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Abstract: Hyperbranched polymers show an outstanding potential for applications ranging 
from chemistry over nanotechnology to pharmacy. In order to take advantage of this 
potential, the underlying phase behaviour must be known. From the thermodynamic point 
of view, the modelling of these phase diagrams is quite challenging, because the 
thermodynamic properties depend on the architecture of the hyperbranched polymer as 
well as on the number and kind of present functional end groups. The influence of 
architecture can be taken into account via the lattice cluster theory (LCT) as an extension 
of the well-known Flory–Huggins theory. Whereas the Flory–Huggins theory is limited to 
linear polymer chains, the LCT can be applied to an arbitrary chain architecture. The 
number and the kind of functional groups can be handled via the Wertheim perturbation 
theory, applicable for directed forces between the functional groups and the surrounding 
solvent molecules. The combination of the LCT and the Wertheim theory can be 
established for the modelling or even prediction of the liquid-liquid equilibria (LLE) of 
polymer solutions in a single solvent or in a solvent mixture or polymer blends, where the 
polymer can have an arbitrary structure. The applied theory predicts large demixing 
regions for mixtures of linear polymers and hyperbranched polymers, as well as for mixtures 
made from two hyperbranched polymers. The introduction of empty lattice sites permits the 
theoretical investigation of pressure effects on phase behaviour. The calculated phase diagrams 
were compared with own experimental data or to experimental data taken from literature.  
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Symbols 

b Number of branching points 
C Contributions to the Helmholtz energy within the lattice cluster theory 
D Corrections to the Flory–Huggins theory, connectivity factor (Equation (20)) 
E Internal energy 
F Helmholtz energy 
f Mayer functions 
G Gibbs energy 
g Generation number 
H Enthalpy or summands in Equation (37) 
I, J Summands in Equation (38) 
J Grand thermodynamic potential 
K, L, M Factors describing the architecture of the polymer, defined in Equations (78,79) 
K Ratio of nearest-neighbour positions with a proper orientation to all possible orientations 
k Interaction parameter (Equation (91)) 
M Molecular weight or number of segments 
m Number of chains in the system 
N Topological coefficient (Table 1) or number of lattice sites 
n Amount of mole 
P Pressure 
p Counting variable 
Q Summands in Equation (41) 
r Position of the segments 
S Entropy 
T Temperature 
u Interaction potential 
V Volume 
v Specific volume 
W Microcanonical partition function 
w Mass fraction 
X Mole fraction 
Z Partition function 
z Coordination number 
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Superscript 

a, b Phase a or b 
ath Athermic mixture 
LV Liquid-vapour equilibrium 
MF Mean field approach 
reg Regular mean field energetic contribution 

Subscript 

Ai Non-bonded segment to the association site A 
asso Association 
att Attractive part of the interaction potential 
B Boltzmann constant 
CH Solvent cyclohexane 
comp Pure compound  
FH Flory–Huggins theory 
i Component i or counting variable 
l Lattice 
LCT Lattice cluster theory 
Polymer Polymer 
R Repulsive part of the interaction potential 
v Void lattice site 

Creek letters 

 Flory–Huggins interaction parameter 
 Factor in the polynomial series in Equation (29) 
 Vector pointing to the next neighbour 
 Difference or association strength 
 Kronecker Delta function 
 Interaction energy 
 Volume fraction 
 Segment molar fraction 
 Corrections to the Flory–Huggins theory, combinatorial factor (Equation (20)) 
 Association volume in the original Wertheim theory  
 Chemical potential 
 Density 
 Length of a cubic cell 

 

χ
α
β
Δ
δ
ε
φ
Φ
γ
κ
μ
ρ
σ
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1. Introduction  

Changing the polymer architecture from that of conventional linear to partially or highly branched 
is one of the methods available to tailor a material’s properties for a specific application where high 
performance or a specific functionality is required. Highly branched polymers are dendritic polymers, 
including dendrimers with a perfectly branched, monodisperse structure, imperfectly branched 
polymers, or hyperbranched polymers (HBP). These advanced materials are gaining more and more 
interest in recent years because of their tailor-made properties. Due to their architecture, HBP show a 
lower viscosity in melt and solution compared to their linear analogue and the rich amount of various 
functional groups offers a tuneable solubility in different solvents. Based on these advantages of HBP 
different applications have been suggested, for instance possible implementations of HBP are 
discussed in the field of medicine [1–8], catalysis [9–13], membrane materials [14–20], chemical 
engineering [21–24], sensors [25–28], thermosets [29–31] or as rheological modifier [32,33]. 
Polymeric drug delivery systems offer great opportunities to effectively control the drug release in 
human body [34–44]. In addition dendrimers can be surface engineered to release the drug at desired 
site, that is, as targeted drug delivery. This property along with the solubilisation behaviour could 
improve the bioavailability of drugs [45–47]. Several recently published reviews informed about the 
functions and applications of dendrimers resulting from supramolecular and physical properties can be 
found in the literature [48–51]. 

However, one should recognize that the break-through in terms of industrial application is still a 
promising vision with few exceptions. At present, an exact determination of the structure and molar 
mass characteristics of hyperbranched polymers using available characterization techniques is not 
completely feasible (e.g., [52]) and hence, the detailed description of the physical properties is 
challenging. This is especially true for the involved phase equilibria. Recently [53–58], large strides 
have been made in understanding and developing theories for the thermodynamic properties of 
hyperbranched polymers, but an accurate prediction of the phase behaviour of these complex systems 
is still very much in its infancy. The question arising in calculating the phase equilibria of HBP is the 
consideration of branching effects. Kleintjens et al. [59] showed for the system polyethylene + diphenyl 
ether that the two-phase region of a branched polyethylene solution may be shifted by more than 10 °C 
compared to that of a linear polyethylene sample of about equal number and mass average molar mass. 
Additionally, de Loos et al. [60] measured high pressure phase equilibria of branched polyethylene + 
ethylene and linear polyethylene + ethylene. They figured out that there are significant differences in 
the cloud point pressure. Vapour pressure measurements for polymer solutions made from 
polyisoprene (linear and branched) and cyclohexane, performed by Eckelt et al. [61], demonstrates the 
influence of the degree of branching on the solution properties. According to these results [59–61] it 
can be stated that the calculation of phase equilibria of branched polymers needs the consideration of 
polymer architecture in the thermodynamic equations.  

Polymer theory has started to deal with the effects of different molecular architectures of polymer a 
long time ago [62–67] and this research field retains its attraction. In literature there are several 
possibilities proposed to calculate the phase behaviour of HBP. One way is the UNIFAC-FV 
(Universal Quasichemical Functional Group Activity Coefficients-Free Volume) approach, which is 
proposed by Seiler [68] and Kouskoumvekaki et al. [69]. The UNIFAC-FV [70] is a method to 
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estimate solvent activities of polymer solutions. The approach is based on a group contribution method 
(i.e., UNIFAC [71]) in combination with a free volume correction. Seiler [68] pointed out that with the 
help of the UNIFAC-FV model the vapour-liquid phase equilibria (VLE) of hyperbranched polymer 
solution could be described in a proper manner. But the occurrence of liquid-liquid phase equilibria 
(LLE) of hyperbranched polymer solution cannot be predicted by the UNIFAC-FV model. 
Hyperbranched polymers are distinguished from linear polymers by their architecture, but this issue 
cannot be taken into account by the UNIFAC-FV. The activity coefficient of the polymer, unlike that 
of the solvents, depends strongly on the branching degree. In LLE both activity coefficients are 
essential, whereas in VLE only the one of the solvent plays an important role. Therefore, UNIFAC 
models the VLE successfully, but not the LLE. Another possibility to calculate phase equilibria is 
offered by the PC-SAFT (Perturbed Chain-Statistical Association theory) equation of state. The 
physical foundation of the SAFT (Statistical Association Fluid Theory)-family equations of state [72] 
was built up by Wertheim applying perturbation theory of first and second order for directional 
interactions [73–76]. Chapman et al. [77] extended the formalism to mixtures and developed an 
engineering approach for the description of associating fluids. Gross and Sadowski [78] introduced an 
interaction potential with soft repulsion and called this equation of state PC-SAFT. For modelling 
hyperbranched polymers, PC-SAFT was applied with extensions accounting for dipolar and quadrupolar 
interactions and a branching term describing the architecture of hyperbranched polymers [79,80], 
coarsely. Kozłowska et al. [79] calculated the VLE in good agreement with experimental results; 
however, the occurrence of the miscibility gap could not be predicted. One objection to the branching 
term is the fact that all branching points have four bonds, but the majority number of branching points 
of hyperbranched polymers has three bonds: therefore, this branching term fails to describe the 
architecture of hyperbranched polymers correctly. To the best of our knowledge, only the detailed 
incorporation of the architecture allows the modelling of the LLE close to experimental data [53–58]. 

