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Abstract:



We study the dynamics of semiflexible hyperbranched macromolecules having only dendritic units and no linear spacers, while the structure of these macromolecules is modeled through T-fractals. We construct a full set of eigenmodes of the dynamical matrix, which couples the set of Langevin equations. Based on the ensuing relaxation spectra, we analyze the mechanical relaxation moduli. The fractal character of the macromolecules reveals itself in the storage and loss moduli in the intermediate region of frequencies through scaling, whereas at higher frequencies, we observe the locally-dendritic structure that is more pronounced for higher stiffness.
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1. Introduction


Macromolecular systems with a high amount of branching units continue to attract high attention [1,2,3,4,5,6,7]. Typical representatives of such systems are hyperbranched polymers and dendrimers. While dendrimers possess a perfect layered topology, hyperbranched polymers can have a high structural variety. Moreover, hyperbranched polymers represent a very broad class of macromolecular structures, given also that there is a possibility [4,8] to tune their degree of branching (the degree of branching reflects the ratio between branching points and linear spacers [9]). However, a characterization based only on the degree of branching is rather superficial, because it does not carry information about the distribution of the branching points, i.e., the monomer connectivity [10,11,12,13,14]. A prominent example in this respect is provided by pseudo-dendrimers that possess the same degree of branching as dendrimers, but distinct physical properties [14,15]. Here, we study a system with a fractal connectivity, which, as for dendrimers and pseudo-dendrimers, does not possess linear spacers.



Let us now briefly introduce the fractal system, the so-called “T-fractal”, on which we focus here. Belonging to the class of exactly decimable fractals, T-fractals enjoy a constant theoretical attention [16,17,18,19,20,21,22,23,24,25,26]. Figure 1a illustrates the iterative construction of a T-fractal up to the third generation: In every iteration step, each bond of a T-fractal is substituted through three other bonds. We note that Figure 1a sketches only the topology of a T-fractal. In fact, we are considering here T-fractals with homogeneous branching units, so that their topology resembles rather that of pseudo-dendrimers, as sketched in Figure 1b. Moreover, in three dimensions, the structures will have typically different conformations; Figure 1c exemplifies a randomly-taken conformation from a multivariate Gaussian distribution related to the macromolecule. We note that in contrast to dendrimers or to dendrons (dendritic wedges), T-fractals contain beads, which do not branch out further. The absence of the corresponding sub-wedges can allow T-fractals to reach quite high generations, while dendrimers and dendrons, which experience problems related to the space filling, are seriously limited in their growth.


Figure 1. (a) Iterative construction of a T-fractal up to generation [image: there is no content]. The beads added in the second and in the third iteration steps are colored by blue and red, respectively; (b) A two-dimensional representation of a T-fractal of generation [image: there is no content], and (c) its random configuration in three-dimensional space.
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The theoretical description of a polymer’s dynamics requires a suitable mathematical model. In order to find the relationship between the dynamics of a macromolecule and its topology, one can use in a first approach the model of generalized Gaussian structures (GGS) [27], which originates from the Rouse model [28]. However, the GGS model does not include the excluded volume and the restrictions of the bond angles of macromolecules. An improved description of the polymer’s dynamics is achieved by introducing local semiflexibility in the GGS model, which turns out to be very important for dendritic structures [29,30]. Semiflexibility was first introduced to the dynamics of discrete chains by Bixon and Zwanzig [31]; later, it was included to the description of other macromolecular architectures [32,33,34,35,36,37,38,39,40,41,42]. This work employs the framework of semiflexible treelike polymers (STP) [35], which allows one to study arbitrary treelike architectures and to obtain many results in closed form. In particular, the STP framework allows us to determine in this work a complete set of eigenmodes of semiflexible T-fractals, following the procedure put forward by Cai and Chen for fully-flexible dendrimers [43] that has been recently extended to semiflexible structures, namely dendrimers [39] and Vicsek fractals [40]. This procedure reduces the numerical effort and gives an intuitive sense to the structure of eigenmodes and of the corresponding relaxation spectra. These results allow us to consider here the mechanical relaxation forms of very large macromolecules and to understand their dynamical behavior in depth.



The outline of the paper is as follows: Section 2 recalls briefly the methods, while our results are presented in Section 3. In particular, Section 3 starts with the description of the elements of the dynamical matrix, for which we then construct a complete set of eigenmodes for semiflexible T-fractals and the corresponding reduced matrices; afterwards, we discuss the eigenvalue spectra and corresponding mechanical relaxation moduli. Finally, Section 4 summarizes our conclusions. Appendix A. contains a general iterative procedure for the construction of reduced dynamical matrices.




2. Methods


In this section, the model of semiflexible treelike polymers (STP) is briefly recalled; details of the STP model can be found in [35].



In the STP-model, polymer structures are described by beads, located at the positions [image: there is no content] ([image: there is no content]), that are connected by bonds with the bond vector:


[image: there is no content]



(1)







In Equation (1) the incidence matrix [image: there is no content] known from graph theory is used.



Considering the easiest case, the so-called GGS-model [27] that extends the Rouse model to arbitrary architectures, one obtains a purely harmonic potential [image: there is no content] that is diagonal in the variables representing the bonds:


[image: there is no content]



(2)




[image: there is no content] denotes the spring constant, where [image: there is no content] is the mean squared length of the bonds, T the temperature and [image: there is no content] the Boltzmann constant.



