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Abstract: Polymer-drug conjugates have demonstrated clinical potential in the context of 

anticancer therapy. However, such promising results have, to date, failed to translate into a 

marketed product. Polymer-drug conjugates rely on two factors for activity: (i) the presence 

of a defective vasculature, for passive accumulation of this technology into the tumour 

tissue (enhanced permeability and retention (EPR) effect) and (ii) the presence of a specific 

trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B). Here, 

we retrospectively analyse literature data to investigate which tumour types have proved 

more responsive to polymer-drug conjugates and to determine correlations between  

the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and  

ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for 

cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates). An analysis of 

literature data on cathepsin content in various tumour types showed that these tumour  

types had high cathepsin content (up to 3835 ng/mg for lung cancer), although marked 

heterogeneity was observed across different studies. In addition, these tumour types were 

also reported as having a high EPR effect. Our results suggest that a pre-screening of 

patient population could bring a more marked clinical benefit. 
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1. Introduction 

Polymer-drug conjugates (PDCs) are nano-sized drug delivery systems, in which one or more 

chemotherapeutic agent is covalently linked to a water-soluble polymer (Figure 1a) [1,2]. The main 

rationale for PDCs stems from their ability to passively accumulate into the tumour tissue by means of 

the enhanced permeability and retention (EPR) effect (Figure 1b) [3]. This is a unique feature of 

tumour vasculature, which makes the tumour vasculature hyper-permeable to macromolecules 

compared to normal vasculature. As a result, PDCs have been shown to: (a) selectively target  

tumour tissues; (b) be less toxic and display an extended half-life compared to the parent free  

drug (e.g., maximum tolerated dose (MTD) for N-(2-hydroxypropyl)methacrylamide (HPMA) 

copolymer-doxorubicin (320 mg/m2) is four-fold higher than for the parent compound doxorubicin  

(60 mg/m2)) [4]. 

Figure 1. (a) Schematic representation of a polymer-drug conjugate (PDC); (b) EPR effect 

facilitating passive tumour targeting of PDCs; and (c) Lysosomotropic delivery of PDC. 

 

Nineteen PDCs have undergone/are undergoing clinical evaluation (Table 1 and Figure 2). Clinical 

trials have shown evidence of tumour responses to PDC to various degrees, and some conjugates (e.g.,  

poly-L-glutamic acid (PGA)-paclitaxel) have progressed to Phase III trials [5,6]. In spite of several 

advantages of PDCs over the relevant parent drugs, such as a more favourable toxicity profile, superior 
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quality of life and a significant survival rate [7], to date, no such conjugate has entered the market 

place, which suggests that system design and/or patient selection are still suboptimal.  

When looking at possible reasons for the slow progression of the development of this technology, 

various factors need to be considered. First, PDCs are intrinsically more complex systems than low 

molecular weight drugs, for instance they have an inherent degree of variability due to the 

polydispersity of the carrier. In addition, and of greater significance, the anti-tumour activity of PDCs 

relies on two factors: (a) passive tumour accumulation via the EPR effect; (b) drug release following a 

biological stimulus (e.g., enzyme or pH) (Figure 1c). Failure to identify the correct patient/tumour type 

population, which displays a sufficient level of EPR effect and a sufficient level of enzymes, would 

negatively bias the results obtained with this technology. 

Many studies have reported evidence for the EPR effect in a variety of solid tumours [8–11] but the 

factors that affect the magnitude of such an effect are still unclear. Recent studies have considered 

different in vivo tumour models and these have reported that both the size and tumour type can affect 

the magnitude of the EPR effect [12,13]. A discussion group constituted by world experts of the EPR 

effect has looked at the heterogeneity of such a phenomenon and has identified its key influencing 

factors, mainly: (a) the nature of the vascular bed and stroma, including the presence or absence of 

lymphatics; (b) tumour size, type and location; and (c) patient characteristics such as age, gender, body 

composition, and treatment [10,13,14]. With regards to expression of the various activating enzymes, 

again the situation is heterogeneous and unclear. It is well known that enzymes that have been 

exploited for activation of PDCs, such as cathepsin B, are expressed in tumour tissues [2,13,15–17]. 

However, it has been recently noted that various factors, such as hormone levels, can affect the 

abundance of such enzymes. For instance, cathepsin B levels are higher in pre-menopausal women 

than in post-menopausal women as the former have higher oestrogen levels than the latter [5,18,19].  

Table 1. Current clinical status of polymer-drug conjugates (PDCs) and types of release triggers. 

Release Trigger Code/Product Name Composition Linker/Spacer Status Reference 

Enzymatic      

Cathepsins FCE28068/PK1 HPMA copolymer-doxorubicin Amide/Peptide d Phase II [4,20] 

Cathepsins FCE28069/PK2 
HPMA copolymer-doxorubicin-

galctosamine 
Amide/Peptide d Phase I [21] 

Cathepsins DE-310 Carboxymethyldextran-exatecan Amide/Peptide d Phase I [22] 

Cathepsins 
Delimotecan  

(MEN 4901/T-0128) 
Carboxymethyldextran-T2513 Triglycine Phase I [23] 

Esterases/Acid 

hydrolysis a 

Cathepins b 

CT-2106/PGA-CPT PGA-camptothecin Ester Phase I [24] 

Esterases/Acid 

hydrolysis a 

Cathepins b 

CT-2103/PGA-PTX 

XYOTAX™/ 

OPAXIO® 

PGA-paclitaxel Ester Phase III 
[5,6,19, 

25–34] 

Acid hydrolysis/ 

Cathepsins c 
AP5280 HPMA copolymer-carboplatinate 

Aminomalonate/ 

Peptide d 
Phase I/II [35] 
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Table 1. Cont. 