The classical way of describing the phase behaviour of polymer containing systems [81–83] is the 
Flory–Huggins (FH) theory [84–86]. In the framework of FH theory, individual monomers are treated 
as single entities, devoid of any chemical structure. Flory and Huggins [84] employed a very simple 
mean-field approximation that essentially ignores the details of the polymer chain connectivity and, 
therefore, cannot distinguish between linear, star, branched, and comb polymer architecture. In order to 
overcome these deficits, Freed and coworkers [87–92] developed the lattice cluster theory (LCT), 
which extends the FH theory. In 1991, Dudowicz and Freed [89–91] have developed a systematic 
expansion of the partition function of a lattice polymer using the LCT. This model takes into account 
the effect of branching on the thermodynamic properties of polymer blends. Jang and Bae [93] have 
used the LCT to model LLE of an aqueous hyperbranched polymer solution for the first time, but they 
were not able to describe the liquid-liquid phase behaviour of hyperbranched polymer solution in 
accordance with experimental data. In a later work, Jang and Bae [94] have included in addition to the 
LCT also a term describing the self-association of water. Using this model they could compute the 
phase equilibrium in agreement with experimental data. They concluded that the self-association of 
water is the main influence on the liquid phase behaviour. However, the problems arising in the 
application of the LCT goes back to incorrectness in the used equation [53]. Sometimes a simplified 
version of the LCT is used [95,96]. Comparing all presented theories, only the LCT is able to describe 
the influence of the polymer architecture on the phase equilibrium of hyperbranched polymer 
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solutions. For these reasons the LCT will be examined in the following sections to investigate phase 
equilibria of HBP solutions. 

In addition to the architecture, the present functional groups also have an influence on polymer 
phase behaviour. Moorefield and Newkome [97] showed that dendrimers with very hydrophobic 
interiors such as polyethers and polycarbosilanes can be made water soluble by introducing 
hydrophilic functional groups. In contrast to this, water soluble dendrimers can be made hydrophobic 
by converting their functional groups into hydrophobic units [97]. For these reasons, the influence of 
functional groups on phase behaviour has to be regarded. We focus our attention to HBP with polar 
functional groups which are able to contribute to association forces. In principal, there are two 
different ways of describing association between different molecules in literature [98]. One possibility 
is to treat the forming of hydrogen bonds as chemical reactions and this approach is called the 
“chemical” theory. Another way is the “physical” theory, based on the solution of integral equations 
including potential functions, which describe the association interaction. In the case of hyperbranched 
polymers both approaches can be used [57]. In this contribution a physical association theory, 
developed by Wertheim [73–76] is utilized to model the influence of polar functional groups of the 
HBP and of the polar solvent on the phase equilibrium. 

2. Theory 

The well-established way of dealing with phase equilibria including polymers is the FH theory, 
which was developed by Flory and Huggins [84,86]. 

While the FH model describes successfully the fact of immiscibility of long chain polymers in 
solution, other aspects can only be described qualitatively. In order to improve the FH theory, Freed 
and co-workers [87–91] have developed perturbative methods for systematically calculating 
corrections to the FH theory. This theory emerges in the form of a cluster expansion, similar to Mayer 
cluster expansion [99] for non-ideal gases, and is called the lattice cluster theory (LCT). This theory 
will be presented in an incompressible and compressible version. Both theories, the FH theory and the 
LCT, have one deficit in common: They cannot describe the hydrogen bonding of associating 
components. One possibility to include this kind of interaction is the thermodynamic perturbation 
theory of first or second order developed by Wertheim [73–76]. These theories will be presented in this 
section, but at first a short introduction to phase equilibrium thermodynamics will be presented. 

2.1. Phase Equilibrium Thermodynamics 

Phase equilibria such as VLE or LLE do play an important role in separation processes as well as in 
drug delivery or other pharmaceutical applications. As this section is concerned with the thermodynamic 
phase behaviour of HBP the main focus lies on the thermodynamic description of LLE. 

2.1.1. Ensembles and Potentials  

LLE often occur, when species are mixed differing strongly in either polarity or molar mass or both. 
Typical examples are mixtures of a non-polar alkane (e.g., octane) and the highly polar water [100] or 
mixtures of a long chain polymer (e.g., polyethylene) and a small chain alkane (e.g., hexane) [101]. In 
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phase equilibrium thermodynamics the usual approach to describe phase behaviour is the mean field 
approach. Using this method the many body problem of describing the kinetic and potential energy of 
each molecule in a mixture is approximated, mostly using statistical mechanics [102]. The result after 
the choice of a statistical ensemble is one of three thermodynamic potentials, depending on their 
respective natural observables [103]. 

The thermodynamic potentials are entropy: 

 (1)
Helmholtz free energy:  

 (2)
and the grand thermodynamic potential 

 (3)

The observables are internal energy , volume , temperature , amount of substance , , 
and the chemical potentials of the components , . The derivatives of the respective potentials, with 
respect to their natural variables, yield all other thermodynamic information. For example the 
derivative of Helmholtz energy with respect to volume results in the negative system pressure, : 

 (4)

It is possible to transform between these potentials with the Legendre transformation. Thereby, one 
observable is replaced by another in the following way: 

 (5)

Here  and  are the respective potentials and  is one of the natural variables of potential, . 
The list of common transformations is shown below. 

 (6)

 (7)

 (8)

 (9) 

Here entropy and energy change their roles as potential and observable. The potentials are: internal 
energy , Helmholtz free energy , Gibbs energy  and enthalpy . 

2.1.2. Phase Equilibrium Calculations 

In calculations of equilibria between two separated phases  and  the Helmholtz free energy  
and the Gibbs energy  are of substantial importance. Both these potentials do have a minimum in 
equilibrium. This means, an optimization approach to the calculation of equilibria is feasible. 
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 (10)

 (11)

The Gibbs energy minimization, on the one hand, is typically used for phase separations, where 
pressure does not play a crucial role or is accorded for otherwise. The Helmholtz free energy 
minimization, on the other hand, is used when compressibility of the system is of concern. In both 
cases the condition of chemical equilibrium ensues: 

 (12)
In case of Helmholtz free energy the optimization yields the additional condition of mechanical 

equilibrium. This condition is trivial for the Gibbs energy, because it depends directly on the pressure 
and not on the volume. 

 (13)

The equilibrium can be calculated using Equations (12) and (13). This solution ensures that the 
condition of thermal equilibrium  

 (14)
is also fulfilled. Hence, the problem to solve is a (typically nonlinear) system of equations with  
equations or  equations for a compressible system, where  is the number of components. 

