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Abstract: We synthesized a series of copolybenzamides (PBA) through chain-growth condensation
polymerization (CGCP) of 4-(octylamino)benzoate (M4OB) and methyl 3-(4-(octyloxy)benzylamino)
benzoate (M3OOB) co-monomers. Well-defined copolybenzamides with close to theoretical
molecular weights (Mn ≈ 10,000–13,000) and narrow molecular weight distributions (Mw/Mn < 1.40)
were obtained. Selective removals of the protecting group (i.e., 4-(octyloxy)benzyl group) from
the affording P(M3OOB-co-M4OB) copolybenzamides were subsequently performed to obtain
P(M3NH-co-M4OB) copolymers. These novel N-H-containing copolybenzamides (named as PNHBA)
can not only provide hydrogen bonds for polymer-polymer blends but also have good solubility
in organic solvents. Miscibility of the PNHBA and Nylon 6 blends was investigated by differential
scanning calorimetry (DSC), thermogravimetric analysis (TGA), FT-IR, contact angle analysis,
transmission electron microscope (TEM), and dynamic mechanical analysis (DMA). This study
illustrates a novel type of copolybenzamide with controlled molecular weight and narrow molecular
weight distribution through an effective synthetic strategy, and can be applied to a practical blend of
Nylon 6 with good miscibility.
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1. Introduction

The development of high-performance polymers has been an important and long-term target of
the past few decades. The study of polymer blends continues to draw attention from both a practical
point of view and in fundamental research for the more precise understanding of the factors dominating
polymer miscibility [1]. Moreover, the simple and effective polymer blending technique has generated
new materials with combinations of the tailored properties that cannot be obtained in individual
polymers. It is, thus, important to study the miscibility and phase behavior of polymer blends.
Most polymer blends are immiscible/incompatible because of the unfavorable enthalpy and entropy
of polymer-polymer mixing. The polymer miscibility can be enhanced through specific interactions,
such as van der Waals forces, dipole-dipole interactions, hydrogen bonding, and electrostatic forces.
The enthalpy and entropy changes associated with different types of hydrogen bonds have been
investigated quantitatively from equilibrium constants using spectroscopy. These studies have
illustrated that the contribution of the hydrogen bond to the free energy of mixing strongly relies on
the amount and type of the hydrogen bonds in the mixture [2]. For example, the good miscibility of
polyamides via hydrogen bonding depends on the balance of the negative contribution of their own
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molecular binding force among the original polyamide chains (i.e., self-association) and the positive
contribution of their interaction with other polymer chains (i.e., inter-association) [3–8].

Polyamides have been mass-produced for decades. Among them, aliphatic polyamides, such as
polyamide 6 (Nylon 6) and polyamide 66 (Nylon 66), are the most widely used in daily life. Recently,
the high demand for smart/functional textiles has driven the investigation of novel polyamide blends
to overcome the drawbacks of aliphatic polyamides, such as hydroscopicity and a narrow processing
window. Regarding their chemical structures, blends of aliphatic and aromatic polyamides may
provide a facile approach to enhance the property of aliphatic polyamides. Some studies have reported
the presence of inter-association hydrogen bonding between aliphatic and aromatic polyamides
resulted in good miscibility/compatibility [9–18]. In these studies, the entropy of mixing (∆Sm) is
basically omitted and, thus, the free energy of mixing (∆Gm) can be regarded as the enthalpy of
the mixing value (∆Hm) (i.e., ∆Gm ; ∆Hm) which is represented as kTχψ1ψ2, where k = Boltzmann
constant, T = absolute temperature, χ = interaction parameter, and ψi = volume fraction of polymer i in
the blending system [19]. These reports reveal the importance of inter-association hydrogen bonding
in aliphatic and aromatic polyamide blends.