Release Trigger Code/Product Name Composition Linker/Spacer Status Reference 

Acid hydrolysis/ 

Cathepsins c 
AP5346/ProLindac® 

HPMA copolymer-DACH 

oxiplatinate 

Aminomalonate/ 

Peptide e 
Phase I [36] 

Hydrolysis/ 

Esterases 

PNU166945/ 

HPMA-PTX 
HPMA copolymer-paclitaxel Ester 

Phase I  

discontinued 
[37] 

Hydrolysis/ 

Esterases 

PNU166148// 

HPMA-CPT/MAG-CPT 
HPMA copolymer-camptothecin Ester 

Phase I  

discontinued 
[38–40] 

Hydrolysis/ 

Esterases 

EZN246/ 

PEG-CPT/Pegamotecan/ 

Prothecan™ 

PEG-camptothecin Ester 
Phase II  

discontinued 
[41–43] 

Hydrolysis/ 

Esterases 
PEG-PTX PEG-paclitaxel Ester 

Phase I  

discontinued 
[44] 

Hydrolysis/ 

Esterases 

EZN-2208/ 

PEG-SN-38 
PEG-SN-38 Glycinamidoester Phase II [45,46] 

Hydrolysis/ 

Esterases 
NKTR-102 PEG-Irinotecan Glycinamidoester Phase II/III [47–50] 

Hydrolysis/ 

Esterases 
NKTR-105 PEG-Docetaxel - Phase I [51] 

Hydrolysis/ 

Esterases 
XMT-1001 PHF-camptothecin Succinamidoester Phase I [52] 

Esterases CRLX101/IT-101 Cyclodextrin-camptothecin Glycinamidoester Phase II [53] 

Non-enzymatic      

pH-sensitive ONCOFID-PTM HA-paclitaxel Hydrazone Phase I/II [54] 

 AD-70, DOX-OXD Oxidised dextran-doxorubicin Schiff’s base 
Phase I 

discontinued 
[55] 

Notes: a Mediates the cleavage of the active drug from the polymeric backbone; b Mediates the cleavage of the 

biodegradable polymeric backbone; c Mediates the cleavage of the peptide linker/spacer; d Spacer-Gly-Phe-Leu-Gly;  
e Spacer-Gly-Gly-Gly. HPMA, N-(2-Hydroxypropyl) methacrylamide; PGA, Poly-L-glutamic acid; PEG, Polyethylene glycol; 

PHF, Poly(1-hydroxyl-methylethylene hydroxyl-methyl-formal); HA, Hyaluronic acid.  

In this paper, we retrospectively analyse data obtained from the literature concerning clinical trials 

carried out on PDCs in order to determine whether there is a connection between the clinical responses 

of various tumour types and the levels of enzyme expression/magnitude of the EPR effect in such 

tumour types. First, we analysed clinical data within the literature to identify the tumour types for 

which marked tumour responses were observed. Then, we documented the content of cathepsin B that 

has been reported for the various tumour types. Finally, we determined the extent of the EPR effect, 

which has been, reported for these various tumour types. 
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Figure 2. Chemical structures of the PDCs discussed in this article. (a) PDCs for which the 

release of the drug is triggered via an enzymatic mechanism; and (b) PDCs for which the 

release of the drug is triggered by a non-enzymatic mechanism. Note: The chemical 

structure of NKTR-105 is not available.  

(a) 
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Figure 2. Cont. 
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(b)
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2. Experimental Section  

The data presented in this paper were collected via systematic literature searches using search 

engines such as PubMed, Science Direct and Web of Science. No date restrictions were applied to  

the searches. 

2.1. Terminology 

This paper reports data collected from various sources that are derived from both clinical and  

pre-clinical studies. Different studies used different terminologies when referring to the various cancer 

types, with the terminologies ranging from technical/very specific (e.g., glioblastoma) to more general 

(e.g., brain cancer). In addition, in some cases, the effects of the tumours on adjacent organs are 

reported (e.g., gastroesophageal cancer). To ensure that a consistent terminology is used within this 

paper, clinical tumour types and preclinical models were grouped under general umbrella terms 

summarised in Table 2. 

Table 2. Summary of the terminology used in this article to identify various tumour 

types/tumour models. 

Tumour Type  

(Terminology Used in This Article) 

Tumour Type  

(Terminology Used in the Original Reference) 

Breast 
Breast, mammary gland, MCF-7, MDA-MB-231, BT 20 and DU4476-cell lines, 

Walker 256-murine model, MX-1, MAXF 449-human xenograft. 

Colon and/or rectum Colon, rectum, colorectal, anus, C26 NL-17, HT-29, LS174T-human xenograft. 

Head/Neck and brain 

Brain, glioblastoma, head/neck, thyroid, salivary gland, follicular, papillary, 

tongue, maxillary sinus, parotid gland, IMR-32, SK-N-SH,  

SK-N-DZ- human xenograft. 

Lung 
Non-small cell lung cancer, small cell lung cancer, bronchial,  

Meta-7-murine model, H522, COR L23-human xenograft. 

Oesophagus, stomach and intestine 
Oesophageal, cardioesophageal, stomach, gastroesophageal, gastrointestinal, 

intestine, small bowel, peritoneal carcinosis, OCUM-2MLN-human xenograft. 

Ovary 
Ovarian, Oca-1-murine model, A2780 cell line/human xenograft, SK-OV-3, 

OVCAR-3-human xenograft. 

Pancreas Pancreatic, PAXF 546-human xenograft. 

Skin 
Melanoma, basal cell, histosarcoma, B16F10, A431-murine model,  

MEXF 276-human xenograft. 

Urinary Bladder, urinary tract, urethal, urothelial, urachus. 

Others:  

The term indicates the tumour types 

which were either studied in a very 

low sample size (n < 3) and/or those 

for which low responses were 

observed. 

Adrenal, adenoid cystic, adenocarcinoma (unknown primary), bone (ewing 

sarcoma, osteosarcoma), cervix (uterine, leiomysarcoma uteri, ME180-human 

xenograft), fibrosarcoma (S-180, Meth A-murine model), gall bladder, kidney, 

leiomysarcoma, liver (cholangiocarcinoma, ampullary, bile duct, L1210-murine 

model, VX-2 carcinoma), lymphoma, mesothelioma, neuroendocrine, prostrate, 

sarcoma (unknown), soft tissue sarcoma, squamous cell sarcoma (unknown origin), 

solid tumours (unknown), unknown primary tumours, MAC 15A-murine model, 

MAC 26-murine model, RXF 486, RXF 1220, ME 180-human xenograft. 
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2.2. Clinical Status of the PDCs 

The data on the current clinical status of the PDCs, reported in Table 1, were gathered from articles 

obtained using the key word “polymer-drug conjugate*”. The clinical data related to each individual 

conjugate, which are reported in the supplementary information, were gathered using the name of the 

individual conjugate.  

The percentage tumour response reported for each conjugate, per tumour type, was determined 

considering all of the clinical responses observed (i.e., number of (partial response (PR) + complete 

response (CR) + stable disease (SD) + minor responses (MR)), as well as the total number of patients 

evaluated per tumour type using the following formula:  

Response to conjugate A in tumour X (%) = (Total clinical responses observed for conjugate A in tumour X/ 

Number of patients evaluated for conjugate A in tumour X) × 100 

The results obtained for each conjugate for each tumour type (reported in supplementary information, 

Tables S1 to S19) were then further processed in order to obtain an overall response to all PDCs per 

tumour type. 