Neither the volume of the monomers nor restrictions on the bond angles are considered in the GGS-model. A first approximation taking into account these restrictions leads to a correlation of successive bonds. Introducing semiflexibility in the GGS-model by imposing geometrical restrictions for the bonds’ orientations results in a generalized potential:


[image: there is no content]



(3)




The matrix [image: there is no content] contains the information about the correlation between the different bonds. The structure of potential (3) can be obtained based on maximum entropy methods [35,44] or by construction of the covariance matrix (consisting of the mean values [image: there is no content]) of the respective Boltzmann distribution [image: there is no content]. With this, one has [image: there is no content] for Gaussian distributed bonds [image: there is no content]. In order to obtain the matrix [image: there is no content], by inverting [image: there is no content], the following physically-plausible choices for [image: there is no content] are made:

	
The mean squared length of the bonds is fixed [image: there is no content].



	
For adjacent bonds a and b, directly connected over a bead i, [image: there is no content] holds. The sign is determined by the relative orientation of the bonds. The positive sign describes the case of head-to-tail orientation of a and b; otherwise, the minus sign is obtained. The common stiffness parameter related to a and b is denoted by [image: there is no content].



	
Due to the freely-rotating condition imposed on non-adjacent bonds a and c (connected over the unique path [image: there is no content]), one obtains [image: there is no content]. For linear chains, this restriction under the continuous chain limit [image: there is no content] and [image: there is no content] leads to the definition of the persistence length [image: there is no content]; see Equation (3.15) of [44]. However, for branched structures, no smooth curve description due to the branching points is possible.








In the limit [image: there is no content], [image: there is no content] resembles the identity matrix, in which case Equations (2) and (3) coincide. For a branching point of functionality (i.e., number of NN) [image: there is no content], there is a restriction concerning the upper limit of the stiffness parameter [image: there is no content], [image: there is no content]; see [45]. This restriction comes from the observation of [image: there is no content] rays emanating from the same origin, for which in three-dimensional space the sum of cosines of the angles between them ([image: there is no content] rays lead to [image: there is no content] angles) is restricted by [image: there is no content] from below [45]. A detailed presentation of the explicit matrix elements of [image: there is no content], taking into account the above conditions, can be found in [35].



Within the framework of the STP-model, the following set of Langevin equations describes the dynamics of the polymer:


[image: there is no content]



(4)




ζ denotes the friction coefficient of a bead. The stochastic Gaussian force acting on the i-th bead [image: there is no content] has the properties [image: there is no content] and [image: there is no content], where α and β denote the three spatial directions [image: there is no content] and z.



The system of Langevin equations (4) requires that the potential [image: there is no content] is expressed in terms of the position variables [image: there is no content]. Combining (1) and (3), one obtains:


[image: there is no content]



(5)







Referring to one picked bead i (with functionality [image: there is no content] and stiffness parameter [image: there is no content]), there are three types of non-vanishing matrix elements of [image: there is no content]; namely, the diagonal element [image: there is no content], the nearest neighbor (NN) elements [image: there is no content], where [image: there is no content] denotes the NN of i, and the next nearest neighbor (NNN) elements [image: there is no content], where [image: there is no content] denotes the NN of [image: there is no content] excluding bead i. In the following, [image: there is no content] and [image: there is no content] denote the functionality and the stiffness parameter associated with bead [image: there is no content], respectively. As has been shown in [35], the analytical expressions for these three non-vanishing matrix elements are:


[image: there is no content]



(6)






[image: there is no content]



(7)




and:


[image: there is no content]



(8)




We note that if any of the beads (i or [image: there is no content]) has functionality one, then the corresponding stiffness parameter ([image: there is no content] or [image: there is no content]) in Equations (6) and (7) is multiplied by a zero (e.g., by [image: there is no content] or by [image: there is no content]). Such beads do not connect any pair of bonds, and hence, Equations (6) and (7) automatically account for this fact by refusing an input of the corresponding stiffness parameters. Equation (8) appears only for the situation where bead [image: there is no content] connects at least two other beads; therefore, in Equation (8), [image: there is no content]. T-fractals have only beads of functionality one or three. Here, we consider a homogeneous situation by having the same stiffness parameter q for all beads of functionality three.



The isotropy of the model leads for each bead to a decoupling of the three spatial coordinates. Hence, the equation describing the dynamics, say, of the i-th bead’s x-component, reads:


[image: there is no content]



(9)







Within the STP-model, many dynamical properties of a polymer are determined to a large extent by the eigenvalues of [image: there is no content]. For [image: there is no content], the sum of all elements in any row or in any column vanishes. This leads to the eigenvalue [image: there is no content] whose corresponding eigenvector describes the translation of the complete macromolecule. The other, non-vanishing eigenvalues [image: there is no content] are sufficient to describe various dynamical properties, such as the mechanical relaxation behavior. In order to investigate this behavior, one considers the response to the harmonic strain, represented through external mechanical forces that oscillate with the frequency ω. The response function to this harmonic strain is the complex shear modulus [image: there is no content] (see [46]), consisting of the storage modulus [image: there is no content] and the loss modulus [image: there is no content]. The analytical expressions of the two moduli expressed in the reduced variables that are obtained by dividing the moduli by [image: there is no content] are given by [27,36]:


[image: there is no content]



(10)




and:


[image: there is no content]



(11)




One should note that in Equations (10) and (11), only the non-vanishing eigenvalues [image: there is no content] contribute.