2.1.3. Flory–Huggins Theory 

In polymer thermodynamics one is challenged with the immanent huge difference in molar mass 
between the solute and the solvent. This generally leads to the fact that molar based approaches to 
calculate the phase behaviour of polymers in solution are predetermined to fail. This can be 
understood, if the limiting case of infinite molar mass  is examined. Here, the mole fraction of 
the polymer approaches zero implying that Raoult’s law [104] is applicable for the solvent, yet the 
mixture is highly non-ideal. Figure 1 demonstrates an impressive example, namely the vapour pressure 
of a polymer solution. According to Raoult’s law, the vapour pressure of the considered solution 
should change linearly (straight line in Figure 1) from the vapour pressure of the solvent to zero 
pressure, because the vapour pressure of the pure polymer is zero. However, the experimental data, 
taken from the literature [61], are far away from Raoult’s law. Additionally, the experimental data in 
Figure 1 clearly shows the impact of polymer architecture on the thermodynamic properties. Although 
the same type of polymer from the chemical point of view (linear and branched polyisoprene) in the 
same solvent (cyclohexane) was used, differences in the vapour pressure are found experimentally. 
These differences can only be explained by the influence of the chain architecture on the 
thermodynamic properties. The experimental results demonstrate that cyclohexane is a considerably 
worse solvent for branched polyisoprene than for the linear analog at all temperatures and at all 
compositions. This finding is in seeming contrast to the widespread notion that branched polymers are 
better soluble than their linear counterparts. It may, however, well be that special interactions between 
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the components of the mixture and larger differences between the end groups and the middle groups of 
the polymer are capable to change the picture. 

Figure 1. Vapour Pressure of polymer solutions , divided by the vapour pressure of 
the pure solvent , made from linear (black symbols) or branched (blue symbols) 
polyisoprene and cyclohexane [61]. 

 

Figure 2. Random walk of a polymer chain in solute on a two dimensional lattice with 
coordination number four after Flory’s original drawing [84]. 

 
 
Flory [84] suggested a way to describe polymer chain solutions avoiding this complication. For this 

purpose he introduced a lattice on which the solvent occupies a single lattice site and the polymer may 

LVP
LV

CHP
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occupy several neighbouring lattice sites, as depicted in Figure 2. In order to calculate the  
micro-canonical partition function  of a system containing a solvent and a linear polymer, the 
number of ways to consecutively insert a polymer chain into a lattice of coordination number , at 
first fully occupied by solvent beads, must be calculated. 

This is done by Flory [84], by assuming that  

(a) a polymer chain is composed of  segments of equal size. 
(b) the polymer segments size equals that of the solvent. 
(c) the polymer is inserted randomly, but can fill the lattice completely (i.e., forms a perfect crystal). 

From this he derived the athermal entropy of mixing per lattice site [84]: 

 (15)

Here  is the number of lattice sites,  is the Boltzmann constant,  is the number of 
segments the polymer is composed of,  is the number of solvent segments, and the  are the 
segment mole fractions of components , defined as: 

 (16)

In addition a regular mean field energetic contribution of the molecules on the fully occupied lattice 
is introduced [84]: 

 (17)

Usually the interaction energy is expressed in terms of . By using Equation (7) the 

Helmholtz free energy is derived [84].  

 (18)

Though the FH theory is useful for calculating LLE of simple chain polymers, it does neglect the 
structure of the molecules completely. However, in order to achieve quantitative agreement with 
experimental data, a concentration-dependent interaction parameter  was introduced [81–84]. The 
approach, employed to calculate the phase behaviour of hyperbranched polymers, is the extension of 
FH theory based on physical argumentation.  

 
2.2. Lattice Cluster Theory  
 

In 1985 Freed [105] reawakened the idea of de Gennes [106] and des Cloizeaux [107], treating 
polymer solutions as a self-avoiding walk on a lattice by introducing n-component spins on each lattice 
side. It was shown that by reducing this lattice theory to the mean field approximation of lowest order 
the FH theory was obtained [87]. This situation allows the calculation of corrections [87,88] to the 
mean field approach of Flory [84] and Huggins [86], but these corrections did not consider the 
influence of interactions between the segments on the arrangement of segments on the lattice. Firstly, 
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the interactions have been considered by Pesci et al. [108]. Dudowicz et al. [89–91] derived the LCT 
in an analytical way and introduced the influence of polymer architecture. A detailed paper about the 
state of the art can be found in the literature [109]. 

 
2.2.1. LCT of Incompressible Systems 
 

As the LCT is an extension of the FH theory, both theories have the same fundamental idea of a 
lattice, which is occupied by a polymer and so the polymer can be divided in different segments. Using 
this idea, the exact partition function of a polymer blend where two segments  and  interacts with 
the energy  can be read as [92]: 

 

(19)

where  is the Kronecker delta function and the vector  is pointed from a given lattice site to the  
nearest neighbour lattice sites. A factor  has to be introduced for the indistinguishability of 
polymer chains of the same species  and the factor ½ accounts for the symmetry of each chain. The 
outside summation in Equation (19) prohibits any lattice site from being occupied by two polymer 
segments. In the outside summation of Equation (19) there are two factors, whereas the first factor 
accounts for the bonding constraints in the polymer, the second factor describes the Van der Waals 
interaction between two lattice sites. The expression in Equation (19) represents an exact solution of a 

 component polymer blend on a cubic Bravais lattice, but for using this approach a simplification is 
desirable. In the FH theory this simplification is the assumption that just the next neighbours of one 
polymer segment have to be considered. Freed and Dudowicz [89] extend the assumption of the FH 
theory by the introduction of a cluster expansion. This expansion goes back to the cluster expansion 
introduced by Mayer [99] for non-ideal gases. In the framework of LCT, the corrections to the 
Helmholtz free energy are derived in form of a cluster series expansion in the inverse coordination 
number  and in the reduced interaction energy , taking into account the growing 
correlations between near segments on the same molecule. 

By introducing these cluster expansions and fundamental statistical thermodynamics, the Helmholtz 
free energy of a  component polymer blend reads as [89]: 

 (20)

where the first two terms in Equation (20) are the mean field contributions to the entropy and the 
interaction energy of the Helmholtz free energy. The third term of Equation (20) represents the 
corrections to the mean field approach of the FH theory. It appears in form of a cumulant cluster 
diagram, which has to be evaluated for different orders of the interaction energy. Usually, the 
evaluation is truncated at the second order of the reduced interaction energy  as suggested by 
Freed and Dudowicz [89]. One example of evaluating the second order contribution such a diagram 
will be shown in the following. 
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(21)

In term (21) there is a cumulant cluster diagram of three bonded monomers (solid circles with solid 
line) and two pairs of interacting monomers (stars with dotted lines). The solid lines represent covalent 
bonds and the dotted lines physical interaction energies. The monomers in this cumulant cluster 
diagram do not belong to the trimer chain. To evaluate this diagram, it has to be expanded in a series as 
shown by Dudowicz and Freed [89]. 

(22)

In Equation (22) the cumulant cluster diagram is expanded in four diagrams. Two of these diagrams 
in Equation (22) are vanishing in the thermodynamic limit. The other diagrams have to be evaluated. 
The analysis of these diagrams needs the knowledge of two factors. One factor is the combinatorial 
factor , which depends on the number of components and is independent of the polymer 
architecture. As an example the diagram k1 in Equation (22) is evaluated. For a one component system 
it is obtained: 

 
(23)

where  and  are the number of two successive bonds in a single polymer chain and in that order 
the number of monomers of one chain, while  is the number of chains in the system. The factor 1/5! 
arises because of the indistinguishability of selecting the chains. 