The overall percentage tumour response for each tumour type was determined using the  

following formula:  

Overall response in tumour X (%) = Σ[(Response to conjugate A in tumour X (%) ×  

number of patients with tumour X in which conjugate A was tested) + (Response to conjugate B 

in tumour X (%) × number of patients with tumour X in which conjugate B was tested) + 

(Response to conjugate n in tumour X (%) × number of patients with tumour X in which 

conjugate n was tested)]/Total number of patients with tumour X 

2.3. Cathepsin Level 

The data on cathepsin levels in various tumour types were collected via literature searches  

using the following key words and their combinations: “cathepsin level*”, “cathepsin content*”, 

“tumour/tumor types”. 

2.4. EPR Effect 

The data related to the EPR effect in different tumour types were retrieved via literature searches 

using the following key words (and their combinations): “enhanced permeability and retention effect”, 

“EPR effect”, “tumour/tumor*”, “drug accumulation”, “biodistribution” and the names of the individual 

conjugates. In addition, original research articles quoted in reviews related to the EPR effect, which 

were not identified from the general search, were also considered. 

Priority was given to articles related to PDCs, however, as the EPR effect is a phenomenon that 

applies to any macromolecular system, clinical and preclinical data relating to other such systems  

(e.g., liposomes and micelles) were also included.  
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3. Results and Discussion 

Many clinical studies have been carried out on PDCs (e.g., OPAXIO) [26]. The main clinical 

outcomes have been summarized in extensive reviews [55–57], but, as yet, a detailed analysis of which 

tumour types are proving more responsive to this type of drug delivery technology is still missing.  

A number of studies have already attempted to identify correlations between tumour types and enzyme 

content or the magnitude of the EPR effect, but this approach has been largely carried out in preclinical 

models and systematic assessments of these factors and clinical activities are missing, which is 

surprising since the latter are two key pre-requisites for the activity of PDCs. 

In an attempt to provide a more comprehensive study that links clinical outcomes, enzyme content, 

and the EPR effect, we initially documented all the PDCs that have been explored in clinical  

trials, alongside the triggers that have been used to promote drug release in each (Table 1). Of the  

19 conjugates that have been tested in patients, the vast majority (17) rely, at least partially, on the 

presence of enzymes for drug release (Table 1). Of the various enzymes exploited as triggers, 

cathepsins, a family of lysosomal proteases, are the most widely targeted (eight of the conjugates 

reported in Table 1 rely on cathepsins action for drug release). This is not surprising, as cathepsins 

have been reported to be linked with cancer progression. In particular, cathepsin B has been connected 

with tumour invasion [58]. 

3.1. Effect of Tumour Type on Clinical Response 

To assess the clinical responses observed in different tumour types, we analysed clinical data for 

PDCs retrieved from our literature searches. Although the purpose of phase I, II and III clinical trials 

and their patient selection criterias are different, the objective responses (i.e., partial response (PR), 

complete response (CR), stable disease (SD) and minor responses (MR)) are considered as the end 

point in all such studies [59]. Therefore for each conjugate, evidence of a clinical response (PR, CR SD 

and MR) in the various tumour types has been summarised in detail in Tables S1–S19 in the 

supplementary information. A representative data set with clinical responses for the top three highest 

responsive tumour types for each conjugate has been provided in Table 3. For example, in the case of 

HPMA copolymer-doxorubicin (PK1; FCE28068), the top three highest responsive tumour types are 

lung, breast, colon and/or rectum, with tumour responsive rate of 57%, 53%, and 4%, respectively 

calculated from both phase II clinical trials and I. Likewise, the top three highest responsive tumour 

types based on the calculation from all the available clinical phase trials have been summarised for the 

other eighteen PDCs. 
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Table 3. Clinical data for the top three tumour types for the nineteen PDCs that are released by both cathepsins and change in pH. 

Tumour Type 

No. of Patients per 

Tumour Total a  

[Ph I/Ph II/Ph III] 

Clinical Responses b Total (Ph I/Ph II/Ph III) Tumour Response  

Rate c (%) Total  

[Ph I/Ph II/Ph III] 

No. of  

SD 

No. of  

PR 

No. of  

MR 

No. of  

CR 

No. of  

OS 

No. of  

NR 

HPMA copolymer-doxorubicin (PK1; FCE28068) [4,20] 

Lung 31[(2/29(21) */-] 8[-/8/-] 5[2/3/-] - - - 10[0/10/-] 57[100/52/-] 

Breast 20[3/17(14) */-] 5[-/5/-] 3[-/3/-] 1[1/-/-] - - 8[2/6] 53[33/57/-] 

Colon and/or rectum 24[8/16/-] - - 1[1/-/-] - - 23[7/16/-] 4[4/-/-] 

HPMA copolymer-doxorubicin-galactosamine (PK2; FCE28069) [21] 

Liver 25[25/-/-] - 2[2/-/-] 1[1/-/-] - - 22[22/-/-] 12[12/-/-] 

Colon and/or rectum 6[6/-/-] - - - - - 6[6/-/-] 0 

Carboxymethyldextran-exatecan; DE-310 [22] 

Adenocarcinoma (Unknown primary) 2[2/-/-] 1[1/-/-] - - 1[1/-/-] - 0 100[100/-/-] 

Pancreas 3[3/-/-] 2[2/-/-] 1[1/-/-] - - - 0 100[100/-/-] 

Urinary 1[1/-/-] 1[1/-/-] - - - - 0 100[100/-/-] 

Delimotecan; MEN 4901/T-0128 [23] 

Head/Neck and brain 2[2/-/-] - 1[1/-/-] - - - 1[1/-/-] 50[50/-/-] 

Colon and/or rectum 7[7/-/-] - 1[1/-/-] - - - 6[6/-/-] 14[14/-/-] 

Mesothelioma 3[3/-/-] - - - - - 3[3/-/-] 0 

Poly-L-glutamic acid-camptothecin; PGA-CPT; CT-2106 [24] 

Breast 4[4/-/-] 1[1/-/-] - - - - 3[3/-/-] 25[25/-/-] 

Skin 14[14/-/-] 2[2/-/-] - - - - 12[12/-/-] 14[14/-/-] 

Bone 1[1/-/-] - - - - - 1[1/-/-] 0 

Poly-L-glutamic acid-paclitaxel; PGA-PTX; CT2103; XYOTAX; OPAXIO® [5,6,19,24–33] 

Breast 18[-/18/-] 2[-/2/-] 4[-/4/-] 4[-/4/-] - - 8[-/8/-] 56[-/56/-] 

Ovary 99[-/99/-] 32[-/32/-] 10[-/10/-] - - - 57[-/57/-] 42[-/42/-] 

Mesothelioma 3[3/-/-] - - 1[1/-/-] - - 2[2/-/-] 33[33/-/-] 
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Table 3. Cont. 