3. Results and Discussion


3.1. Dynamical Matrix of T-fractals


As we discussed in Section 2, the dynamics of macromolecules is modeled through a set of Langevin equations, which are coupled through the dynamical matrix [image: there is no content]. Equations (6)–(8) of Section 2 allow the full determination of the elements of the [image: there is no content] matrix [image: there is no content], where N is the number of beads of a T-fractal that for generation G reads:


[image: there is no content]



(12)







Below, we discuss all possible non-vanishing entries of [image: there is no content] occurring for T-fractals. Namely, there are three classes of entries: diagonal elements (μ), those related to nearest neighboring (NN) beads (ν) and those to the next-nearest neighboring (NNN) ones (ρ). All of these elements depend on the stiffness parameter q, which reflects the bonds’ orientations; see Section 2 for details.



Each diagonal element corresponds to a bead. Therefore, the diagonal elements depend on the beads’ topological position within the T-fractal. The topology of T-fractals results in five different diagonal elements, as shown in Figure 2.


Figure 2. Schematic representation of the non-vanishing elements of matrix [image: there is no content]. For diagonal elements ([image: there is no content]), the corresponding beads are highlighted by color. For off-diagonal elements ([image: there is no content] and ρ), the corresponding interactions are indicated through wavy lines.
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Terminal beads with functionality (i.e., number of NN) [image: there is no content] have exactly one internal NN with [image: there is no content]. Hence, one obtains the matrix element:


[image: there is no content]



(13)







	
For T-fractals of generation [image: there is no content], the single internal bead is directly connected to three terminal beads. The corresponding matrix element is given by:


[image: there is no content]



(14)







	
An internal bead with two terminal and one internal NN is described by the diagonal element:


[image: there is no content]



(15)







	
The diagonal element [image: there is no content] corresponds to internal beads with three internal NN:


[image: there is no content]



(16)







	
If an internal bead has two internal and one terminal NN, it is described by the diagonal element:


[image: there is no content]



(17)










Besides the diagonal elements, there are two types of non-vanishing NN elements following from the analysis of NN pairs of beads, as depicted in Figure 2.



	
If one of the two considered beads is a terminal bead, we obtain the NN element:


[image: there is no content]



(18)







	
Otherwise, two internal beads in NN position result in the matrix element:


[image: there is no content]



(19)










According to Equation (8) of Section 2, the NNN elements depend solely on the properties of the beads, which are common NN to the NNN pairs of beads. Since this common NN is inevitably an internal bead and given that all internal beads of a T-fractal have functionality [image: there is no content], all NNN elements are equal to:


[image: there is no content]



(20)








3.2. Hierarchical Eigenmodes of T-fractals


In order to analyze the eigenmodes of the T-fractals, we concentrate on the homogeneous form of the set of Langevin equations introduced in Section 2; see Equation (9):


τ0x˙i+∑j=1NAijSTPxj=0∀i



(21)




where [image: there is no content] is the monomeric relaxation time. A complete numerical diagonalization of the [image: there is no content] matrix [image: there is no content] allows one to determine the eigenmodes. Since [image: there is no content], Equation (12), grows exponentially, a numerical diagonalization is only possible for low generations of T-fractals. Using a complete set of eigenvectors of [image: there is no content] reduces the computational effort. Such a procedure was first introduced for fully flexible dendrimers of functionality [image: there is no content] [43] and later extended to arbitrary functionalities [47,48]; see also recent general results [49] for flexible dendritic structures. The works in [39,40] illustrate that an extension of the procedure is also applicable to semiflexible dendrimers and semiflexible Vicsek fractals. Here, we find [image: there is no content] groups of eigenvectors for a T-fractal of generation G. Among them, the first G groups are based on the branches [image: there is no content] to [image: there is no content], whereas the [image: there is no content]-th group involves the motion of all beads, including the central one (in the case of semiflexible dendrimers [39], the groups 1 to G represent the dynamics of dendrons of the generations 1 to G, and the [image: there is no content]-th group involves the motion of all dendrimer’s beads). A branch [image: there is no content] of generation [image: there is no content] consists of a single terminal bead. In general, branches are connected to the rest of the structure over one bead, as depicted in Figure 3, which is called the “starting” bead in the following.


Figure 3. Branches [image: there is no content] of different branch generation [image: there is no content] for a T-fractal of generation [image: there is no content].
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The n-th group ([image: there is no content]) of eigenvectors is characterized by the movements of pairs of the [image: there is no content] branches, while the remaining part of the macromolecule stands immobile. Since a large part of the fractal is immobile, for a specific group of eigenvectors, many amplitudes [image: there is no content] in Equation (21) vanish.



The eigenvectors of the first group describe antiphase movements of two terminal beads (say, i and j) connected by a common NN (say, k). Each of these terminal beads represents a [image: there is no content] branch, as depicted in Figure 4. The antiphase movement of the two beads i and j results in the relations:


x1:=xi=-xjandxl=0foralli≠l≠j



(22)




for the amplitudes. Using Equations (13) and (20), one obtains the diagonal elements [image: there is no content] and the NNN elements [image: there is no content]. With this, the set of Equations (21) reduces to the following non-trivial equation of motion:


[image: there is no content]



(23)




Since the chosen model is limited to NNN interactions, the matrix element, say, [image: there is no content] of two beads l and m, connected by a path containing more than two bonds, vanishes. Hence, in case of immobile beads, it is necessary to discuss only the equations of motion of bead k and its immobile NN. In both cases, the sum in Equation (21) leads to zero, as a result of the antiphase movement of i and j. Measuring time in units of [image: there is no content] and making use of Equations (13) and (20), one can easily calculate from Equation (23) the eigenvalue corresponding to the first group:


[image: there is no content]



(24)






Figure 4. Examples for eigenmodes of the first (a), second (b) and third (c) group. The beads of a branch that move with the same amplitude have the same color. The numbers placed in the beads correspond to the variables [image: there is no content] used in Equations (23), (25) and (26). The beads k colored by black are the gluing beads.
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The second group is related to the opposing movement of two [image: there is no content] branches, which are connected through an immobile bead, say k; see Figure 4b. In the following, we call the bead k the “gluing” bead. The beads of one branch depicted in the same color in Figure 4b are arranged in a symmetric way with respect to the gluing bead. For these beads, the movement amplitudes are identical, whereas the beads of one branch move opposite of their symmetric counterparts in the second branch: the starting beads (NN to k) of the two branches perform an opposing movement, whereby the amplitudes [image: there is no content] and [image: there is no content] have the same absolute value; for all other mobile beads, the absolute value of their amplitudes is [image: there is no content]. Due to the opposing movement of the different groups of beads of the two branches, the sums in the equations of set (21) corresponding to the gluing bead k and its immobile NN vanish, so that the equations of motion of these two beads become trivial. Thus, considering the second group, the set of Equations (21) reduces to:


[image: there is no content]



(25)




This set leads to two eigenvalues, [image: there is no content] and [image: there is no content], for the second group.



The third group describes the opposing movement of two [image: there is no content] branches, whose starting beads are connected to a common immobile gluing bead, say k. Again, as for the second group, the equations of motion of k and its immobile NN are trivial, and the amplitudes of beads arranged in a symmetric way with respect to the gluing bead are identical. Thus, dealing with [image: there is no content] branches, one has to take into account five groups of beads that are symmetric with respect to the gluing bead. Consequently, one needs a set of five independent variables [image: there is no content] to determine the eigenvalues and eigenvectors (the corresponding five groups of beads are highlighted by different colors in Figure 4c). Hence, the set of non-trivial equations of motion of the third group reads:


[image: there is no content]



(26)




Based on set (26), the third group yields five eigenvalues [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



Generally, the n-th group (with [image: there is no content]) describes motions of two [image: there is no content] branches directly connected by a common gluing bead. The two branches perform an opposing movement, such that beads of one branch arranged symmetrically with respect to the gluing bead move with identical amplitudes and in antiphase to their counterparts of the second branch. Since the model considers only interactions up to NNN, the equations of motion for all immobile beads (including the gluing bead) are trivial. Therefore, the number of independent variables [image: there is no content] and, thus, the number of non-trivial equations of motion is determined by the number of groups of beads symmetric with respect to the gluing bead of one branch. The iterative construction of the branch [image: there is no content], depicted in Figure 5, is helpful for the evaluation of the number of independent variables [image: there is no content] in the group n.


Figure 5. Iterative construction of a [image: there is no content] branch consisting of three smaller branches; see the text for details.
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In the first step, a [image: there is no content] branch gets decomposed into three branches (two of type [image: there is no content] and one of [image: there is no content]). The two [image: there is no content] branches have a similar structure as [image: there is no content]. All beads of both [image: there is no content] branches, which are symmetric with respect to their mutual gluing bead, move inside the mobile branch [image: there is no content] with the same amplitude and direction; see, e.g., Figure 4c for the motion of two branches [image: there is no content] inside a mobile branch [image: there is no content]. Therefore, the contribution of the two [image: there is no content] branches to [image: there is no content] is given by [image: there is no content].



In order to determine the remaining contribution [image: there is no content] of the [image: there is no content] branch, it is instructive to look at Figure 6 exemplifying the case [image: there is no content]. The important observation is that for the [image: there is no content] branch, the most distant beads from the center (beads labeled by 1, 2, 4 and 9 in Figure 6) have different functionalities, [image: there is no content] and [image: there is no content] (for [image: there is no content], they are all of functionality [image: there is no content]). This symmetry breaking leads to an increase of independent variables, since the branch [image: there is no content] (beads having amplitudes numbered from 9 to 13) inside [image: there is no content] does not have a symmetric counterpart and contributes solely to [image: there is no content]. The same happens with the smaller branches [image: there is no content]; see Figure 6 for [image: there is no content]. The branches [image: there is no content] contribute to [image: there is no content] by [image: there is no content], respectively. All other beads inside the [image: there is no content] branch move with amplitudes distinct from those of the separated [image: there is no content] branches (whereas among them, the beads symmetric with respect to the gluing bead have the same amplitude) and contribute to [image: there is no content] by [image: there is no content]. Summarizing, one finds:


[image: there is no content]



(27)






Figure 6. Composition of the number of independent variables [image: there is no content] for the fifth group; see the text for details.
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Using this result and accounting for the contribution of the two [image: there is no content] branches inside the mobile [image: there is no content] branch, it is straightforward to determine the number of independent variables [image: there is no content] for the n-th group:


[image: there is no content]



(28)







In contrast to the n-th group [image: there is no content], the [image: there is no content]-th group describes the case in which all beads of the T-fractal move (three [image: there is no content] branches and the central bead). We note that the beads of the [image: there is no content] branches, which are symmetric with respect to the central bead, have the same amplitude and phase. Therefore, the three [image: there is no content] branches lead to [image: there is no content] independent variables. Additionally, there is one more variable related to the central bead. Thus, the expression giving the number of independent variables of the n-th group [image: there is no content] reads:


F(n)=1forn=1F(n-1)+∑i=1n-1F(i)forG≥n>1F(G)+1forn=G+1



(29)







The recurrence Equation (29) can be solved (see Supplementary Materials), leading for [image: there is no content] to [image: there is no content], where [image: there is no content] is the Chebyshev polynomial of the first kind [50]. Using a closed form representation of the Chebyshev polynomials [50], one obtains:


F(n)=110(5-5)3+52n+(5+5)3-52nforG≥n≥1110(5-5)3+52G+(5+5)3-52G+1forn=G+1



(30)







Now, we turn to the discussion of the degeneracy of the eigenmodes introduced above, which follows from the number of symmetric realizations with respect to the central bead of the T-fractal.



We start with the first group, which involves only the motion of terminal beads (i.e., beads of functionality 1). Let [image: there is no content] be the total number of terminal beads at generation G. The construction of the T-fractal introduces a new terminal bead per bond of former generation; see Figure 1. The number of bonds at generation [image: there is no content] equals [image: there is no content]; the number of terminal beads at generation [image: there is no content] is [image: there is no content]. Thus,


[image: there is no content]



(31)




The first group involves only pairs of NNN terminal beads. These NNN terminal beads stem from terminal bonds of former generation. The number of such bonds is equal to the number of terminal beads. Therefore, the degeneracy of the eigenmodes of the first group for the T-fractal of generation G, [image: there is no content], is given by:


[image: there is no content]



(32)







Furthermore, according to the iterative construction of a T-fractal, described in Section 1, each terminal bead leads to a [image: there is no content] branch at the forthcoming iteration. Moreover, only the NNN terminal beads (i.e., those involved in the first group) result in two [image: there is no content] branches that share the same gluing bead. Hence, [image: there is no content], i.e., for the n-th group, we have:


Dn(G)=3G-n+32for1≤n≤G



(33)




For [image: there is no content], Equation (33) leads to [image: there is no content] showing that for the G-th group, there are only two linearly independent realizations of two oppositely-moving [image: there is no content] branches.



Since the central bead does not have any symmetric counterpart, the eigenmodes coming from the [image: there is no content]-th group are nondegenerate. Summarizing, the degeneracies of the eigenmodes are given by:


Dn(G)=1forn=G+13G-n2+32forn≤G



(34)







The number of independent variables [image: there is no content], Equation (30), in combination with the degeneracy [image: there is no content] for the corresponding group, Equation (34), gives the total number of eigenmodes [image: there is no content]:


N=∑n=1G+1F(n)Dn(G)=3G+1=N(G)



(35)




Equation (35) shows that [image: there is no content] equals the number of beads of the corresponding T-fractal, i.e., the introduced set of hierarchical eigenmodes is a complete set of eigenvectors of [image: there is no content]. The proof of Equation (35) is presented in the Supplementary Materials.




3.3. Reduced Matrices


Based on the groups of eigenvectors of the matrix [image: there is no content] (see Section 3.2), its eigenvalue spectrum can be determined using a set of matrices that are much smaller than [image: there is no content]. The largest matrix of this set is a [image: there is no content] matrix, whereas [image: there is no content] is a [image: there is no content] matrix. Table 1 compares the values of N and [image: there is no content] for the first ten generations of T-fractals. Dealing with these matrices, it is necessary to distinguish between the matrices corresponding to the groups [image: there is no content] and the matrix corresponding to the [image: there is no content]-th group of a T-fractal.



Table 1. Comparison of N and [image: there is no content] for the first ten generations of T-fractals.







	
G

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10






	
N

	
4

	
10

	
28

	
82

	
244

	
730

	
2188

	
6562

	
19,684

	
59,050




	
[image: there is no content]

	
2

	
3

	
6

	
14

	
35

	
90

	
234

	
611

	
1598

	
4182










First, we consider the matrices of the first G groups. As discussed in Section 3.2, the description of the opposing movement of two [image: there is no content] branches requires [image: there is no content] independent variables. The [image: there is no content] matrix (which we call in the following the reduced matrix [image: there is no content]) of equations of motion for these variables yields [image: there is no content] eigenvalues of the n-th group. In order to represent the reduced matrices [image: there is no content], one has to choose a numeration of the independent variables. A particular choice of the numeration does not play any role; our choice is presented in Supplementary Materials, see Figure S1.



Since one variable is sufficient to describe the opposing movement of two [image: there is no content] branches, one obtains a single equation of motion (36). Hence, the corresponding coefficient matrix reads:


[image: there is no content]



(36)







The second group requires two variables to treat the opposing movement of two [image: there is no content] branches. Consequently, the two equations of motion (37) lead to the coefficient matrix:


[image: there is no content]



(37)







The equations of motion (38) of the third group result in the reduced matrix:


[image: there is no content]



(38)







The fourth group requires thirteen independent variables, whose dynamics is described through thirteen non-trivial equations of motion. The corresponding reduced matrix reads:


[image: there is no content]



(39)







From the fifth group on, an iterative construction of the reduced matrices, based on the construction of the eigenmodes presented in Section 3.2, is possible. Figure 5 illustrates that a branch [image: there is no content] can be decomposed into two terminal [image: there is no content] branches and one internal [image: there is no content] branch whose starting bead s coincides with the starting bead of the whole branch [image: there is no content]. The corresponding [image: there is no content] reduced matrix [image: there is no content] describing opposing movements of two [image: there is no content] branches has the following form:


[image: there is no content]



(40)




In Equation (40), the [image: there is no content] matrix [image: there is no content] describes the two terminal [image: there is no content] branches, whereas the internal [image: there is no content] branch is described by the [image: there is no content] matrix [image: there is no content]. The blocks [image: there is no content] and [image: there is no content] reflect the interaction of the two external branches with the internal branch. The exact form of all of these matrices is presented in Appendix A.