This formalism can be extended to a multi-component system by labelling all monomers in the 
diagram. In the case with only distinct labels the factor of indistinguishability reduces to unity. The 
other factor which has to be evaluated is the connectivity factor for each diagram with  bonds [89]: 

 (24)
where  depends only on the number of lattice sites  and the number of vertices in the diagram  

 [89]. The factor  depends only on the lattice, but not on the polymer architecture. The 
evaluation process is shown by Dudowicz and Freed [89]. By knowledge of the combinatorial factor 
and the connectivity factor, this diagram can be analysed. The evaluation leads to the contribution [89]: 
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Here the segment fraction  is that of the compressible mixture: 

 
(26)

This segment fraction reduces to the one of the incompressible mixture, if the number of void lattice 
sites goes to zero, resulting in 

 
(27)

The evaluation of all cumulant cluster diagrams leads to an expression of the Helmholtz free 
energy, which will be presented in the following sections.  

 
Lattice Cluster Theory for a Binary Polymer Blend 
 

At first the Helmholtz free energy of an incompressible polymer blend is presented [53,56]. As the 
polymer blend is regarded as incompressible the three interaction energies can be combined to the 
single interaction energy (see Equation (17)): 

 (28)

The segment molar Helmholtz energy can be calculated as follows:  

 (29)

The first two terms on the right hand side of Equation (29) represent the mean field entropic 
contribution (see Equation (15)) and  is the chain length of component . In Equation (29) the 
corrections to the FH theory appear in form of a power series. Its coefficients depending only on the 
polymer architecture, which is described with , and the interaction energy  can be 
computed using the following relations [57]: 
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(31)
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where the corrections made by Dudowicz et al. [110] were incorporated. In the limit  only the 
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known Flory–Huggins  parameter. To characterize the architecture of a molecule the geometric 
parameters ( ) are important. These parameters will be explained in the section dealing with the 
application to hyperbranched polymers, but at first the Helmholtz free energy of a ternary solution will 
be introduced.  

LCT for a Ternary Polymer Solution 

The starting point for the calculation of the Helmholtz free energy of a ternary polymer solution  
is [56]: 

 (36)

where the contributions of entropy ( ), as well as the first ( ) and second order ( ) of energy 
can be calculated using the tables I, II and III published by Dudowicz and Freed [89] and taking into 
account the corrections introduced by Dudowicz et al. [110]. The entropic part of the Helmholtz free 
energy reads [56]:  

 (37)

where the first terms on the right hand side of Equation (37) represent the contribution to the mean 
field limit and the following terms are the extensions of the mean field approach. These contributions 
depend only on the structure of the polymer in terms of  and they can found in the literature [56].  

In addition to the entropic corrections of the LCT, also the energetic corrections to the FH theory 
have to be determined. The first order mixing energy ( ) as well as the second order mixing energy 
( ) can be expressed as a sum [56]:  

 (38)

where the contributions  and  are given in literature [56]. These contribution depend on the 
architecture via  and additionally from the difference in interaction energy of component  
and , expressed by the three interaction parameters , , and . In the z→∞ and ε→0 limit 
this theoretical framework reduces to the Flory–Huggins expression of a ternary polymer solution and 
it reduces also correctly to the equation describing a binary mixture (Equation (29)). For applying the 
LCT, the determination of the architectural parameters is necessary. This will be shown in Section 2.2.3. 

2.2.2. LCT of Compressible Systems 

For compressible systems the LCT can be extended to account for free volume. The proposal of 
Freed and co-workers [89–91] is to introduce void lattice sites in order to do that. Void lattice sites are 
modelled as single sites on the lattice that interact neither with each other nor with other molecules. 
This leads to a change in the mean field contribution to the partition function: 
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 (39)

For a pure compound the contributions to the Helmholtz energy per lattice site are as follows: 

 (40)

Here  is the segment fraction of void lattice cells. The entropic contribution for pure components 
can be written as a polynomial in the void segment fractions [111,112]: 

 (41)

The coefficients of this polynomial depend on the molecule’s structure and on the lattice 
coordination number  [111,112]: 

 (42)

 (43)

 (44)

(45)

 (46)

The first and second order energy contribution can also be developed in a polynomial of the void 
segment fractions [111,112]: 

 (47)

Here  is the interaction energy between two segments of component . Again, the coefficients of 
the polynomial can be expressed in terms of the molecule’s structure and the lattice coordination 
number [111,112]: 

( )
( 1)

!1,
!2 [ ]!

−∑⎛ ⎞
= ⎜ ⎟− ⎝ ⎠
∏ ∑

j j
j

i

M n
MF l

comp i i n
i i l j j l

j

N zW n M
n N M n N

( ) ( ) ( )0 , 1 2ln ln ln 1 ln ln 1
φ

φ φ φ
− ⎛ ⎞

= = − − − + − + −⎜ ⎟
⎝ ⎠

MF
i comp vMF

comp v v v i i
l B i i

S zW M z M
N k M M

νφ

4
0 0

0

, , ( )
, φ

=

= +∑
MF

i comp i comp s p
p i v

pl B l B

S S
Q

N k N k

z

[ ]4
4 2

2 1( )
, ( , )=s
iQ N i

z

[ ] [ ] [ ] [ ]2 4 3 4
3 2

2 42 11 1 1 1 4 1
3

( )
, ( , , ) ( , ) ( , ) ( , ) ( , )⎛ ⎞= − − + +⎜ ⎟

⎝ ⎠
s
i iQ N i N i N i M N i N i

z

[ ] ( ) [ ] ( ) [ ]

[ ]

4 2 2

2 2 2

2 1 6 3 2 1 2 6 11 2
1

2 1 3 1 2 3 2 2 1 4 1
2

( )
,

( , ) ( , ) ( , ) ( , , ) ( , )

( , ) ( , ) ( , , ) ( , ) ( , ) ( , ) ( , )

⎛ ⎞− + + +
⎜ ⎟

= ⎜ ⎟⎛ ⎞− + + ⊥ + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

i i
s
i

N i M N i N i M N i N i
Q zz N i N i N i N i N i N i N i

[ ] ( ) [ ] ( )

[ ] ( ) ( )
[ ] [ ]

4 2

2
1

3 2

2
1

12 1 4 3 3 2 2 2 4
2

4 1 2 3 11 4 1 3 1 2 3

3 2 8 1 2 8 1 2 1 2

( )
,

( , ) ( , ) ( , ) ( , , ) ( , )

( , ) ( , ) ( , , ) ( , ) ( , ) ( , , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

⎛ ⎞′− + + + ⊥ + + −⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − + + ⊥
⎜ ⎟
⎜ ⎟+ + ⊥ − + + −
⎜ ⎟
⎝ ⎠

= −

i i

s
i iz

N i M N i N i N i N i M

Q N i N i M N i N i N i N i N i

N i N i N i N i N i z N i zN i

[ ] [ ]

[ ] [ ] [ ]
[ ]

[ ] [ ]

2 4

2 4 2

0 2 2

3

2 2
13 2 2 2 1
2

4 11 1 2 1 2 1 21

2 2 1 3 6 1 2 1 1 2

8 1 4 1 2 3 1
3

( )
,

, ) , ) , , ) , )( ( ( ( , ) ( ( , )

( , , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , , )

( , ) ( , ) ( , ) ( , ) ( , )

′+ ⊥ ⊥+ + − + +

+ − +
=

+ − − ⊥ −

+ − + +

i

i is
i

i i i iN N N N i M N N i

N i N i N i M N i N i M
Q

z N i N i N i N i N i N i N i

N i N i N i N i z N i 2 2( , )

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

zN i

5
1 0

0

, , ( )
,
εε φ

=

− = ∑i comp pii
p iv v

pl B B

E
Q

N k T k T

ε ii i



Polymers 2012, 4 88 
 

 

 (48)

 (49)

 (50)

 (51)

 (52)

 (53)

The same procedure for the second order energy contribution leads to [111,112]: 

 (54)

where the polynomial coefficients can be calculated as [111,112]: 
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 (59)

Helmholtz free energy can now be expressed as [111,112]: 

 (60)

From the Helmholtz free energy the thermal equation of state (LCT-EOS) can be calculated via 
standard thermodynamic relationships (Equation (4)) [111,112]: 
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 (61)

Here,  is the length of a cubic cell, a segment of molecule  occupies. The specific volume of the 
substance can be calculated with the following equation: 

 (62)

The chemical potential of the species is given by [111,112]: 

 (63)

Constant parts do not play a role in equilibrium calculations, as they are equal for both phases. This 
results in a simpler form for the chemical potential [111,112]: 

 (64)

Differences to Section 2.2.1 occur, because of the reversed indexing of the solvent (or in this case 
the void lattice sites) and the not-specified other compound. 