Tumour Type 

No. of Patients per 

Tumour Total a  

[Ph I/Ph II/Ph III] 

Clinical Responses b Total (Ph I/Ph II/Ph III) Tumour Response  

Rate c (%) Total  

[Ph I/Ph II/Ph III] 

No. of 

SD 

No. of  

PR 

No. of  

MR 

No. of  

CR 

No. of  

OS 

No. of  

NR 

HPMA copolymer-carboplatin; HPMA-carboplatin; AP5280 [35] 

Lung 4[4/-/-] 2[2/-/-] - - - - 2[2/-/-] 50[50/-/-] 

Ovary 2[2/-/-] 1[1/-/-] - - - - 1[1/-/-] 50[50/-/-] 

Colon and/or rectum 12[12/-/-] 2[2/-/-] - - - - 10[10/-/-] 17[17/-/-] 

HPMA copolymer-platinate; HPMA-Pt; AP5346 [36] 

Cervix 1[1/-/-] 1[1/-/-] - - - - 0 100[100/-/-] 

Oesophagus, stomach and intestine 1[1/-/-] 1[1/-/-] - - - - 0 100[100/-/-] 

Skin 5[5/-/-] 1[1/-/-] 1[1/-/-] - - - 3[3/-/-] 40[40/-/-] 

Polyethylene-camptothecin; PEG-CPT; EZN246; Pegmaotecan; Prothecan™ [41–43] 

Bone 1[1/-/-] - - 1[1/-/-] - - 0[0/-/-] 100[100/-/-] 

Oesophagus, stomach and intestine 42[7/35/-] 14[-/14/-] 5[-/5/-] 3[2/1/-] - - 20[5/15/-] 52[29/57/-] 

Unknown primary 5[5/-/-] - - 1[1/-/-]   4[4/-/-] 20[20/-/-] 

Multiarm-polyethylene-SN38; EZN-2208 [45,46] 

Urinary 1[1/-/-] 1[1/-/-] - - -  0[0/-/-] 100[100/-/-] 

Oesophagus, stomach and intestine 3[3/-/-] 2[2/-/-] - - -  1[1/-/-] 67[67/-/-] 

Breast 3[3/-/-] 2[2/-/-] - - -  1[1/-/-] 67[67/-/-] 

PHF-CPT; MER-1001; XMT-1001 [52] 

Skin 2[2/-/-] 1[1/-/-] - - - - 1[1/-/-] 50[50/-/-] 

Lung 7[7/-/-] 3[3/-/-] - - - - 4[4/-/-] 43[43/-/-] 

Solid tumours (Unspecified) 8[8/-/-] 3[3/-/-] - - - - 5[5/-/-] 38[38/-/-] 

Cyclodextrin-camptothecin; CRLX101; IT-101 [53] 

Lung 27[27/-/-] 16[16/-/-] - - - - 11[11/-/-] 59[59/-/-] 

Solid tumours * 35[35/-/-] 28[28/-/-] - - - - 7[7/-/-] 80[80/-/-] 
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Table 3. Cont. 

Tumour Type 

No. of Patients per 

Tumour Total a  

[Ph I/Ph II/Ph III] 

Clinical Responses b Total (Ph I/Ph II/Ph III) Tumour Response  

Rate c (%) Total  

[Ph I/Ph II/Ph III] 

No. of 

SD 

No. of  

PR 

No. of  

MR 

No. of  

CR 

No. of  

OS 

No. of  

NR 

HA-paclitaxel (ONCOFID-P™) [54] 

Urinary 15[15/-/-] - - - 9[9/-/-] - 6[6/-/-] 60[60/-/-] 

Oxidized dextran-Dox; OXD-DOX (AD-70) [55] 

Colon and/or rectum 6[6/-/-] 1[1/-/-] - - - - 5[5/-/-] 17[17/-/-] 

Oesophagus, stomach and intestine 2[2/-/-] - - - - - 2[2/-/-] 0 

Lung 2[2/-/-] - - - - - 2[2/-/-] 0 

HPMA copolymer-paclitaxel; HPMA-PTX; PNU166945 [37] 

Solid tumours 1 12[12/-/-] 2[2/-/-] 1[1/-/-] - - - 9[9/-/-] 25[25/-/-] 

HPMA copolymer-camptothecin; HPMA-CPT; PNU166148 [38–40] 

Solid tumours 2 40[40/-/-] 5[5/-/-] - 1[1/-/-] - - 34[34/-/-] 15[15/-/-] 

Polyethylene glycol-paclitaxel; PEG-PTX [44] 

Solid tumours 3 13 NA NC NC 

Multi-arm-polyethylene glycol-pacliaxtel; PEG-PTX; NKTR-102 [47–49] 

Solid tumours 4 125[32/68/-] 28[-/28/-] 24[7/17/-] 6[6/-/-] 2[2/-/-] - 65[8/23/-] 48[47/66/-] 

Multi-arm-polyethylene glycol-docetaxel; NKTR-105 [51] 

NA 17 NA NA NA NA NA NC NC 

Notes: a Indicates total number of patients considered for the clinical evaluation; b Clinical responses includes the total of SD, Stable disease; PR, Partial response;  

MR, Minor response; CR, Complete response; OS, Overall survival; NR, No response; c Tumour response rate (%) is the added responses (SD + PR + MR + CR + OS) per 

tumour type. NA, Not available, NC, Not calculated. * Indicates number of patients evaluated for the tumour responses. The term “Solid tumours” has been mentioned 

wherever the clinical responses per tumour type have not been reported in the respective study. 1 Solid tumours includes (number of patients is denoted in the brackets for 

those that are available in the study)-Ovary (4); Breast (2); Colon and/or rectum (2); Lung (1) and others (3); 2 Solid tumours includes-Colon and/or rectum (18); Ovary 

(2); Oesophagus, stomach and intestine (4); Unknown primary (4); Head/Neck and brain (2); Lung (6); Kidney (3); Adrenal (1); Cervix (1); Bone (1); Mesothelioma (1); 