The reduced [image: there is no content] matrix arising from the [image: there is no content]-th group is denoted by [image: there is no content]. In the [image: there is no content]-th group, the beads symmetric with respect to the central bead have the same amplitude. With the help of Figure 1 and Figure 2, one can easily construct the matrices of the first two generations of T-fractals,


[image: there is no content]



(41)




and:


[image: there is no content]



(42)







The reduced matrices [image: there is no content] for T-fractals of generation [image: there is no content] can be constructed based on the matrix [image: there is no content]:


[image: there is no content]



(43)







The reason for the structure of Equation (43) is as follows: The central bead of the T-fractal can move only in the [image: there is no content]-th group. For [image: there is no content], it is an internal bead connected to three other internal NN beads. In the case of such a configuration, according to Equation (16), the last diagonal element of [image: there is no content] (which represents the central bead) is given by [image: there is no content]. The matrix [image: there is no content] describes opposing movements of two [image: there is no content] branches. Considering the (G+ 1)-th group, one observes uniform movements of three [image: there is no content] branches. In this way, [image: there is no content] can be used to construct [image: there is no content]:


[image: there is no content]



(44)




where [image: there is no content] numerates the variable related to beads, which are NN to the central bead.



The central bead of the T-fractal interacts with the three [image: there is no content] branches via NN and NNN interactions. The corresponding [image: there is no content] matrix [image: there is no content] and [image: there is no content] matrix [image: there is no content] are given by:


[image: there is no content]



(45)




and:


[image: there is no content]



(46)




respectively.




3.4. Eigenvalue Spectra of [image: there is no content]


The determination of the eigenvalue spectra is performed based on the procedure introduced in Section 3.3. Figure 7 presents the eigenvalue spectra corresponding to ninth generation T-fractals for different choices of the stiffness parameter q. The eigenvalues are presented in ascending order in semi-logarithmic scales since the largest and smallest non-vanishing eigenvalue differ strongly. It turns out that the eigenvalue spectra have a stair-like shape. Moreover, one observes a plateau in the middle region of the spectrum, whose width is independent of the choice of the stiffness parameter. This plateau is determined by the eigenvalue with the largest degeneracy, i.e., by the eigenvalue of the first group [image: there is no content]. The spectra displayed in Figure 7 depend qualitatively on the stiffness parameter q. [image: there is no content], and all smaller eigenvalues get smaller with increasing q, whereas the larger eigenvalues get larger.


Figure 7. Eigenvalue spectra of [image: there is no content] T-fractals plotted in semi-logarithmic (a) and in double logarithmic (b) scales for different values of the stiffness parameter q.
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One can understand this characteristic behavior by looking at the corresponding relaxation times [image: there is no content], which are related to the eigenvalues through [27]:


τk=τ0λkwithτ0=ζK



(47)




and at the corresponding eigenmodes. A numerical analysis of the eigenmodes belonging to large eigenvalues shows that a large part of adjacent groups of beads that are described by the same independent variable moves oppositely, but with the same amplitude. Such a movement of the beads allows a fast relaxation of the corresponding eigenmode. The more beads are moving in opposite directions, the faster the relaxation takes place. Since the number of moving beads increases with growing group number, the largest occurring eigenvalue belongs to an eigenmode of the [image: there is no content]-th group, which is proven by the numerical analysis. The relaxation times of eigenmodes that involve mainly the motion of adjacent beads in alternating directions decrease with increasing stiffness parameter q, so that the associated eigenvalues increase. Figure 8 illustrates the eigenmode corresponding to the largest eigenvalue of a T-fractal of generation [image: there is no content].


Figure 8. Schematic representation of the eigenmode corresponding to the largest eigenvalue of a [image: there is no content] T-fractal.
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The analysis of the eigenvectors corresponding to eigenvalues less than or equal to [image: there is no content] yields that large domains of the macromolecule move with the same phase. In the limiting case, all beads of the fractal move with the same amplitude in the same direction. This translational eigenmode corresponds to the eigenvalue [image: there is no content]. An increase of the stiffness parameter enlarges the size of the macromolecule, so that the relaxation times of eigenmodes related to collective motions of large domains increase, i.e., the corresponding eigenvalues decrease.



The analysis of the eigenvalue spectrum plotted in double logarithmic scales (Figure 7b) shows that the steps corresponding to eigenvalues smaller than [image: there is no content] follow a straight line. The approximate slope of this straight line is related to the spectral dimension of the T-fractal [21] [image: there is no content] by the quotient [image: there is no content], i.e.,


[image: there is no content]



(48)




for eigenvalues [image: there is no content] smaller than [image: there is no content]. We note that this scaling holds for all considered values of the stiffness parameter q. Thus, the scaling exponent is robust under the introduction of local constraints. This behavior is in line with the scaling of the spectral density [image: there is no content], for which then:


[image: there is no content]



(49)




holds, in accordance with the definition of the spectral dimension [image: there is no content] [51].



