
Polymers **2016**, *8*, 26

Supplementary Maretials: Coordination Chemistry Inside Polymeric Nanoreactors: Metal Migration and Cross-Exchange in Amphiphilic Core-Shell Polymer Latexes

Si Chen, Eric Manoury, Florence Gayet and Rinaldo Poli

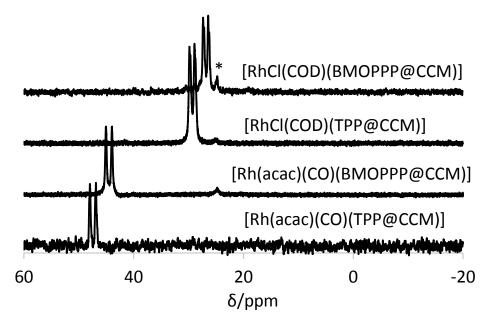


Figure S1. ¹H-NMR (**left**) and ³¹P-NMR (**right**) spectra of the **BMOPPP@NG** latex. The spectra in D₂O were recorded directly after addition of D₂O for the instrument lock to the latex (either tolueneswollen or not). The starred resonance at δ 4.7 belongs to water. Those at δ 3.63 (strong) and 3.30 (weak) belong to the CH₂ and CH₃ protons, respectively, of the PEOMA–(OCH₂CH₂)₁₉-OCH₃ protons. The spectra in THF-D₈ were taken after drying the latex to a solid residue and dissolution in the NMR solvent. The resonance marked with a square at δ 1.76 belongs to the solvent, with the second one at ca. δ 3.6 being masked by the PEOMA proton resonance. The resonances marked with a circle belong to the toluene molecules hosted in the swollen polymer core.

Figure S2. Excerpt of the ¹H-NMR spectra of **BMOPP@NG** after swelling with toluene in the region of the methylene and methoxy PEOMA proton resonances, and deconvolution of the CH₂ resonance.

Polymers **2016**, *8*, 26 S2 of S2

Figure S3. ³¹P{¹H} NMR spectra of the **TPP@CCM** and **BMOPPP@CCM** latexes in D₂O after swelling the polymer core with toluene and 100% loading with [Rh(acac)(CO)₂] or [RhCl(COD)]₂. The starred resonance corresponds to a small amount of oxidized phosphine.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).