experiment was designed to simulate an open exudating wound dressed with gelatin/CCs
films. The water uptake of 10%, 5%, and 2%, CCs containing gelatin/CCs blended films, and pure
gelatin/CCs blended film (control film) were measured at 50% relative humidity. The methodology
was the same as that described by [33]. Briefly, a sponge was cut to fit into a 100 mL glass beaker
to approximately 3/4 of its height. Phosphate buffer (0.1 N) was poured into the beaker containing
the sponge. The sponge was squeezed and pulled to create a pumping action that accelerated the
absorption of water. After the sponge was fully soaked, more buffer solution was added to a level
of about 0.2 mm above the sponge top surface and the entire beaker placed in a water bath at 30 ◦C,
the equilibrating condition cited from the U.S. Pharmacopoeia for transdermal delivery systems.
A ca. 20 mm × 10 mm weighed samples was placed on the top surface of the soaked sponge. Only one
side of the film was allowed to come into contact with the wet sponge surface. The sample was
removed periodically, blotted dry with filter paper, and weighed until a constant weight was obtained.
The Buffer uptake percentage, Wu by the sample was calculated from the expression:

Buffer uptake (Wu) = (Wt − W0)/W0 × 100%

where, Wt = Weight after soaking, and W0 = Initial dry weight of the films.

2.3.5. In Vitro Biocompatibility Analysis

Heparinized human blood was used to assay the biocompatibility of the developed Gelatin/CCs
biocomposite film [34]. Samples were prepared using blood and gelatin/CCs biocomposite at ratios of
1:1, 2:1, and 4:1, respectively. A blood sample of the same donor was also diluted at the same ratios
with distilled water and normal saline for control. After mixing the biocomposite, saline, and distilled
water with blood at different ratios, the mixtures were kept in an incubator for 2 h at 37 ◦C. Then the
samples were spread on glass slides and observed under a light microscope.

2.3.6. Antimicrobial Property

The antimicrobial property of gelatin/CCs biocomposite film was identified against
Pseudomonas sp. in nutrient agar medium by the disc diffusion method [35]. A streptomycin 10 µL
standard antibiotic disk was used as a positive control. The blank disks (Oxoid, Hampshire, UK) were
soaked in the sample solutions to prepare the working disc. One loop culture from the stock culture of
Pseudomonas sp. was inoculated in normal saline and spread on a nutrient agar plate by sterile cotton
buds. Then the working disc was introduced into the surface of the microorganism-inoculated agar
plate at an appropriate spatial arrangement using ethanol-dipped and flamed forceps. The disk was
pressed down to ensure complete contact with the agar surface. Plates were kept for 30 min for better
absorption of the sample into agar media. Then the plates were placed in an incubator at 37 ◦C for
18 h. Inhibition zones were observed for understanding the antimicrobial activity.

2.3.7. In Vitro Cytotoxicity Study

In vitro cytotoxicity testing was performed using the brine shrimp lethality bioassay method as
described by Meyer et al., 1982, where rate of brine shrimp hatched and the number of death nauplii
(larvae of brine shrimp) represents the strength of cytotoxicity of the sample [36]. Briefly, brine shrimps
(Artemiasalina) were hatched using brine shrimp eggs in a conical-shaped vessel, filled with sterile artificial
seawater and pH was adjusted at 8.5 using 1 N NaOH. The vessel was kept under constant aeration
for 48 h. After hatching, active nauplii free from egg shells were collected from brighter portions of
the hatching chamber and used for understanding the cytotoxicity. Composite film samples of 0.125,
0.25, 0.50, 0.75, 1.0 mg were dissolved in 1 mL artificial seawater, separately. Then the samples were put
on Petri plates where the active nauplii were inoculated. After overnight incubation, the nauplii were
counted. Vincristine sulfate (0.5 mg/mL) (an anticancer drug) was considered as the positive control.
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2.3.8. In Vivo Wound Healing

The wound-healing characteristics of gelatin/CCs biocomposite film was evaluated using a
mouse model. All experiments were completed with the approval of the Bangladesh Atomic Energy
Commission’s International Animal Care and Use Committee. Mice were anesthetized with 5 mL
diethyl ether using an inhalation anesthesia system. The surgical area was shaved with an electric razor,
the mice were strapped to a surgical board, and additional anesthesia was provided via a nose cone.