The multi-component expressions are somewhat more extended. Recently [111,112], the first 
formulation of the multi-component LCT only in terms of  was developed. The 
interaction energy difference between a segment and a void lattice site becomes , because of 
the vanishing energies  and . Using the same strategy discussed above leads to power series 
allowing the calculation of the Helmholtz energy and all other thermodynamic properties [111,112]. 
The formulation in terms of  and the reformulation of the Helmholtz free energy reduces the 
number of terms necessary to calculate from 103 [89–91] to 21 [111,112]. All coefficients depend only 
on the species’ chemical architecture and the lattice coordination number. The component indices range 
from zero to the number of components present in the mixture , where zero is the index of voids. 
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2.2.3. Application to Hyperbranched Polymers 

Modelling phase behaviour of polymers by the LCT requires the estimation of the architectural 
parameters. These parameters can be determined only by the knowledge of the chemical structure of 
the polymer.  

The number of monomers  can be evaluated by counting the repeating unit of a polymer chain. 
Also the number of bonds  is independent of the polymers’ branching architecture and can be 
calculated as follows [113]: 

 (65)
All other topological coefficients of Table 1 depend on the architecture of the polymer. This 

architecture is described by the number of branching points , where  describes the branching 
degree, that means the number of bonds which meet at one repeating unit. 

Table 1. Topological coefficients of the LCT for an arbitrary polymer chain. 

 Number of repeating units in a polymer chain 
 Number of bonds in a polymer chain 
 Number of two consecutive bonds in a polymer chain 
 Number of three consecutive bonds in a polymer chain 
 Number of four consecutive bonds in a polymer chain 
 Number of distinct ways of selecting two non-sequential bonds on the same chain 

 Number of distinct ways of selecting two sequential bonds and one non-sequential bond on the 
same chain 

 Number of distinct ways of selecting two non-sequential double consecutive bonds on the 
same chain 

 Number of ways in which three bonds meet at a lattice site for a polymer chain 
 Number of ways in which four bonds meet at a lattice site for a polymer chain 

 Number of ways in which three bonds meet at a lattice site for a polymer chain and one bond 
is at this lattice site 

The total number of branching points is [113]: 

(66)

where  is the number of branching points of degree  in which  bonds meet. 
As an example the determination of the coefficient  will be shown. For a linear polymer in 

Figure 3 (first row) with three bonds, there are two possibilities of choosing two consecutive bonds in 
a linear polymer with three bonds. The chosen bonds are marked by broken lines. This can be 
generalized for a linear polymer with  monomers as follows [113]: 

 (67)

where  denotes  for a linear chain. 
If there is one point with branching degree of three, the number of ways of choosing two 

consecutive bonds is raised by one per branching point in contrast to linear chains (Figure 3, second 
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comparison to a linear chain (Figure 3, third row). This can be generalized to higher branching degrees 
as can be seen in Table 2; whereas it has to be mentioned that in polymer chains only branching points 
with degree up to four exists. With help of Table 2 an equation can be derived, which can be used to 
calculate the number of possibilities [113]: 

(68)

Figure 3. Number of two consecutive bonds up to a branching degree of four.  

 

Table 2. Number of additional possibilities of choosing two consecutive bonds on a 
polymer chain with branching degree up to seven. 

Branching degree 
Additional possibilities of  

choosing two consecutive bonds 
3 1 
4 3 
5 6 
6 10 
7 15 

The factor  is reduced by each chosen bond and the factor 1/2 appears because of the 
indistinguishability. In an analogous manner the number of ways of choosing three or four bonds can 
be described [113]: 
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where  describes the contribution of a linear chain [113]: 
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three bonds  meeting at one lattice site is derived.  
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Figure 4 shows different ways of choosing three bonds meeting at one lattice site (monomer). The 
different ways are shown by broken lines. If there is a point with branching degree of three, there is 
only one way of choosing three bonds at one lattice site, but for a point of branching degree of four 
there are four ways. This can be generalized to higher branching degrees as shown in Table 3. 

Figure 4. Number of ways of three bonds meeting at one lattice site up to a branching 
degree of four. 

 

Table 3. Number of ways of choosing three bonds meeting at one lattice site up to 
branching degree of seven. 

 
Branching degree 

Ways of choosing three bonds  
at one lattice site 

3 1 
4 4 
5 10 
6 20 
7 35 

With help of Table 3 or combinatorial considerations the following equation can be derived [113]: 

(72)

Here, the factor  is the number of points meeting at one lattice site which is reduced by one for 
each chosen bond and the factor 6 appears because of the indistinguishability. In a similar way the 
coefficient  can be determined [113]: 

(73)

The number of ways three bonds meeting at one lattice site with one additional bond can then 
calculated by: 

 (74)
The last group of architectural coefficients to be determined are the bonds lying on the same chain 

but are not sequential. As an example the determination of the coefficient  will be shown [113]: 

 
(75)

3

( 1)( 2)
6

z

i
i

i i iN b⊥
=

− −=∑
i

N+

3

( 1)( 2)( 3)
24

z

i
i

i i i iN b+
=

− − −=∑

' 3⊥ ⊥=N N

1,1N
2

1 1 2
1,1

2
2

N N NN − −=



P
 

 

r
e
c

th

a

w

L

Polymers 20

On the rig
restriction, w
excludes th
chosen ways

In the sam

The arch
he number 

 that occu
as follows: 

where the nu

Figur

iL

012, 4 

ght hand sid
whereas th

he sequentia
s. 
me way, the

hitecture of
of branchin

ur in the inc

umber as add

re 5. Schem

N

(1N

de the first t
e second te
al bonds. 

e factors 

f the polym
ng points wi
ompressible

ditionally sub

atic sketch 

2N

2,2N =

1 1

4

K N

K N⊥

=

=

1 1

4

L N

L N⊥

=

=

(1, ) =N i N

( , ) ⊥⊥ =N i N

1,1;,1, ) = ii N

term describ
erm exclud
The factor

 and the fa

mer can be
ith degree, 
e version an

;  

;  

;  

bscript of th

of a hyperb

2,1

2,1 1N N N=
2
2 2 2N N− −

1;1 1 2

;1 1

/ ;

/ ;

M K

N M K⊥

;2 2 2

;2 2

/ ;

/ ;

M L

M L⊥

1; /i iN M (N

; /⊥ i iM (N

/ iM (1,N

bes the num
des the cou
r 1/2 arises

factor  c

e described 
. With he

nd  

he architectur

branched po

2,2N

2 22N N− −

3 42 2
2

N N− −

n
( ),N i j

2 2;1 1

5 1,1;1

/

/

N M

K N M

=

=

2 2;2

5 1,1;2

/

/

N M

L N M

=

=

2;(2, ) /= ii N

';( ', ) ⊥⊥ =i N

1,2;2, ) = ii N

mber of sele
unting of th
s because 

can be deter

with help 
lp of the pre
for the com

;  