Prostate (1) and Sarcoma (3); 3 Solid tumours includes-Colon and/or rectum (3); Breast (2); Neuroendocrine (2); Lung (1); Prostate (1) and Others (4); 4 Solid tumours 

includes-Ovary; Breast; Adrenal; Oesophagus, stomach and intestine; Lymphoma; Lung; Cervix; Head/Neck and brain; Urinary and Breast.  
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Finally, summary graphics assembling the percentage responses per tumour type for all conjugates 

were compiled (Figure 3 and Table 4). Figure 3 and Table 4 shows the percentage responses observed for 

cathepsin-activated conjugates. Breast, ovary and lung cancer were the cancer types in which the 

highest response rates were observed (>30%). However, the responses observed for the various conjugates 

in each tumour type were variable, for example, the HPMA copolymer-oxaliplatin conjugate 

(AP5346/ProLindac) showed no responses in breast cancer while the HPMA copolymer-doxorubicin 

conjugate (PK1) showed 53% response in that tumour. This variability might be due to the fact that the 

latter relies solely on cathepsins for drug release, and hence has a more specific activation than the 

former, for which both cathepsins and acid hydrolysis play a role in the release of oxaliplatin. This 

finding however can also be affected to some extent by the nature of the therapeutic agent. 

Figure 3. Graphical representation of the tumuor response rates for PDCs (release 

mediated only by cathepsin). 
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Table 4. Tumour response rates for PDCs (release mediated only by cathepsin). 

Tumour  

Type  
PDC 

Tumour response rate (%) 

Breast Ovary Lung Pancreas Skin 
Oesophagus, 
Stomach and 

Intestine 
Urinary 

Head/Neck 
and Brain 

Colon 
and/or 
Rectum 

PK1 53 0 56 0 - 0 0 0 4 
PK2 - - - - - - - - 0 

DE-310 - 100 67 100 33 0 100 - 67 
MEN4901 - - 0 - 0 0 0 50 14 
CT-2106 25 - 0 0 14 - - - 0 
CT-2103 56 42 30 - - 21 - 0 0 
AP5280 - 50 50 0 0 0 - 0 16 
AP5346 0 25 0 0 40 100 0 0 - 

Normalised 
Average * 

47 41 30 27 21 18 17 13 12 

SD 26 37 29 45 19 40 50 22 24 
SE 13 17 11 20 8 16 25 10 9 

Notes: * Averages were normalised to take into account of the number of patients evaluated for each conjugated, see 

experimental section; “-” indicates that the conjugate was not evaluated against the particular tumour type. 
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Figure 4 and Table 5 show the result for all conjugates, independent of their activation mechanism. 

The results are similar to that observed for cathepsin-activated PDCs, with breast, ovary and lung 

cancer still achieving >30% responses. However, urinary cancer and cancers of the oesophagus, 

stomach and intestines showed a high response as well (48% and 34%, respectively). 

Figure 4. Graphical representation of the tumuor response rates for PDCs (release 

mediated both by cathepsin and pH).  
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3.2. Cathepsin Levels in Different Tumour Types 

Having assessed which tumour types showed the highest responses to PDCs, we investigated which 

tumour types had been reported to express the highest levels of cathepsins.  

Cathepsins are lysosomal cysteine proteases involved in the bulk degradation of intracellular and 

endocytosed proteins. Cathepsin B is a large lysosmal protease that is generally over expressed in 

tumour tissues and plays a very important role in the release and activation of PDCs. Several studies 

have indicated that its co-existing isoenzymes such as cathepsin D, L, H, S and X are also overexpressed 

in tumour tissues and are thought to play a role in proteolysis [60–63]. Some studies have been carried 

out to elucidate precisely which isoenzyme contributes to drug release. For example, extensive studies 

carried out in the 80s have identified cathepsin B as the primary enzyme responsible for doxorubicin 

release from the HPMA copolymer-Dox conjugate, when a Gly-Phe-Leu-Gly (GFLG) linker was used. 

However, the release mechanism for other conjugates has not been investigated so extensively. Also,  

it is known that various isoenzymes can contribute to drug release from peptidyl linkers, for example, 

both cathepsin L and cathepsin B were found to contribute to the release of daunorubicin when GPLG 

and GPPL linkers were used [64]. Similarly, both cathepsin B and cathepsin H contributed to the 

release of 5-FU, albeit to a different extent [65]. The level of expression of these cathepsins in tumour 
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tissues (especially cathepsin B) is very crucial for the selective release of the drug from the PDC within 

the tumour environment (Table 1). Also, several studies have indicated that cathepsin expression in 

tumours varies greatly [63] which is affected by various parameters including gender, age and 

hormone levels [14,18]. Therefore, to determine if there is a correlation between the level of cathepsin 

expression in a tumour type, and the clinical response to cathepsin-activated PDCs, data on cathepsin 

levels is presented for clinical as well as for in vivo and in vitro samples of different tumour types to 

obtain reliable results (Table 6). The information on tumour grades and other parameters that are 

related to the cathepsin’s expression were limited in the original studies, hence these details have not 

been considered in our present study.  

Table 5. Tumour response rates for PDCs (release mediated both by cathepsin and pH). 

Tumour  

type 

PDC 

Tumour response rate (%) 

Urinary Breast Ovary 

Oesophagus, 

Stomach and 

Intestine 

Lung Skin Pancreas 

Colon 

and/or 

Rectum 

Head/ 

Neck and 

Brain 

PK1 0 53 0 0 56 - 0 4 0 

PK2 - - - - - - - 0 - 

DE-310 100 - 100 0 67 33 100 67 - 

MEN4901 0 - - 0 0 0 - 14 50 

CT-2106 - 25 - - 0 14 0 0 - 

CT-2103 - 56 42 21 30 - - 0 0 

AP5280 - - 50 0 50 0 0 16 0 

AP5346 0 0 25 100 0 40 0 - 0 

PNU166945 a          

PNU166148 a          

EZN246 - 0 0 47 14 0 0 0 0 

PEG-PTX     NC     

EZN2208 100 67 0 - 50 - 33 20 - 

NKTR-102 - - - 1 - - - - - 

NKTR-105     NC     

XMT-1001 - 0 33 33 43 50 11 18 - 

IT-101 - - - - 59 - - - - 

ONCOFID-P 60 - - - - - - - - 

AD-70 0 - - 0 0 0 - 17 0 

Normalised 

average * 
48 43 40 34 31 21 18 16 9 

SD 48 30 34 36 26 21 35 20 19 

SE 18 11 12 13 8 7 12 6 7 

Notes: * Averages were normalised to take into account of the number of patients evaluated for each 

conjugated, see experimental section; “-” indicates that the conjugate was not evaluated against the  

particular tumour type; a The clinical responses for this conjugate are considered under the tumour type 

“others” as the responses per specific tumour type has not been mentioned in the original references [36–39].  