After a deep surgical plane of general anesthesia had been reached, a wound, approximately
1 cm in diameter and 1 mm in depth, was created on the left (lateral) side of the mice using curved
blade surgical scissors. Both the epidermal and dermal layers were removed to create a full-thickness
wound with minimal bleeding. Next, four diameters of the wound site were marked and measured
using digital calipers and averaged to determine the original wound diameter and area. The wounded
place was then dressed with one of three dressings: (1) conventional gauge bandage (control), (2) pure
gelatin film and (3) gelatin/CCs biocomposite film.

The gelatin/CCs biocomposite and pure gelatin films were cut into 20 mm diameter circular
sheets and were rehydrated with sterile normal saline immediately prior to use. The surgery was
repeated three times on the same size of wound site in mice. Wound healing efficiency was measured
by naked eye observation.

3. Result and Discussion

3.1. Morphology of CCs Derived from Cotton

Size of CCs is very important for reinforcement as the longer the CCs is, the higher the stress
transfer that will occur. Figure 1 presents SEM micrographs of the prepared CCs and the surface of the
biocomposite film made of CCs extracted from raw cotton. The figure clearly represents well-isolated
CCs from the cellulose microfibrils and the raw CCs was randomly oriented over the surface of the
blended film belonging to the dilute regime (isotropic phase). The composite film showed etched
features and appeared to have rough structures with many crystals present on the surface. The CCs
appeared as white dots on the surface of the gelatin. As CCs is a very compacted structure, it can
only bind with the gelatin by its outer surface. This may be why the whole CCs structure remains
compacted and segregated in the gelatin CCs biocomposite and looks like white dots. To a certain
extent, geometrical characteristics such as size, shape, and dimensions of cellulose nanocrystals depend
on the nature of the cellulose source, as well as the hydrolysis conditions, such as time, temperature,
ultrasound treatment, and purity of materials [7,37,38]. Here, diameter and size of fibrils of purified
cellulose was reduced to a great extent due to the removal of all amorphous regions of semi-crystalline
cellulose leaving nano-scale rod-like crystals. The extracted fibers were longer, with a length of
500 ± 100 nm. This value indicates a larger surface area of CCs prepared from cotton.
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3.2. FTIR Analysis of Pure and Blend Biocomposite Films

FTIR is of importance in the study of molecular structure. Environmental changes and the
conformation of macromolecules lead to changes in the intensity and the width of the spectrum
bands, as well as the arrangement of the peaks. Figure 2 represents the FTIR spectrum of gelatin/CCs
biocomposite compared with the spectrum of pure gelatin. FTIR spectrum of the pure gelatin showed
that the peaks at 3450 and 3423 cm−1 were due to N–H stretching of secondary amide, C=O stretching
at 1680 and 1640 cm−1, N–H bending between 1550 and 1500 cm−1, N–H out of plane wagging at
670 cm−1 and C–H stretching at 922 and 2850 cm−1. The characteristic peak of the collagen fold in
3360 cm−1 is absent in the spectrum, which indicates the denaturation of collagen to produce gelatin.
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On the other hand, it was found that a characteristic peak that ranges from 1700 to 1800 cm−1

developed in the FTIR spectrum of Gelatin/CC blend film which indicated the presence of a hydroxyl
group with polymeric association and a secondary amide.

It is estimated that the shortened bond length due to esterification leads to the shifting of the
peak to a higher wavenumber. In the presented data the production of the esterified product was
confirmed by the shifting of the peak at 1968.3 cm−1 of gelatin. Therefore, it can be concluded that the
free carboxylic groups of gelatin have been esterified.

A broad peak was also found at 3200–3600 cm−1, which is the corresponding peak of hydrogen
bonding between the NH of gelatin and OH groups of cellulose. Other interactions between gelatin
and cellulose were also confirmed due to the formation of the peaks at the range of 1200–1600 cm−1.