Since 2000, Yokozawa and coworkers have been developing chain-growth condensation
polymerization (CGCP) to achieve the synthesis of condensation polymers by manipulating the
substituent effects of monomers [20–23]. The reactions differ from conventional polycondensation
reactions in that the monomers are highly selective in the reaction and react dominantly with the
polymer end groups during CGCP, resulting in precise control of the molecular weight (MW), molecular
weight distribution (MWD), and functionality. In the preparation of well-defined polybenzamides
(PBAs) through CGCP (Scheme S1, see the Supplementary Material), deprotonation of the monomers
using a strong base significantly deactivates the ester carbonyl group via a resonance/inductive effect to
form meta-stable intermediate compounds and, therefore, the undesired reaction among the monomers
is suppressed. After adding an initiator with a reactive ester carbonyl group, the reaction between the
initiator and intermediates is highly favorable and a new amide linkage is formed. Simultaneously, the
chain-ended ester group is re-activated from the weak electron-donating ability of the newly-formed
amide linkage. Thus, the chemical structures of the initiators: N-substituents (i.e., the R1 groups),
the leaving groups (i.e., the R2 groups), strong bases, and the polymerization temperatures can be
altered to efficiently obtain homo-polybenzamides as well as block copolybenzamides [24–27], and
star-shaped [28–34] and branched polybenzamides [35–38]. However, for preparing novel well-defined
polybenzamides, the copolymerization of mixed monomers has not been explored to date.

In this study, we synthesized a series of copolybenzamides through CGCP of 4-(octylamino)benzoate
(M4OB) and methyl 3-(4-(octyloxy)benzylamino)benzoate (M3OOB) co-monomers (Scheme 1). Selective
removal of the protecting group (i.e., 4-(octyloxy)benzyl (OOB) group) from five P(M3OOB-co-M4OB)
copolybenzamides (PBA1–5) was subsequently performed to obtain P(M3NH-co-M4OB) copolymers
(PNHBA1–5). We can expect that the PNHBAs not only provide hydrogen bonds but also have good
solubility in organic solvents. Blends of PNHBA and Nylon 6 were further investigated by DSC, TGA,
FT-IR, contact angle analysis, TEM, and DMA. Our aim was to demonstrate a novel type of polybenzamide
obtained using an effective synthetic strategy to be applied to Nylon 6 blends.
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2. Materials and Methods

2.1. Materials

Methyl 4-(tert-butyldimethylsiloxy)benzoate (TBS-MB), methyl 4-(octylamino)benzoate (M4OB)
and methyl 3-(4-(octyloxy)benzylamino)benzoate (M3OOB) were synthesized according to previous
studies [26,27,34]. One mole of lithium hexamethyldisilazide/tetrahydrofuran (1.0 M LiHMDS/THF
solution), 1.0 M tetrabutylammonium fluoride/tetrahydrofuran (1.0 M TBAF/THF solution), LiCl
(99%), NH4Cl (99.5%), and trifluoroacetic acid (TFA, 98%) were used as received from Sigma–Aldrich
(St. Louis, MO, USA). Nylon 6 (NY6) was obtained from Du Pont (Santa Barbara, CA, USA) (Zytel
211®; Mn = 41,000 and Mw/Mn = 2.93). All of the solvents were dehydrated prior to use.

2.2. Synthesis of P(M3OOB-co-M4OB) via CGCP

For detailed reaction procedures, the reader is referred to the previous studies [26,27,34]. A general
example of PBA1: A mixture of 1.0 M LiHMDS/THF (5 mL, 5.0 mmol), LiCl (2.1 g, 50 mmol), initiator
TBS-MB (84 mg, 0.25 mmol), M3OOB (3.35 g, 9.0 mmol), M4OB (0.21 g, 1.0 mmol), and 15 mL dry
THF were charged into a 50 mL flask equipped with a three-way cock. The living polycondensations
were conducted under nitrogen at −10 ◦C. All of the other copolymerizations (abbr.: PBA2–5) with
different ratios of 70/30, 50/50, 30/70, and 10/90 were conducted in the same procedures. After the
reaction finished, the mixture was quenched with saturated NH4Cl(aq) and extracted with CH2Cl2 three
times. The collected organic layer was washed with water and dried over MgSO4. The concentrated
crude was re-dissolved in CH2Cl2 and reprecipitated into methanol/water = 9/1 (v/v) to afford a
yellowish viscous P(M3OOB-co-M4OB) copolybenzamide (i.e., PBA1: Mn = 12,800, Mw/Mn = 1.24,
yield 85%). The reaction conditions and characteristics of the five polybenzamide copolymers (PBAs)
were summarized in Table 1.

Table 1. Characteristics of the polybenzamide copolymers (PBAs).