;  

;  

ral paramete

lymer of ge

32 3N N⊥−

6 2N N⊥ ⊥− −

1 3 3

1 6

;

;

K N

M K N

=

=

2 3 3

2 6

;

;

L N

M L N

=

=

/ iM (3,N

; /i iM (+N

/ iM (2N

ecting two b
he same bo

of the ind

rmined [113

of the nu
esented par

mpressible v

 

 

ers indicates 

eneration nu

' 6N N⊥ +−

3;1 1

1,2;1 1

/ ;

/ ;

M

N M

3;2 2

1,2;2 2

/ ;

/

M

N M

3;) /= ii N M

1;, ) /+ = ii N M

2,22,2, ) =i N

bonds on a c
ond twice a
distinguisha

3]: 

umber of se
rameters, the
version can b

 

 

 

the compon

umber 

 

iM

iM

; /i iM

3g =

9

chain withou
and the thir
abilty of th

(76

(77

egments an
e  and th
be calculate

(78

(79

(80

nent number

 [93]. 

iK

3

93 

ut 
rd 
he  

6)

7)

nd  
he 
ed 

8)

9)

0)

r. 



Polymers 2012, 4 94 
 

 

As an example for determining the architectural parameters, three different hyperbranched 
polyesters with the generation numbers  (Boltorn H20),  (Boltorn H30) and  
(Boltorn H40) will be regarded [53]. All these molecules possess the same core: 
O[CH2C(C2H5)(CH2O–)2]2. Depending on the generation number g, the molecules additionally include 
a different number of groups A: COC(CH3)(CH2OH–)2. and B: COC(CH3)(CH2OH)2. The general 
formulae of the polymers are for g = 2: , for g = 3:  and for g = 4: 
. According to these formulae (neglecting polydispersity) the molar masses take the values 1,642 g/mol 
(g = 2), 3,498 g/mol ( ) and 7,210 g/mol (g = 4). The number of OH– end groups equals the 
number of B-units. Figure 5 shows schematically a hyperbranched polyester with the generation 
number g = 3.  

To describe the architecture of a hyperbranched polymer two specifications in addition to the 
generation number  will be used [53]. The separator length  is the number of segments between 
two branching points. It denotes the number of segments of an A unit or a B unit. The number of core 
segments is given by the quantity, . It is assumed that one water molecule occupies one lattice site, 
so the number of core segments and the separator length can be determined by dividing the core, A and 
B units in groups that have a molar mass comparable to a water molecule. The values of the separator 
length, number of core segments and generation number are collected in Table 4. 

Table 4. Architectural parameters describing hyperbranched polyester [53]. 

Separator length  4 
Number of core segments 7 
Generation number   (Boltorn H20) 

 (Boltorn H30) 
 (Boltorn H40) 

Using these architectural parameters, the topological coefficients of the LCT can be calculated. The 
number of segments of a hyperbranched polyester molecule can be calculated as follows [53]: 

(81)
Each A-unit and each B-unit possesses one branching point of degree 3. The core contains two such 

branching points. Branching points of degree 4 and higher do not exist in these polymer molecules and 
hence the number of branching points is calculated as follows: 

(82)
Using these parameters the LCT can be applied to polymer solutions containing one of the 

presented polymers. 
Another polymer, which is considered, is Boltorn U 3000 [57]. This HBP has the molar mass 7,192 g/mol. 

The molecule consists of the core C(CH2O–)4, 12 separator groups A: COC(CH3)(CH2OH–)2. and  
16 groups B: COC(CH3)(CH2OH)(CH2OR) with the end groups OH and OR. Here, R origins from the 
16-carbon-long alkyl acid (R: CH3–(CH2)14CO–). The core is divided into 5 segments and the separator 
group A into 4 segments. Considering the 16-carbon-long group R the group B has 20 segments. All 
together a Boltorn U3000 molecule may be described by MB = 373 segments. Furthermore, there are 
28 branching points of degree 3 (b3 = 28) and one branching point of degree 4 (b4 = 1). 
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2.3. Wertheim Theory 

The hyperbranched polymers of the Boltorn family carry hydroxyl groups able to form hydrogen 
bonds, not only associates between two polymer molecules and between other polar groups of the 
same polymer molecule but also with solvents present in the solution. Žagar and Grdadolnik [114] and 
Žagar and Žigon [52] used IR-spectroscopy to analyze the extent and the type of hydrogen-bonds. 
They [52,114] pointed out that the majority of the hydroxyl groups are hydrogen-bonded in four 
diverse assemblies, differing in strength. The effect of intermolecular and intramolecular interaction 
caused by the polar groups were investigated experimentally by Turky et al. [115] using dielectric 
spectroscopy and theoretically by Tanis and Karatasos [116] by atomistic molecular dynamics 
simulation. Both studies [115,116] concluded that the intramolecular interactions are stronger than the 
intermolecular interactions. For this reason intramolecular as well as intermolecular association should 
be taken into account in the thermodynamic model. 

A model for a fluid with directional attractive forces is a fluid of hard particles with an off-center 
spot that is the origin of an attractive potential. The formation of an attractive interaction needs the 
orientation of two particles towards each other in such a way that the attractive potentials are within 
each other’s reach. In the case of a short ranged attractive potential originated near the edge of a 
spherical particle, so that there can only one bond per particle, the directional attraction has the 
character of a bond between two particles. 

The formalism used here was developed by Wertheim [73–76]. Wertheim has established a general 
statistical mechanical framework for fluids of particles that exhibit directional forces and attractions. 
His work originally focused on particles that have one off-center attractive spot [73,74] and was later 
generalized to include more off-center spots per particle [75,76]. The method, the multiple density 
formalism, which reduces to a 2-density formalism for singly associating fluids, is based on a 
separation of the interparticle potential in a purely repulsive isotropic part and an attractive potential 
that is a function of the particle orientation. This separation allows dividing the overall particle density 
in a density of non-bonded particles, and in a density of particles that have formed a bond with  
another particle. 

2.3.1. Derivation of the Association Theory 

In Wertheim’s approach [73–76], the overall density of particles in the fluid is divided in two parts. 
For a fluid consisting of particles with one attractive spot the formalism is in terms of two densities: 
the overall particle density  is divided into a density of non-bonded particles  and a density of 
particles  forming an attractive bond with another particle [73]: 

(83)
In a fluid of particles with only one attractive spot, bonded and non-bonded particles are present. 