NC: Not considered.  



Polymers 2014, 6 2202 

 

 

Table 6. Cathepsin levels found in clinical and preclinical sample of different tumour types 

(clinical studies highlighted in grey). 

Tumour Type 

Type of 

Cathepsin 

(CAT) 

Clinical (C)/ 

Pre-Clinical 

(PC)/In vitro (IV) 

Sample 

Size (n) 
Cathepsin Content Reference 

Lung 

CAT B C 105 10.65 ng/mL [66] 

CAT B C 17 448 ng/mg of protein [67] 

CAT B PC 159 High * [68] 

CAT D C 17 1304 ng/mg of protein [67] 

CAT S C 60 4.2 ± 0.22 ng/mg of protein [69] 

CAT H C 123 172 ± 86 ng/mg of protein [70] 

CAT L C 105 26.16 ng/mL [66] 

CAT L C 17 3835 ng/mg of protein [68] 

Head/Neck  

and brain 

CAT B C 84 High * [71] 

CAT B C 47 High * [72] 

CAT B C 32 High * [73] 

CAT B PC NA High * [74] 

CAT B PC NA High * [75] 

CAT B PC 11 High * [76] 

CAT B PC NA High * [77] 

CAT D PC 7 1300 ng/mg of protein [78] 

CAT S PC 11 Low * [76] 

CAT H PC 7 1500 ng/mg of protein [79] 

CAT L PC 11 Low * [76] 

Oesophagus, stomach 

and intestine 

CAT B C 25 325.9 ng/mg of protein [80] 

CAT B C 175 10.83 ± 1.8 ng/mL [81] 

CAT B PC NA Low * [67] 

CAT L C 25 43.6 ng/mg of protein [80] 

Colon and/or rectum 

CAT B C 72 13.38 ng/mL [81] 

CAT B C 108 168 ± 86 ng/mg of protein [82] 

CAT B C 60 253.5 ng/mg of protein [82] 

Colon and/or rectum 

CAT B  C 74 55 ± 5 hg/mg of protein [83] 

CAT B PC 40 High * [84] 

CAT X C 77 17.4 ng/mL [85] 

CAT H C 74 7 ± 1 ng/mg of protein [83] 

CAT L C 74 50 ± 10 ng/mg of protein [83] 

CAT L C 60 274 ng/mg of protein [82] 

Breast 

CAT B C 30 74 ng/mg of protein [86] 

CAT B PC (DU4475) 4 High * [86] 

CAT B IV (BT20) NA Low * [87] 

CAT D C 57 High * [88] 

CAT X IV (MCF-7) NA 2.5 ng/mL [89] 

CAT X IV (MDA-MB-231) NA 37 ng/mL [89] 
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Table 6. Cont. 

Tumour Type 

Type of 

Cathepsin 

(CAT) 

Clinical (C)/ 

Pre-Clinical 

(PC)/In vitro (IV) 

Sample 

Size (n) 
Cathepsin Content Reference 

Ovary CAT L C 318 16.1 ± 5.1 ng/mL [90] 

Pancreas CAT B PC NA High * [91] 

Urinary CAT B PC 7 High * [67] 

Others      

Liver CAT B C 28 13.46 ng/mL [81] 

Notes: * The cathepsin levels are expressed as high and low (rather than a specific value) for those entries in which definite 

quantitative values were not available in the original study; NA, Not applicable; “n” = number of human/animal subjects. 

Two tumours, lung and breast, which have shown the highest percentage response clinically to 

PDCs activated by cathepsins, also showed a generally high content of this class of enzyme (in some 

studies, as high as 3835 ng/mg for lung cancer). This correlation is as expected, as the presence of a 

trigger is essential for the activation of a prodrug, but has not been widely reported from analysis of 

experimental data. It should also be noted that the content of cathepsins reported in various studies 

concerning the same tumour type were highly variable. This finding suggests that heterogeneity might 

be also present in the tumour samples of the patients that have undergone treatment with PDCs and  

this could potentially explain why only a fraction of the patients enrolled in the clinical studies 

responded to the treatment [92,93]. Differences in the content of cathepsins are particularly marked for 

breast cancer. For example, the content of cathepsin B was reported to be “high” in the study from  

Bremer et al. [86] but “low” from that of Hulkower et al. [87]. It is also key to highlight that, as 

mentioned previously, cathepsins level have been found to be affected by oestrogen levels and 

therefore an additional element of variability is added depending on whether the sample is taken from 

a post-menopausal or pre-menopausal woman [5,18]. 

3.3. Magnitude of the EPR Effect in Different Tumour Types 

A second, but at least equally important, factor for activity of PDCs is the extent of the EPR effect 

in a tumour. To establish if there was a correlation between the magnitude of the EPR effect and the 

tumour’s response to PDCs, data on drug accumulation of different drug delivery technologies such as 

PDCs and liposomes in clinical tumour samples as well as in preclinical samples were collected as 

summarised in Table 7. Although this comparison holds a limitation with respect to the heterogeneity 

of systems (different nanoconstructs and different phases of clinical research) and heterogeneous 

tumour types, pooling the results from such heterogeneous data was necessary due to the limited 

clinical studies on EPR effect with PDCs. Different methodologies have been used in different studies 

to evaluate the extent of passive accumulation in the tumour both qualitatively and quantitatively. For 

example, in some studies analogues of conjugates containing radioisotopes were used with imaging 

techniques where the results were expressed qualitatively (i.e., expressed as whether drug accumulation 

was or was not observed) and quantitatively (expressed as % ID/Kg of drug uptake in tumour). 

Similarly with the staining technique using Evan’s blue dye the results were expressed both qualitatively 
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and quantitatively (expressed as % dose/g/tumour). A few studies involved the comparison between 

the free drug accumulation and the nano particle accumulation in which case the results were 

expressed in terms of degree of their accumulation. Some studies have indicated that the extent of the 

EPR effect is also dependent on the tumour sizes [3,13,94] but due to the lack of information on the 

tumour sizes in most of the studies, this factor was not considered in our evaluation. 