Samples F1
a (Feeds) f 1

a (Copolymers) Mn,th
b Mn,GPC

c Mw/Mn P12
d P21

d

PBA1 0.90 0.90 13,330 12,800 1.24 0.099 0.902
PBA2 0.70 0.70 12,490 10,700 1.18 0.298 0.704
PBA3 0.50 0.48 11,640 9700 1.39 0.498 0.505
PBA4 0.30 0.30 10,790 11,300 1.29 0.698 0.304
PBA5 0.10 0.10 9940 10,400 1.06 0.899 0.102

a Molar fractions of M3OOB/(M3OOB + M4OB) of feeds (F) and copolymers (f measured by 1H NMR); b Theoretical
MWs were estimated based on the quantitative monomer consumptions plus MW of the initiator (i.e., Mn,th =
F1 × MW(M3OOB repeating unit) + F2 × MW(M4OB repeating unit) + MWinitiator); c MWs were estimated by GPC (eluent:
THF) calibrated by polystyrene standards; d Pij: Conditional probabilities of the addition of monomer i to a
growing chain-end with an active j radical. P12 = 1 − P11 = 1/(1 + r1X) and P21 = 1 − P22 = 1/(1 + r2X), where
X = [M3OOB]0/[M4OB]0 [39,40].

2.3. Selective Removal of 4-(octyloxy)benzyl Group (OOB) from PBAs

An example: A 25 mL-flask equipped with a three-way stopcock was dried, purged with nitrogen,
and PBA1 (200 mg) and dry CH2Cl2 (0.5 mL) were added. TFA (7 mL) was added and the mixture
was stirred at room temperature for three days under nitrogen for the removal of the OOB group.
The concentrated crude product was dissolved in CH2Cl2 and reprecipitated into hexane three times
to afford PNHBA1 as a yellowish-white powder (72 mg, yield 78%).

2.4. Blend Preparation of PNHBA and NY6

PNHBA1 copolymer and Nylon 6 (NY6) with different weight ratios were dissolved in a co-solvent
containing trifluoroethanol and chloroform (4:1 v/v) [9] with a solution concentration of ca. 3 wt %
solid content. The mixture was precipitated into a non-solvent of methanol with vigorous stirring.
The collected fine powder was washed extensively by methanol, repeatedly, and dried under vacuum
for one day at 50 ◦C.
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2.5. Characterization

Gel permeation chromatography (GPC) was equipped with: a Waters 515 pump (Hewlett Packard,
Palo Alto, CA, USA), a Waters 410 differential refractometer (Hewlett Packard, Palo Alto, CA, USA),
and two PSS SDV columns (PSS, Mainz, Germany) (Linear S and 100 Å pore size). The polymers were
tested at 40 ◦C, using tetrahydrofuran (THF) with a flow rate of 1 mL/min. Polystyrene standards
with different MWs and narrow MWDs were used for calibration. Proton nuclear magnetic resonance
(1H NMR) analysis of the copolymers was performed using a Bruker 400 MHz system (Bruker, Billerica,
MA, USA). The chemical shift was calibrated by setting the internal standard of deuterated DMSO
at 2.49 ppm or CDCl3 at 7.26 ppm. Fourier transfer infrared (FT-IR) analysis of the blends was
conducted using a Nicolet Avatar 320 FT-IR spectrometer (Nicolet, Madsion, WI, USA) under N2 to
keep sample piece dry and to remove background noise. The polymer was mixed with a KBr pellet
and pressed to form the sample for analysis. The glass transition (Tg), crystallization (Tc), and melting
(Tm) temperatures of the blends were characterized by a Seiko 6220 differential scanning calorimetry
(DSC) (Seiko, Torrance, CA, USA) with a protocol as follows: (1) temperature was increased from
0 to 280 ◦C, and the sample was left for 30 min to remove thermal history, and then was quenched
by liquid nitrogen; (2) the heat flow from −40 to 280 ◦C (with a ramp of 20 ◦C/min) was recorded
under nitrogen. To perform thermogravimetric analysis (TGA) of the blends, a TA Instrument Q50
analyzer (scan rate = 20 ◦C/min from 30 to 700 ◦C under nitrogen) with a platinum holder was used.
The Td5% values were determined from the 5% decomposition of the samples. The water contact
angle (CA) of the blends was characterized by the KRÜSS G10 system (KRÜSS, Hamburg, Germany)
under ambient conditions. Solvent casting films were stained by RuO4 and the microstructure images
were detected by a JEOL JEM-2100 transmission electron microscope (TEM) (JEOL, Tokyo, Japan).
For dynamic mechanical analysis (DMA), samples were prepared by solvent casting to a dimension of
0.05 × 10 × 30 mm3. The analysis was recorded by a PerkinElmer DMA 8000 (PerkinElmer, Waltham,
MA, USA) from 20 to 180 ◦C (with a ramp of 20 ◦C/min) under nitrogen in tensile mode.