The total 2-particle distribution function  is constituted from contributions arising from the 
correlations between two particles which have not formed an attraction bond , two particles of 
which one has formed an attraction bond  and , and two particles that both have 
formed an attraction bond . The coordinates of particles 1 and 2 are given by  and 

, where  denotes the position and  the orientation of particle . 
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To get a multiple density approach, the pair interaction potential  depending on the 
orientation of particle 1 and 2 can be split in two parts, an isotropic repulsive part  and a 
directional attractive part . The Mayer function  can be divided in an attractive  
and a purely repulsive part  [73]: 

(84)
with 

 (85)

and 

 (86)

It has been proven [73,74] that this division of the Mayer function allows a diagrammatic expansion 
of  in terms of the activity , fR- and F-bonds similar to LCT. According to the suggested 
expansion, the overall density  is devided into densities of bonded and non-bonded particles. The 

 and -values are then both classified by a different part of the set of diagrams that constitutes . 
Starting from the grand canonical partition function  and applying these expansions of  
and , Wertheim [73,74] derived an exact diagrammatic expansion of the structural correlations 

, ,  and  in terms of  and , fR- and F-bonds. He then 
constituted, along the same lines as the direct correlation function is defined, for fluids consisting of 
hard spheres, partial direct correlation functions ,  and  and 
received their diagrammatical expansions in terms of ,  and  and . The partial 
correlation is related to the Orstein–Zernicke equations. This procedure bears strongly resemblance  
to the derivation of the Orstein–Zernicke equation for hard spheres [117–119]. To obtain the fluid 
structure, the Orstein–Zernicke matrix equation has to be combined with an appropriate radial 
distribution function  as a closure equation and a self consistency relation based on  
Equation (83). The self consistency relation is a mass balance equation determining the division in 
bonded and non-bonded particles. For fluids without directional forces the Orstein–Zernicke equations 
and a closure equation determine the fluid structure in terms of particle density . For a fluid with 
directional forces, the Orstein–Zernicke equations and a closure equation generate the correlations 

,  and  in terms of  and . 
These correlations define the distribution of the particles over bonded and non-bonded particles. For 

fluids consisting of hard spheres this distribution is not possible, because there is only one type of 
particles left. For fluids with directional attractive forces, the  and  functions assign g00(1,2), 
g10(1,2) and g11(1,2) with help of Orstein–Zernicke equations and on the other hand the , 
g10(1,2) and g11(1,2) determine the values of  and . This last step is necessary for internal 
consistency and is provided by the self-consistency relation. The Wertheim theory has three 
constituent parts, the Orstein–Zernicke equations, a closure equation and a self-consistence mass 
balance equation. Wertheim extended this formalism to a multi-component mixture with different 
interaction sites [75,76]. In the following section the use of Wertheim association theory for a polymer 
blend will be shown. 
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2.3.2. Wertheim Association Theory for a Polymer Blend 

As the LCT has no information about the density of the polymer blend, another version of the 
Wertheim theory than used in the SAFT equations of state [72,77] has to be used. The presented 
version of the Wertheim theory is a Lattice Wertheim theory suggested by Nies et al. [120,121]. The 
Wertheim theory was transferred to a fully occupied lattice, so an incompressible fluid is regarded. The 
following expression for the Helmholtz energy of association was derived [73–76]: 

 (87)

where  is the segment molar fraction of the non-bonded polymer segments and  is the 
number of association sites at one molecule. “Non-bonded polymer segments” means in this case that 
the segments do not contribute to association. The value  is given by: 

 
(88)

where the summation over  runs over all molecules and association sites. The association strength, 
, is given by: 

 (89)

with  being the ratio of nearest-neighbour positions with the proper orientation to all possible 
orientations of the component  and  is the association energy. The difference between the 
Lattice Wertheim association model and the association model used in the SAFT equation of state lies 
in the considerations of the quantity  occurring in Equation (89) and the similar quantity, , 
called association volume. The association volume  depends on the density and the radial 
distribution function. In contrast,  is a constant. For example a water molecule has four 
association sites, one at each proton of the hydrogen and one at each lone electron pair of the oxygen 
(Figure 6). 

Figure 6. Association model of a water molecule (A–D). 
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After the localization of the association sites, the possible interactions of the association sites have 
to be defined; for instance that only a proton and a lone electron pair can interact with each other and 
not two proton sites or two electron pair sites. This leads, for multi-component cross associating 
systems, to a nonlinear equation system of equations of type Equation (88), which has to be solved 
numerically to calculate the Helmholtz free energy. Recently [122], a notation was developed in order 
to solve this non linear equation system of equations in an elegant way. In opposite to this, in the case 
of only one associating molecule, the association can be determined analytically. To consider the 
cross-association between different molecules mixing rules for the association volume and the 
association energy are applied to calculate the parameters for the cross-association: 

 (90)

and 

 (91)

The parameter  was introduced to consider the deviation of the interaction energy from the 
geometrical mixing rule [58,123]. 

3. Calculation Examples 

The presented theoretical framework can be applied to investigate the miscibility of polymer 
solutions and polymer mixtures. 

 
3.1. Binary Polymer Solutions 

Within a certain polymer concentration range, a polymer-poor solvent solution phase separates into 
a polymer-lean and a polymer-rich phase to minimize its overall free energy depending on the 
enthalpic interactions and the mixing entropy. Like mentioned in Section 2, the LCT is a further 
extension of the well-known FH theory. In order to study the achieved improvements, some model 
calculations for linear polymers with a segment number of M1 = 500 dissolved in solvent occupying 
only one lattice site (M2 = 1) were performed. Using the FH theory for this purpose mostly leads to a 
prediction of a too narrow miscibility gap. This problem can be solved, if the  parameter in  
Equation (17) is expressed phenomenological as a power series of the polymer concentration. Figure 7 
depicts a comparison of the modelled phase equilibrium using the FH theory and the LCT. The 
interaction parameter (  or ) were fitted to an arbitrarily selected critical temperature. In the 
FH-limit the lattice coordination number  approaches infinity. In the LCT framework z can be 
chosen. On one side  should be large in order to ensure a rapid convergence of the suggested series 
in 1/z. On the other hand a lower number for  makes more use of the established corrections. For this 
reason some model calculations for different -values were performed. In Figure 7 it can be seen that 
a higher z-value requires a lower interaction energy for the same critical temperature. The miscibility 
gap gets broader, independently of the chosen z-value of the LCT. Sometimes a shoulder in the cloud 
point curve [83] is found experimentally. Examples are the systems polystyrene + cyclohexane and 
polyethylene + diphenylether [83]. This effect is often explained by polydispersity or by a complex 
concentration dependence of the χ-parameter. The calculation results for  in Figure 7 show this 
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shoulder for a monodisperse linear polymer. Therefore, the shoulder could also be discussed in terms 
of mixing entropy. In summary, the LCT can also be used for linear polymers, especially if complex 
phase diagrams are present. It is well-known that the classic Flory–Huggins theory [84,85] does not 
capture the effect of branching on polymer phase separation. The polymer theories which do capture 
the effect of branching include a scaling theory developed by Daoud et al. [65] a theory developed by 
Saeki [124], which replaces the standard mixing entropy term of Flory–Huggins with a combinatorial 
entropy term more applicable to star polymers, and the lattice cluster theory due to Freed and  
co-workers (e.g., [89]). All these theories predict a drop in the critical temperature and a small rise in 
the critical polymer concentration as a polymer becomes more branched. However, the lattice cluster 
theory is the most sophisticated of the three theories mentioned above.  

The mixing entropy and enthalpy are complex functions of the polymer structure. Intuitively, one 
expects that a branched polymer will display fewer unfavorable polymer-solvent interactions than a 
linear polymer with an identical molecular weight [125]. This would imply that the branched polymers 
should exhibit an increased miscibility and lower upper critical solution temperatures as compared to 
linear polymers. Alessi et al. [126] observed that the critical temperatures of branched (star-shaped 
with 8 arms) polystyrene (PS) in methyl cyclohexane (MCH) solvent were 5–15 K lower than that for 
linear polystyrene of the same molecular weight in the same solvent, and the difference decreased as 
the molecular weight of the polymer increased. From the viewpoint that branched polymers are 
generally more compact than their linear counterparts, we expect that the critical volume fraction of 
branched polymers should exceed that of the linear polymers with similar molecular weights. 