3.3. Mechanical Properties Analysis

Mechanical testing provides an indication of the strength and elasticity of the membrane, which
can be reflected by tensile strength, elongation at break, and elongation modulus. The biocomposites
were prepared using 2 mL, 5 mL, and 10 mL of CCs stock solution (as prepared) in 10 g of gelatin.
Tensile strength (TS) and elongation at break (Eb%) of pure gelatin and gelatin/CCs biocomposite
are graphically demonstrated in Figure 3. The average TS of the pure gelatin films were found to be
34.92 MPa. The average TS of the gelatin/CCs blend biocomposites at ratios 10:2, 10:5, and 10:10 were
found to be 43.16, 57.74, and 64.16 MPa, respectively, while the TS for biocomposite of gelatin with other
additives were about 20 MPa [39,40]; this indicates that our prepared biocomposite (gelatin/CCs) has
higher resistance capability against breaking under tension than previously invented biocomposites.
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Moreover, it was observed from figure that gelatin/CCs blend biocomposite film at a 10:10 ratio
showed 83.73% TS higher value than pure gelatin film. The ultimate tensile strength of the blends
showed an increasing tendency with increase in percentage of CCs in gelatin within the range of the
concentration studied.
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On the other hand, the Eb did not show any significant increasing or decreasing trend throughout
the gelatin CCs composition.

In the study TM (tensile modulus) values of gelatin-based films was improved significantly with
the incorporation of CCs and the effect of CCs on the TM values of gelatin-based films is represented
in Figure 4. For 10:2, 10:5, and 10:10 gelatin/CCs composite, the average TM values were observed to
be 2.17, 2.42, and 2.64 GPa, respectively.
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The amino group of the gelatin polypeptide chains acts as an electron donor and the hydrogen
of cellulose as an electron acceptor [33], and the hydrogen of CCs have been suggested to form a
hydrogen bond with the amino group, which induces dipole-dipole traction between two different
phases, which is supposed to enhance molecular interaction and also for increasing affinity of the
mechanical properties of CNCs-gelatin. The 10:10 gelatin/CCs film was considered as the optimum
because the films have good strength (64.16 MPa), modulus (2.6 GPa), and suitable Eb% (6.05%).
Moreover, the appearance of the films was quite transparent.

3.4. Fluid Drainage Properties

3.4.1. Buffer Uptake

The fluid-absorbing capacity of a wound dressing material is a significant factor for maintaining
a moist environment over the wound bed [36]. The phosphate buffer uptake of biocomposite films
were studied for 5 h and plotted against time in Figure 5. The buffer uptake increased significantly
with incorporation of CCs. The pure gelatin film could not sustain more than one hour in buffer,
whereas the CCs-incorporated films showed increasing trend up to 5 h, although the slope of the
curves decreased after 4 h of soaking.
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This increased buffer uptake supports the findings of FTIR study. It can be assumed that there are
strong hydrogen bonds between the C=O, –NH2 groups of gelatin, and –OH groups of CCs. There is
another possibility of forming C–N bonds between the NH2 groups of gelatin and –OH–C groups of
CCs leaving one molecule of water. In fact, these chemical and physical bondings/crosslinking are the
reasons behind the increased hydrostability and gradual buffer uptake of the developed samples [41].
Thus, these results revealed that the developed gelatin/CCs biocomposite will be very suitable as
advanced wound dressing material because they comprises appropriate properties to absorb wound
exudates and, thus, will prevent wound from accumulating fluid. For assessing the mechanical and
fluid drainage properties we used 10:10 gelatin/CCs film for further experiments.

3.4.2. In Vitro Biocompatibility Analysis

Light microscopic analysis was carried out to observe the red blood cell morphology by
magnifying the designed slides forty items. RBC undergoes lysis or coagulation in contact with a
nonbiocompatible agent. Our studies showed less than 5% hemolysis and the red blood cells remained
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intact when incubated with CCs biocomposite: blood in a 1:2 ratio indicated biocompatibility of the
composite film (Figure 6). Similar results were found in the case of saline water incubation. On the
other hand, cell damage occurred by distilled water incubation with the same ratio, which is due to
osmotic shock and gave us an idea of the morphology of RBC in contact with a nonbiocompatible agent.
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3.4.3. Microbial Sensitivity Analysis