3. Results and Discussion

Copolymerization of M3OOB and M4OB with different molar feed ratios was firstly carried out
to examine the reactivity between the two monomers. The resulting copolymers were analyzed by
1H NMR. Figure 1 reveals the main assignments and compositions of P(M3OOB-co-M4OB) based
on the peaks at 4.73 ppm (i.e., peak a from the M3OOB unit) and 3.79 ppm (i.e., peak b from
the M4OB unit), respectively. Based on the ratio of the two peaks (i.e., Ia/Ib), the copolymerized
fraction of M3OOB (f 1) was estimated. The detailed characteristics of the copolymers were analyzed
by GPC and are summarized in Table 1 and Table S1 (see Supplementary Materials). From the
1H NMR and GPC analysis, a significant relationship between the monomer feeds and copolymer
compositions was observed and well-defined copolybenzamides with MWs close to theoretical values
(Mn ≈ 10,000–13,000) and narrow MWDs (Mw/Mn < 1.40) were shown to be obtained.
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Figure 1. 1H NMR spectra (400 MHz, CDCl3) of P(M3OOB-co-M4OB) with different molar feed ratios of
M3OOB/M4OB: (A) 90/10; (B) 70/30; (C) 50/50; (D) 30/70; and (E) 10/90 ((ii) values were determined
by the ratios of the dash-region of a for characteristics of the M3OOB unit and the dot-region of b for
characteristics of the M4OB unit).

We further estimated the reactivity ratio of r1(M3OOB) and r2(M4OB) based on the molar ratios
between the monomer feeds and copolymers by employing the Kelen–Tüdos method [8] as follows:

η = (r1 +
r2

α
)ξ − r2

α
where η = G/(α + H) and η = H/(α + H)

H and G can be estimated using H = x2/y and G = x(y − 1)/y, where x = F1/F2 (i.e., the
ratio of molar concentration of monomer 1 and 2 in the feed) and y = f 1/f 2 (i.e., the mole ratio
of these monomers in the copolymer). α =

√
(HmHM) where Hm and HM are the lowest and highest

H values from the experiments. Figure 2 displays the Kelen–Tüdos plot of P(M3OOB-co-M4OB).
By interpolating the experimental results (η as a function of ξ), we found r1(M3OOB) = 1.01 and
r2(M4OB) = 0.982. The similar reactivity ratios indicate the ideal copolymerization behavior of the system.
The sequence distribution of the copolymers was further estimated from the reactivity ratios based
on the statistically conditional probabilities (Pij, as summarized in Table 1) [39,40]. It also illustrated
that the copolymerization systems resulted in an ideal random distribution of the monomeric units
in the copolymer chain. From results (i.e., Mn ≈Mn,th, Mw/Mn < 1.4, F1 ≈ f 1, the values of P12 and
P21 and thermal properties (discussed later)), it is clear that well-defined copolybenzamides were
obtained successfully through the proposed living “chain-growth” fashion, as shown in Scheme S1
(see Supplementary Materials).
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Figure 2. Kelen-Tüdos plot of M3OOB and M4OB copolymerizations.

Removal of the OOB protecting group in the P(M3OOB-co-M4OB) copolymers was further
conducted to produce the P(M3NH-co-M4OB) copolymers, which possessed not only strong hydrogen
bonding but also had good solubility in polar solvents. To facilitate the removal of the OOB
group, trifluoroacetic acid (TFA) was utilized. Figure 3 shows the 1H NMR spectra (400 MHz,
(A) in DMSO-d6; (B–E) in CDCl3) after treatment with TFA. Characteristic peaks in Figure 3a were
further assigned to identify the chemical structure. The disappearance of the representative signals
of the OOB group (e.g., δ (ppm) = 4.25–4.85) were clearly observed in the resulting copolymers of
PNHBA1–5. The composition differences of the PNHBA1–5 samples are corresponding to the samples
in Figure 1, respectively. Furthermore, the representative FT-IR spectra before and after treatment
by TFA demonstrated that the amine group appeared and the amide linkages remained (see the
Supplementary Materials, Figure S2). From these results, successful deprotection and good solvent
solubility of the copolybenzamides were achieved.
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In an attempt to investigate the compatibility of the copolymers, we blended the resulting
PNHBA1–3 with Nylon 6 (NY6). Figure 4 shows the DSC traces of the three blended sets and the related
characterization data are summarized in Table 2. Structurally speaking, highly rigid, symmetrical, and
easily packed polymer chains result in high Tg and Tm properties. Furthermore, the more depressions
in the Tg and Tm data, the higher the polymer-polymer miscibility or compatibility. However, it was
observed that the melting behaviors of NY6 and NY6 in the presence of the miscible polymers were
similar. We further estimated the variations between Tc and Tg (i.e., ∆Tcg = Tc − Tg) to investigate the
homogeneity of the blends [41–43]. In the NY6/PNHBA1 blends (Figure 4A), a clear increase in the Tg