EPR-mediated accumulation was generally observed in all the tumour types where the highest 

percentage responses were reported (namely breast, lung and ovary). Studies on liposomal drug 

accumulation have shown poor EPR effects in liver and pancreatic tumours [95,96]. Colorectal cancer 

was another tumour type where poor EPR effect has been reported in some studies ([11,20] and  

Table 7). This observation is probably mainly due to the fact that large tumours in liver, pancreas  

and prostate possess hypovascular properties with low drug accumulation potential. However, it should  

be remembered that the smaller tumours possess high vascular density and can exhibit profound  

EPR effect [97]. 

This observation also correlates with a recent study on validation of the tumour models for EPR 

activity, where high drug accumulation has been reported for both large and small lung tumours, and a 

low drug accumulation has been reported for the large breast tumours [13]. Disparities observed across 

the various studies are might be due to the heterogeneity within and between the tumour types  

(size and histological differences) and the diversity of the nanopharmaceutical characteristics [14]. 

Table 7. Extent of passive accumulation of macromolecular system in different tumour 

types in both clinical and pre-clinical samples, clinical studies highlighted in grey. 

Tumour Type 
Clinical (C)/ 

Pre-Clinical (PC) 

Sample 

Size (n) 

Macromolecule 

System Used 
Remarks Reference 

Breast 

C 2 PDC 
1.8%–5.9% dose of PDC 

uptake in tumour 
[20] 

C 5 Liposome 
5.3% ± 2.6% ID/Kg of drug 

uptake in tumour # 
[97] 

C 6 Liposome 

4–16 fold higher drug 

accumulation in tumour than 

the free drug 

[98] 

PC (MX-1, 

Human xenograft) 
10 Protein-conjugate

33% higher drug accumulation 

in tumour than the free drug 
[99] 

PC (MAXF 449, 

Human xenograft) 
NA PDC 

1.0%–0.1% dose/g/tumour 

drug accumulation 
[13] 

PC (Mouse) NA PDC 
5.29% dose/g for HMW  

3.18% dose/g for LMW 
[100] 

PC (MX-1) NA PDC 

207 fold higher tumour 

exposure than the free drug 

(SN-38) 

[101] 

PC  

(Walker 256, Rat) 
NA Protein-conjugate

7 fold higher drug 

accumulation in tumour than 

the free drug 

[102] 

PC (Mouse) NA Nanoparticle 
Drug accumulation observed  

in tumour * 
[103] 
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Table 7. Cont. 

Tumour Type 
Clinical (C)/ 

Pre-Clinical (PC) 

Sample 

Size (n) 

Macromolecule 

System Used 
Remarks Reference 

Pancreas 

C NA Liposomes 
Low drug accumulation 

observed in tumour * 
[95] 

PC (Mouse) 40 Micelle 

3 fold higher drug 

accumulation in tumour than 

the free drug 

[104] 

Lung 

C 6 PDC 
No drug accumulation 

observed in tumour * 
[20] 

C 4 Liposome 
18.3% ± 5.7% ID/Kg of drug 

uptake in tumour # 
[97] 

C 3 Liposome 

4–16 fold higher drug 

accumulation in tumour than 

the free drug 

[98] 

C 15 Liposome 
Higher drug accumulation 

observed in tumour * 
[105] 

PC (Meta-7, Mouse) NA PDC 
3.5%–4.7% dose/g/tumour 

drug accumulation 
[13] 

PC (COR L23, 

Human xenograft) 
NA PDC 

4.7%–12.2% dose/g/tumour 

drug accumulation 
[13] 

PC (B16, Mouse) NA Liposomes 10.6% ± 0.2% ID/g of tumour [106] 

PC (B16F10, 

Mouse) 
NA PDC 

8.82% dose/g for HMW 3.23% 

dose/g for LMW 
[100] 

PC (B16, Mouse) NA Micelle 

2–3 fold higher drug 

accumulation in tumour than 

the free drug 

[107] 

PC (B16, Mouse) NA PDC 

6–12 fold higher drug 

accumulation in tumour than 

the free drug 

[28] 

PC (B16, Mouse) 3 PDC 
Higher drug accumulation 

observed in tumour * 
[108] 

Lung 

PC (A431, Mouse) NA Protein-conjugate

24 fold higher drug 

accumulation in tumour than 

the free drug 

[109] 

PC (B16, Mouse) NA PDC 

30–63 fold higher drug 

accumulation in tumour than 

the free drug 

[110] 

PC (B16, Mouse) NA PDC 

16.3 fold higher drug 

accumulation in tumour than 

the free drug 

[111] 
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Table 7. Cont. 

Tumour Type 
Clinical (C)/ 

Pre-Clinical (PC) 
Sample 
Size (n) 

Macromolecule 
System Used 

Remarks Reference 

Ovary 

C 3 Liposome 
4–16 fold higher drug 

accumulation in tumour than the 
free drug 

[98] 

PC (Mouse) NA PDC 
Drug accumulation observed  

in tumour * 
[28] 

PC (Oca-1, 
Mouse) 

NA PDC 
5 fold higher drug accumulation 

in tumour  
than the free drug 

[112] 

PC (Oca-1, 
Mouse) 

NA PDC 
28–38 times higher drug 

accumulation in tumour than the 
free drug 

[113] 

PC (A2780, 
Human xenograft) 

NA PDC 
Drug accumulation observed  

in tumour * 
[114] 

PC (OVCAR-3, 
Human xenograft) 

NA PDC 
45 fold higher drug 

accumulation in tumour  
than the free drug 

[115] 

Oesophageal, 
stomach and 

intestine 

PC (Mouse) NA PDC 
Drug accumulation observed  

in tumour * 
[116] 

PC  
(OCUM-2MLN, 

Human xenograft) 
NA Micelle 

Drug accumulation observed  
in tumour * 

[117] 

Colon and/or 
rectum 

C 5 PDC 
No drug accumulation observed 

in tumour * 
[20] 

C 10 PDC 
64 fold higher drug accumulation 

in tumour than the free drug 
[118] 

PC (HT29, Human 
xenograft) 

4 Liposome 

1.7 fold higher drug 
accumulation for 0.6 mol % 
PEG-conjugate in tumour  

than the free drug 

[119] 

PC (C26 NL-17, 
Mouse) 

NA Liposome 
Higher drug accumulation 

observed in tumour * 
[120] 

PC (Mouse) NA Micelle 
Drug accumulation observed  

in tumour * 
[121] 

Colon and/or 
rectum 

PC (LS174T, 
Human xenograft) 

NA PDC 
160 fold higher drug 

accumulation in tumour than the 
free drug  

[122] 

PC (LS174T, 
Human xenograft) 

NA Liposomes 
6.3% ± 2.9% ID/g  

of tumour 
[106] 

PC (Mouse) NA PDC 
Drug accumulation observed in 

tumour * 
[123] 

PC (LS174T, 
Human xenograft) 

NA PDC 
Drug accumulation observed in 

tumour * 
[124] 

PC (HT29, Human 
xenograft) 

NA PDC 
Drug accumulation observed in 

tumour * 
[125] 

PC (HT29, Human 
xenograft) 

111 
Nano crystal  
(3H-PTX) 

Low drug accumulation 
observed in tumour * 

[126] 
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Table 7. Cont. 