Based on the eigenvalue spectra [image: there is no content], one can readily calculate the gyration radius [image: there is no content] [52],


[image: there is no content]



(50)




where the sum runs over all eigenvalues, except [image: there is no content] associated with the translational motion. Figure 9 shows [image: there is no content] for different values of the stiffness parameter q. As can be inferred from the figure, [image: there is no content] grows with increasing q, because of the importance of small eigenvalues that decrease with growing q; see Equation (50). Moreover, as is typical for fractals, [image: there is no content] shows a scaling for large molecular weights. Indeed, using Equation (49), one obtains [53] [image: there is no content], as can be observed in Figure 9b.


Figure 9. Gyration radius of T-fractals for different values of the stiffness parameter q plotted in (a) as a function of generation G and in (b) as a function of number of beads N.
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3.5. Mechanical Relaxation


The knowledge of the eigenvalue spectra allows the calculation of many dynamical characteristics [27]. Here, we focus on the reduced storage and loss moduli; see Equations (10) and (11) of Section 2. Figure 10 and Figure 11 show the reduced storage and loss moduli of a T-fractal of generation [image: there is no content] for different choices of the stiffness parameter q, respectively. The comparison of Figure 10 and Figure 11 shows that the stiffness has a stronger influence on the curve shape of the loss modulus than on the storage modulus. Therefore, we consider first the loss modulus.


Figure 10. (a) Reduced storage moduli [image: there is no content] of [image: there is no content] T-fractals and (b) the corresponding local slopes of the [image: there is no content] curves for different values of stiffness parameter q.
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Figure 11. (a) Reduced loss moduli [image: there is no content] of [image: there is no content] T-fractals and (b) the corresponding local slopes of the [image: there is no content] curves for different values of stiffness parameter q.
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Obviously, the increasing value of the stiffness parameter q leads to a broadening of the [image: there is no content] curves that is accompanied by the development of a local minimum. The significance of this minimum increases with the increasing of the stiffness parameter. The eigenvalue spectra helps to understand this behavior of the curve. The increasing of the stiffness parameter leads to a larger step height between the most degenerated eigenvalue [image: there is no content] and larger eigenvalues, so that a pseudo gap arises in the eigenvalue spectrum. As a consequence of the enlarging gap that is caused by the increasing of the stiffness parameter, the maxima of contributions to [image: there is no content] corresponding to eigenvalues that are larger than [image: there is no content] are shifted to higher frequencies, so that a local minimum arises in the range of middle frequencies of the loss modulus. Such a local minimum is present for semiflexible dendrimers [39] and less pronounced for semiflexible Vicsek fractals [40]. We note that the modes of the first two groups for T-fractals have exactly the same pattern (although different multiplicity) as for dendrimers [39,43], whereas for Vicsek fractals, only the first group of eigenmodes resembles that of the dendrimers [40]. These two groups lead to most degenerate eigenvalues (see Equation (34)), and hence, they play a major role for the position of the two maxima and the local minima.



On the other hand, one observes a scaling behavior in the range of middle frequencies; such a feature is typical for fractals and not for dendrimers. For the purpose of a more precise analysis, the derivation:


[image: there is no content]



(51)




representing the local slope of [image: there is no content], is utilized. The curve shape of [image: there is no content] for T-fractals of generation [image: there is no content] is depicted in Figure 11b. Obviously, there is a wavy pattern of the [image: there is no content] functions in the region of middle frequencies. However, the corresponding oscillations are independent of the choice of the stiffness parameter being between the values [image: there is no content] and [image: there is no content]. The approximately uniform oscillation justifies the determination of mean values; one finds [image: there is no content] for [image: there is no content]. Hence the slope of the loss modulus is independent of q and proportional to [image: there is no content] in the range of middle frequencies, in line with general expectations [27,54,55] [image: there is no content]. We note, that [image: there is no content] shows the same scaling behavior in the range of middle frequencies, if one considers the derivative:


[image: there is no content]



(52)




depicted in Figure 10b. Comparing [image: there is no content] and [image: there is no content], one observes the same wavy pattern. Moreover, inspection of the [image: there is no content] and [image: there is no content] curves for T-fractals of other generations (not shown here) indicates that the number of appearing local maxima in the wavy region is equal to [image: there is no content].





4. Conclusions


In this paper, we have studied the dynamics of hyperbranched, dendritic macromolecules modeled through T-fractals. The symmetry of the T-fractal structure enabled us to construct a full set of eigenmodes and to analyze it in detail. Moreover, the set has reduced the computational efforts by having much smaller reduced dynamical matrices. The analysis of the corresponding eigenvalue spectra has shown a significant broadening of the spectra with increasing stiffness. Thus, the relaxation of the large-scale eigenmodes feels the increase of size of the macromolecule with growing stiffness and becomes slower; meanwhile, the relaxation of the small scale eigenmodes becomes faster due to the locally-constrained motion. These features become relevant for the mechanical relaxation moduli, which show a broadening with increasing stiffness. Moreover, while for high frequencies, the moduli reflect the local dendritic nature of the T-fractals (this behavior is more pronounced by the loss modulus for higher stiffness), a broad range of intermediate frequencies reveals through a scaling the fractal character of the macromolecules (which is less influenced by stiffness), a feature that is rather typical for hyperbranched polymers [56].