and the Tc was seen but little variation in Tm relative to NY6. With 30 wt% of PNHBA1, a low Xc (i.e.,
crystallinity) was acquired, which might be ascribed to suppression of the NY6 chain mobility because
of the good homogeneity of the blends. In Figure 4B, where NY6/PNHBA2 = 70:30, a significant
increase of approximately 14 ◦C in Tc and a 34 ◦C difference in ∆Tcg was observed relative to NY6.
In the NY6/PNHBA3 blends (Figure 4C), a decrease in Tg was observed but Xc remained constant,
which might be ascribed to a higher content of flexible segments (i.e., M4OB unit) in PNHBA3. Thus,
the crystallinity of NY6 composites can be tuned from ca. 6% to 17% by varying the contents and
compositions of the copolybenzamides. From the results, we can rationally deduce good miscibility
among the NY6/PNHBAs blends. The thermal stability of the homo/copolymers and blends were
then examined using TGA. As shown in Figure S3 (see Supplementary Materials), simple and smooth
TGA curves were observed. For the copolybenzamides, the char yields were ca. 30% at 650 ◦C because
of the high content of aromatic moiety. Accordingly, the char yields increased to ~10% with an increase
in the amount of copolybenzamides. Figure 5 summarizes the Td5% values from the TGA traces. In all
blends, Td5%s were in the range of 375–380 ◦C, which indicates high thermal stability. These results
imply that moderately compatible blending systems with good thermal stability were acquired.
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Figure 4. DSC traces of (A–C) NY6/PNHBA1–3 blends with different weight ratios (x = 90/10, y: 80/20
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Table 2. Summary of the DSC results of NY6/PNHBA1–3 blends.

Samples (No.) Tg (◦C) Tc (◦C) ∆Tcg
a (◦C) Tm (◦C) ∆Hm – ∆Hc (J/g) Xc (%) b

pure NY6 44.3 69.7 25.4 220.0 26.1 11.3
NY6/PNHBA1 - - - - - -

90/10 (Ax) 50.0 76.4 26.5 220.7 22.42 9.7
80/20 (Ay) 49.3 75.2 25.9 221.7 23.14 10.1
70/30 (Az) 51.8 81.6 29.8 222.6 13.52 5.9
PNHBA1 99.0 - - - - -

NY6/PNHBA2 - - - - - -
90/10 (Bx) 41.9 68.2 26.3 218.2 34.71 15.1
80/20 (By) 42.5 70.3 27.8 218.0 20.30 8.8
70/30 (Bz) 50.4 84.4 34.0 218.9 19.25 8.4
PNHBA2 79.9 - - - - -

NY6/PNHBA3 - - - - - -
90/10 (Cx) 40.0 74.0 34.1 213.0 32.40 14.1
80/20 (Cy) 42.6 71.3 28.7 217.4 37.95 16.7
70/30 (Cz) 32.2 64.8 32.6 217.0 31.96 13.9
PNHBA3 73.5 - - - - -

a ∆Tcg = Tc − Tg; b Degree of crystallinity (Xc) % = (∆Hm – ∆Hc)/∆Hm
o × 100% (H: enthalpy).