The experimental results suggested that the prepared biocomposite film (gelatin:CCs = 1:1) had
no bactericidal effect on the chosen bacterial strain. Figure 7 shows no clear zone of inhibition on the
agar plate. This finding predicted that the wound dressing with the biocomposites could not achieve a
direct antimicrobial effect against Pseudomonas sp. which is the main cause of infection in the wounded
area but it could prevent infection by inhibiting bacterial migration and penetration.
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3.4.4. In Vitro Cytotoxicity Test

The brine shrimp lethality bioassay method was used for understanding cytotoxic effect of the
gelatin/CCs biocomposite film. The biocomposite film was dissolved in artificial sea water in which
nauplii (larvae of brine shrimp) were inoculated. The results suggested that the biocomposite film



Polymers 2017, 9, 222 10 of 13

induces death of the nauplii to some extent at the high dose (Table 1). This may occur due to three
reasons: cytotoxic effect of the biocomposite, decrease of dissolved oxygen concentration of the saline
water, and formation of the viscous layer on the gills of nauplii. In the present study, the possibility of
death of nauplii owing to toxicity is very low as the number of deaths was nil for lower concentrations,
suggesting no cytotoxic effect. Moreover, cellulose and gelatin were used as parent materials of the
composite which were both biocompatible. Hence, the most possible reason for the death of nauplii is
(i) the formation of the viscous layer on the gills of the nauplii as the highly-concentrated solution of
the gelatin-based composite film led to high viscosity; and (ii) the formation of a gel-like structure on
the gills which eventually inhibits oxygen permeability.

Table 1. Amount and percentage of mortality of nauplii after the cytotoxicity test.

Sample No. Sample Name Dose (mg/mL) No. of Nauplii Present
after Incubation Mortality (%)

1. Positive control (vincristine sulfate) 0.5 0 100
2. Negative control (artificial sea water) - 10 0
3. Biocomposite film 0.125 10 0
4. Biocomposite film 0.25 10 0
5. Biocomposite film 0.5 9 10
6. Biocomposite film 0.75 8 20
7. Biocomposite film 1.00 8 20

3.4.5. In Vivo Wound Healing

The performances of the developed biocomposite films as wound-healing materials were
evaluated in an experimental mice model (Figure 8). No significant weight loss or fever was found
during the total healing process. In the tenth day post-surgery, the biocomposite dressing was removed
from the wound surface without having any further trauma and the wound surface was found almost
totally healed and characterized with wound site contraction and re-epithelialization. The mice models
dressed with the conventional dressing suffered from bleeding during removal of bandage (Figure 8).
As a result, a delayed healing was observed. The pure gelatin film also showed better wound healing
compared to the conventional dressing but the healing rate was lower than that of the biocomposite
dressing. The edges of the wounds were found pulling inwards to reduce the overall wound area after
10 days of surgery.
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Figure 8. Wound healing of the experimental mice after 10 days of surgery; (A) dressed by conventional
dressing; (B) dressed by pure gelatin film; and (C) dressed by the developed biocomposite film.

4. Conclusions

Gelatin-CNCs composite was prepared by a solution casting method. CNCs were used as
cross-linkers in order to stabilize gelatin by establishing cross-links between the protein chains.
The results indicate the mechanical properties such as TS, TM, and Eb of the pure gelatin film are
poor, while the enhancement of TS, TM, and Eb of the gelatin-CNCs films is sufficient. Moreover,
water and buffer uptake properties of gelatin are efficiently improved due to the addition of CNCs.
Furthermore, the composites are bio-compatible and non-toxic. Additionally, the gelatin-CNCs
biocomposite for use as wound dressings is very effective since they can absorb wound exudates
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and provide a perfect moist environment for a healing wound. Prior researchers also reported that a
moist wound environment is ideal for healing chronic wounds [42,43]. These findings will broaden the
biomedical applications of the gelatin-CNCs biocomposites in wound dressings, tissue engineering,
and sustained-release applications.
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Tonmoy Debnath wrote this paper. All authors critically reviewed the manuscript.
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