Tumour Type 
Clinical (C)/ 

Pre-Clinical (PC) 

Sample 

Size (n) 

Macromolecule 

System Used 
Remarks Reference 

Head/Neck and 

brain 

C 6 PDC 

2.2% ± 2.1% dose at 2–3 h 

1.3% ± 0.4% dose at 24 h 

0.5% ± 0.3% dose at 8 days 

uptake in tumour 

[4] 

C 10 Liposome 

13–19 times higher 

accumulation in tumour as 

compared to the normal  

brain tissue 

[127] 

C 5 Liposome 

7–13 times higher 

accumulation in tumour as 

compared to the normal  

brain tissue 

[127] 

C 7 Liposome 
33.0% ± 15.8% ID/Kg of 

drug uptake in tumour # 
[97] 

Others      

Adenocarcinoma 

(Unknown) 

PC (MAC 26, 

Mouse) 
NA PDC 

6.9%–10.8% dose/g/tumour 

drug accumulation 
[13] 

Adenocarcinoma 

(Unknown) 

PC (MAC 15A, 

Mouse) 
NA PDC 

8.2%–12.6% dose/g/tumour 

drug accumulation 
[13] 

Cervix 
PC (ME180, 

Human xenograft) 
NA Liposome 

Drug accumulation observed 

in tumour * 
[128] 

Fibrosarcoma 

PC  

(S-180, Mouse) 
NA Polymer conjugates

Drug accumulation observed 

in tumour * 
[129] 

PC  

(S-180, Mouse) 
NA Micelle 

13 fold higher drug 

accumulation in tumour than 

the free drug 

[130] 

PC  

(S-180, Mouse) 
NA PDC 

Drug accumulation observed 

in tumour * 
[131] 

PC  

(S-180, Mouse) 
NA Protein-conjugate 

Drug accumulation observed 

in tumour* 
[10] 

Fibrosarcoma 

PC  

(Meth A, Mouse) 
NA  PDC  

Drug accumulation observed 

in tumour * 
[132]  

PC  

(S-180, Mouse) 
NA Protein-conjugate 

4 fold higher drug 

accumulation in tumour than 

the free drug 

[8] 

PC  

(S-180, Mouse) 
NA PDC 

Drug accumulation observed 

in tumour * 
[133] 
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Table 7. Cont. 

Tumour Type 
Clinical (C)/ 

Pre-Clinical (PC) 

Sample 

Size (n) 

Macromolecule 

System Used 
Remarks Reference 

Liver 

C 31 Liposomes 
Low drug accumulation 

observed in tumour * 
[95] 

C 3 Liposomes 
Low drug accumulation 

observed in tumour * 
[96] 

PC (Mouse) NA Micelle 

4 fold higher drug 

accumulation in tumour 

than the free drug 

[134] 

PC (VX-2, Rabbit) NA 

Polymer-protein 

conjugate 

(SMANCS-Lipidol) 

Drug accumulation 

observed in tumour * 
[135] 

PC (VX-2, Rabbit) NA 
Polymer-protein 

conjugate (Lipidol) 

Drug accumulation 

observed in tumour * 
[136] 

PC NA PDC 
Drug accumulation 

observed in tumour * 
[137] 

Prostate 

PC  

(Human 

xenograft) 

NA 

89Zr-DFO-mAlb 

(Polymer-protein 

conjugate) 

Drug accumulation 

observed in tumour * 
[138] 

PC (Human 

xenograft) 
NA PDC Drug accumulation 

observed in tumour * 
[139] 

PC (Rat) NA PDC 
Drug accumulation 

observed in tumour * 
[140] 

PC (Rat) NA PDC 
Drug accumulation 

observed in tumour * 
[141] 

Notes: * The quantitative data on accumulation in tumour is not available in the original research paper; # related free 

drug uptake is not stated in the original study; “n” = number of human/animal subjects. 

Two decades since the first PDC entered the clinical evaluation [2], one might wonder about the 

margin of advantage of PDCs over their corresponding parent drugs in terms of overall survival and 

the patient’s quality of life. Such an advantage of a drug is evaluated only at phase III of the clinical 

trial, thus since only 2 PDCs have undergone phase III clinical trials (Opaxio and NKTR-102) and the 

clinical data is available to-date only for Opaxio, any conclusion with regards to the overall survival 

and patient’s quality of life is derived from Opaxio’s performance. Opaxio, in comparison with its 

conventional paclitaxel-based treatment, showed some safety-related advantages such as alopecia  

was rare, nausea and vomiting were uncommon and hypersensitivity reactions were rarely observed.  

A significant survival benefit has also been observed for women receiving Opaxio vs. paclitaxel [7]. 

These promising results have provided the confidence that PDCs can give therapeutic benefits in the 

field of oncology. The use of PDCs in combination with the application of diagnostic tools to measure 

protease expression and EPR effect would be a rational approach for the further development and 

clinical use of PDCs. 
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4. Conclusions 

In this study, we have reported analysis of data from the literature whereby we have documented 

and examined the expression of enzymes (cathepsins) within various tumour types, the magnitude of 

the EPR effect in the various tumour types, and the clinical responses observed for PDCs. We have 

determined that the highest percentages of clinical responses to PDCs were observed for lung cancer, 

which was also found to express high levels of the cathepsin enzymes. Breast and ovarian cancer also 

showed high clinical responses to PDCs, which correlated well with high levels of cathepsins observed 

in these tumour types, and with reports indicating the presence of the EPR effect. This finding is in line 

with other studies [13,14] and in agreement with that concluded by others (e.g., [13]). Moreover, our 

study also suggests that careful patient selection, in the form of pre-screening for enzyme content and 

the EPR effect, would be a rational approach for the further development and clinical application of 

PDCs. This could ultimately result in a more consistent efficacy of this drug delivery system in the 

clinical setting. 
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