The inter-association interactions of the NY6/PNHBA1 blends were further analyzed by FT-IR
at 100 ◦C. Figure 6 shows two regions of the FT-IR spectra ((A) 4000–2500 and (B) 1800–1400 cm−1)
with various blending ratios. With a higher content of PNHBA1, broadening of the amine and amide
I/II peaks (i.e., at 3300 and 1640/1540 cm−1) occurred, especially for the amide II peak (variations
of half-height width: (a) 27, (b) 31, (c) 36, (d) 36, and (e) 39 cm−1). These results indicated moderate
intermolecular hydrogen bonding between NY6 and PNHBA1 at 100 ◦C.
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As mentioned above, the incorporation of hydrogen bonding unit into the copolybenzamides
indeed enhanced the compatibility between the NY6 and polybenzamide. Another benefit of our
designed copolybenzamides is that the presence of alkyl side chain should enhance hydrophobicity
of the composites with respect to the nature of high hydrophilicity of NY6. We, thus, examine the
contact angle (CA) and surface energy (SE) of the NY6/PHNBA1 composites. As shown in Figure 7,
the CAs/SEs of pure NY6 and pure PNHBA1 are ca. 71.7◦/41.2 mN/m and 103.4◦/24.0 mN/m,
respectively. With increases of the blending amount of PNHBA1 (i.e., 90/10, 80/20, and 70/30),
accordingly, the CAs and SEs gradually shifted toward the value of pure PNHBA1. This indicated an
additivity effect of NY6/PNHBA1 blends.
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We used TEM to visualize the homogeneity of the NY6/PNHBA1 blends. As shown in Figure 8,
with the exception of pure NY6, all of the samples were stained by RuO4 to enhance the image contrast.
The pure NY6 and PNHBA1 samples were homogeneous as shown in Figure 8a,e. For the blends (i.e.,
Figure 8b–d), deep-gray areas were observed, which are ascribed to the stainable parts of PNHBA1.
The deep-gray stripes in Figure 8c,d are ascribed to the shear force while preparing the specimen by
microtone. With an increase in the blending amount of PNHBA1, the deep-gray dots did not show
significant aggregation. The deep-gray dots had an average diameter of 30–50 nm, which implies
the homogeneous dispersion of PNHBA1 in NY6. This supports the observations in the DSC traces.
In addition, we examined the mechanical property of the NY6/PNHBA1 sample (90:10 w/w) using
DMA. Figure 9 demonstrates the storage modulus (E′) and tan δ of pure NY6 (dash curves) and the
NY6/PNHBA1 sample (solid curves) in the temperature range between −40 and 180 ◦C. The presence
of PNHBA1 increased the E′ property (i.e., curve a vs. b). In comparison to pure NY6, tan δ and Tg

(~60 ◦C) increased with the presence of PNHBA1 (i.e., curve c vs. d). These observations are consistent
with previous characterization results.
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4. Conclusions

Using CGCP of M3OOB and M4OB co-monomers, we synthesized copolybenzamides with
different compositions. A series of well-defined copolybenzamides with close to theoretical MWs
(Mn ≈ 10,000–13,000) and narrow MWDs (Mw/Mn < 1.40) were obtained. Using the Kelen-Tüdos
method to estimate the monomer reactivity, similar reactivity ratios for the individual monomers
(r1(M3OOB) = 1.01 and r2(M4OB) = 0.982) were acquired, indicating an ideal copolymerization behavior of
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the M3OOB and M4OB pair. Characterization by 1H NMR and FT-IR showed that selective removal
of the OOB protecting group in the P(M3OOB-co-M4OB) copolymers was successfully achieved to
form P(M3NH-co-M4OB) copolymers (abbr.: PNHBA). DSC traces of NY6/PNHBAs blends indicated
that the crystallinity of NY6 composites could be altered from ca. 6% to 17% by varying the contents
and compositions of the copolybenzamides, indicating good miscibility among the NY6/PNHBAs
blends. From TGA curves, Td5%s of the blends were in the range of 375–380 ◦C, depicting their
high thermal stability. We further performed FT-IR and water CA measurements to analyze the
NY6/PNHBA1 blends, in which moderate inter-association interactions and an additivity effect
was observed. In addition, from TEM and DMA measurements of the NY6/PNHBA1 blends, good
homogeneity and enhancement of E’ and tan δ were seen, respectively. In summary, we demonstrated
an effective strategy to synthesize a novel type of polybenzamide, which not only provides hydrogen
bonding but also shows high solubility in organic solvents and good miscibility with Nylon 6.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/5/172/s1,
Scheme S1: CGCP mechanism for the synthesis of well-defined polybenzamides, Figure S1: 1H NMR spectra for
the (A) initiator 4-(((tert-butyldimethyl silyl)oxy)methyl)benzoate; (B) monomer methyl 4-(octylamino)benzoate
(M4OB), and (C) methyl 3-(4-(octyloxy)benzylamino)benzoate (M3OOB), Figure S2: Representative FT-IR spectra
of (a) P(M3OOB-co-M4OB) and (b) the resulting PNHBA after deprotection of the OOB group, Figure S3: TGA
traces and Td5%s of (a–c) NY6/PNHBA1–3 blends with different weight ratios, Table S1. Characteristics of
polybenzamide copolymers (PBAs).
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