Supplementary Materials


The following are available online at www.mdpi.com/2073-4360/8/7/263/s1. Proof of Equations (30) and (34). Figure S1. Numeration of eigenvectors’ amplitudes used for the (a) first, (b) second, (c) third and (d) fourth groups. The gluing beads colored by black are immobile.
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The following abbreviations are used in this manuscript:







	GGS
	
generalized Gaussian structures





	STP
	
semiflexible treelike polymers





	NN
	
nearest neighbor





	NNN
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Appendix A. Iterative Procedure for the Calculation of the Matrix An+1 from An


Here, we present an iterative procedure for the calculation of the matrix [image: there is no content] from [image: there is no content] introduced in Section 3.3. According to Equation (40):


[image: there is no content]



(A1)




where the numeration of the beads is chosen in a such way that the last diagonal element of [image: there is no content] and of [image: there is no content] represents the starting beads k of the terminal branches [image: there is no content] and the starting bead s of the internal branch [image: there is no content], respectively; see Figure 5 for notations and the Supplementary Materials for the details of the numeration procedure. Hence, the starting beads of the two terminal branches [image: there is no content] are given by the diagonal element [image: there is no content] with [image: there is no content]. Further, the bead p of [image: there is no content] connecting the two [image: there is no content] branches that is marked in Figure 5 corresponds to the first diagonal element of [image: there is no content].



[image: there is no content] and [image: there is no content] differ from each other in the last diagonal element k, since [image: there is no content] describes the opposing movement of two [image: there is no content] branches, whereas [image: there is no content] represents the uniform movement of two such branches. Therefore, one can use [image: there is no content] to construct [image: there is no content]:


[image: there is no content]



(A2)







The starting beads k of the two terminal [image: there is no content] branches interact by NN interaction with the bead p and by NNN interaction with the NN of p in [image: there is no content]. In addition to that, there is an NNN interaction between the NNs of the beads k, belonging to the respective [image: there is no content] branch and the bead p. Hence, one obtains the interaction matrix:


[image: there is no content]



(A3)







The other off-diagonal block [image: there is no content] reflects the interaction of p, and its NN beads in [image: there is no content] with the two beads k and their NN beads in [image: there is no content]. These interactions result in:


[image: there is no content]



(A4)







In order to determine the matrix [image: there is no content], a more precise consideration of the internal branch [image: there is no content] is necessary. Figure A1 illustrates that an internal [image: there is no content] branch consists of two internal branches [image: there is no content] and [image: there is no content], as well as of one terminal [image: there is no content] branch. Hereby, the [image: there is no content] branch contains the starting bead s of the [image: there is no content] branch. The bead p, connecting the two terminal [image: there is no content], branches belongs to the [image: there is no content] branch.


Figure A1. Composition of an internal [image: there is no content] branch.
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Since an iterative construction of the internal [image: there is no content] branch is possible, also the corresponding matrix [image: there is no content] can be constructed in an iterative way:


[image: there is no content]



(A5)




where [image: there is no content] is a [image: there is no content] matrix. The three block matrices [image: there is no content], [image: there is no content] and [image: there is no content] represent the branches [image: there is no content], [image: there is no content] and [image: there is no content], respectively. [image: there is no content] and [image: there is no content] are [image: there is no content] matrices, with [image: there is no content].



The starting beads e and s of [image: there is no content] and [image: there is no content] correspond to the diagonal elements [image: there is no content] and [image: there is no content], respectively. The bead d that is connected to the beads g and e corresponds to the first diagonal element of [image: there is no content]. The remaining matrix [image: there is no content] is a [image: there is no content] matrix, with [image: there is no content], whose last diagonal element represents the starting bead g of [image: there is no content]. The matrices [image: there is no content] and [image: there is no content] differ from each other by the last diagonal element l, since the bead s of the [image: there is no content] branch is in NN position to an identical bead, whereas this is not the case considering the starting bead e of the [image: there is no content] branch. Hence, the relation between the two matrices is given by:


[image: there is no content]



(A6)









Furthermore, the [image: there is no content] branch does not have an identical counterpart sharing the same gluing bead, so that the last diagonal element of the [image: there is no content] matrix [image: there is no content] has to be modified in order to obtain [image: there is no content]:


[image: there is no content]



(A7)







The [image: there is no content] matrix [image: there is no content] and [image: there is no content] matrix [image: there is no content] describe the NNN interactions of the beads e and g belonging to the branches [image: there is no content] and [image: there is no content]. They are given by:


[image: there is no content]



(A8)




and:


[image: there is no content]



(A9)







Four beads are involved in the interaction between the branches [image: there is no content] and [image: there is no content], namely the bead e, its NN in [image: there is no content], the bead d and its NN in [image: there is no content]. The corresponding interaction matrices are denoted as [image: there is no content] and [image: there is no content]:


[image: there is no content]



(A10)




and:


[image: there is no content]



(A11)







Finally, one has to handle the interaction of the branches [image: there is no content] and [image: there is no content]. The four beads taking part in this interaction are g and d and their NN belonging to the respective branches. The interaction of these beads yields the two matrices:


[image: there is no content]



(A12)




and:


[image: there is no content]



(A13)







In order to be able to construct [image: there is no content] using the iterative procedure of Equation (40), the knowledge of [image: there is no content] is necessary. This requires the specific knowledge of [image: there is no content] that can be taken from Equation (39), whose last [image: there is no content] diagonal block reads:


[image: there is no content]



(A14)
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