Figure 7. Calculations of LLE for the system linear polymer  in a solvent 
occupying only one lattice site  (solid line: binodal line, dotted line: spinodal line, 
stars: critical points), where the black colour depicts the results using the LCT with z = 12; 
ε/kB = 35 K, the blue colour those with z = 10; ε/kB = 43.86 K, the red colour those with  
z = 6; ε/kB = 93.62 K, and the green colour presents the results obtained by FH theory with 

. 
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Yokoyama et al. [127] observed that the critical volume fraction was equal to 0.03 and 0.04 for 
linear and 6.3-arm PS in cyclohexane solvent, respectively. This means that the more compact 
branched polymers need to be present at higher concentrations than their more extended linear 
counterparts in order to interact at the same degree with each other as the linear polymers do. Hence, 
branched polymers begin to phase separate at higher polymer concentrations than the polymer 
concentrations required by linear polymers to phase separate. However, Alessi et al. [126] on the other 
hand, do not show any noticeable differences in the critical volume fraction of star-shaped and linear 
versions of polystyrene in methyl cyclohexane solvent. 

We will focus our attention to commercial available hyperbranched polymers from the  
Boltorn-family. Tables 5 and 6 list the model parameters. For the following calculations  was  
set to 12. Details about the fitting procedure and the used data are given in the literature [54–58]. 

 
Table 5. Pure-component parameters for the Lattice Wertheim Theory. 

Component ࡮࢑/࢕࢙࢙࡭࢏ࢿ ࢕࢙࢙࡭࢏ࡷሾࡷሿ Ref. 
Boltorn H20a 1 0.023 1,200 [54] 
Boltorn H20b 1 0.023 1,200 [58]  
Boltorn U3000 0.023 1,200 [55] 

Water 0.01 1,800 [54]  
Propan-1-ol 0.011 1,745 [56]  
Butan-1-ol 0.01 1,710 [58]  

1 These polymers have different lot numbers [58]. 

Table 6. Parameters of the mixture. 

Component i Component j ∆࡮࢑/ࢀ࡯ࡸ࢐࢏ࢿ ሾࡷሿ૚ ∆࡮࢑/ࢀ࡯ࡸ࢐࢏ࢿ ሾࡷሿ૛2 ࢐࢏࢑ Ref.
Boltorn H20a Water 46.842 11.65 0.06 [58] 
Boltorn H20b Water 45.27 18.05 0.02 [58] 
Boltorn H20a Propan-1-ol 18.96 10.55 0.04  
Boltorn H20b Butan-1ol 14.983 9.01 0.035 [58] 
Boltorn U3000 Propan-1-ol 12.59 3.9 0.03  
Boltorn U3000 Butan-1-ol 10.54 2.03 0.02  
Propan-1-ol Water 64 (fitted to binary VLE) 

45 (fitted to ternary LLE)
  [56] 

Butan-1-ol Water 184.622 57.5 0.03 [58] 
1 These parameters are valid, if only the LCT is used; 2 These parameters are valid, if the LCT in 
combination with the Wertheim theory is used. 

The phase behaviour of Boltorn H20 in different polar solvents is shown in Figure 8, where the 
calculated LLE’s are compared with experimental data [54,58]. The branch of the cloud-point curve 
for the diluted polymer solution in water and in propan-1-ol could be described in excellent agreement 
with experimental data, if the LCT either alone or in combination with the Wertheim theory is utilized 
(Figure 8). For the butan-1-ol containing solution some deviations occur, which can also be related to 
experimental difficulties [54]. Deviations between the experimental and theoretical cloud-point curve 
in the concentrated range occur for all studied polymer solutions, if only the LCT is applied. Taking 

z
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the association forces in terms of self- and cross association into account leads to an improvement of 
the calculated results by shifting the polymer mass fraction in the concentrated phases to larger values 
and hence the application of the Wertheim approach improves the calculation results in the right 
direction. Including only self-association and not cross association in the theoretical calculations leads 
to extremely high demixing temperatures [54], where the polymer is hardly stable. The calculation 
results agree with experimental findings only if both effects (self- and cross association) are taken into 
account (Figure 8). 

Figure 8. Phase behaviour of Boltorn H20 in different solvents (water: black triangles [54], 
propan-1-ol: blue squares [54], butan-1-ol: red circles [58]). The dotted lines are 
calculations based on LCT and the solid lines are calculations based on LCT + Wertheim 
approach, where the used parameters are listed in and Table 6 [54,58].  

 

Similar to the results obtained for the system Boltorn H20 in polar solvents (Figure 8), the LCT in 
combination with the Wertheim approach describes the branch of the cloud point curve related to the 
diluted polymer solution very close to the experimental data for the system Boltorn U3000 in alcohol 
(Figure 9). However, for the branch of the cloud point curve describing the composition of the 
polymer-rich phase some deviations occur. For the system Boltorn U3000 + propan-1-ol the 
experimental cloud point curve shows a characteristic shoulder. Our theoretical framework was not 
able to describe this shoulder. One possible explanation for this situation can be the fixed -value. 
Like shown in Figure 7 the LCT is in principle able to describe a shoulder in the cloud point curve. 

The performance of the theory in describing the mixing behaviour in non-polar solvent, for instance 
n-alkanes, is discussed in the literature [57]. For the calculation of binary phase diagrams always one 
or more parameter must be adjusted to experimental data. The real strength of the theory can be 
recognized by investigation of the predictive power. This can be done if ternary mixtures are considered. 

 

z
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Figure 9. Phase behaviour of Boltorn U3000 in different solvents (propan-1-ol: black 
squares [128], butan-1-ol: blue circles [58]). The dotted lines are calculations based on 
LCT and the solid lines are calculations based on LCT + Wertheim approach, where the 
used parameters are listed in Tables 5 and 6 [55].  

 

3.2. Ternary Polymer Solutions 

The calculation of LLE of a ternary system using the LCT requires the knowledge of all three 
interaction parameters, , of each component pair. For the analysis of the predictive power of the 
LCT, two mixtures were selected, namely Boltorn H20 + water + propan-1-ol and Boltorn H20 + water 
+ butan-1-ol. Boltorn H20 + water as well as Boltorn + alcohol, either propan-1-ol or butan-1-ol, 
exhibit a LLE (Figure 8) and hence the interaction parameters for these subsystems can be estimated 
using the corresponding phase binary diagram [54,58]. The most important difference between  
these mixtures lies in the water-alcohol mixture, where water + butan-1-ol has a miscibility gap and  
water + propan-1-ol does not. For the ternary system Boltorn H20 + butan-1-ol + water, where all 
binary subsystems show a miscibility gap, all parameters can be estimated using LLE of the binary 
subsystems. In contrast, for the ternary Boltorn H20 + propan-1-ol + water the parameter describing 
the binary subsystem propan-1-ol + water must be adjusted to other thermodynamic properties. 
Experimentally, it was found that two separated miscibility gaps in the Gibbs triangle at constant 
temperature appear [56]. If the binary interaction parameter between the components of the mixed 
solvent is set to zero qualitative wrong phase behaviour with a miscibility gap ranged from the water-rich 
side to the propan-1-ol-rich side is predicted by the LCT [56]. One possibility to estimate this missing 
parameter is the use of VLE data for this system [56]. The VLE of the system water + propan-1-ol is 
characterized by an azeotropic point at atmospheric pressure. The interaction parameter was adjusted 
to the azeotropic temperature at atmospheric pressure, and at the same time the mole fraction at the 
azeotropic point is calculated exactly, because of the calculation of the activity coefficients with a high 
accuracy. Using this fitted parameter ∆ε23/kB = 64 K (Table 6) the experimental phase behaviour of the 
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ternary system can be predicted quite close to the experimental data, like shown via the black lines in 
Figure 10. A slight readjustment of this parameter by changing its numerical value from ∆ε23/kB = 64 K 
to ∆ε23/kB = 45 K (Table 6) permits an excellent description of the ternary phase behaviour (blue lines 
in Figure 10).  

Figure 10. Experimental (squares, [56]), predicted using LCT with the parameters in  
Table 6 (black lines, [56]), and fitted via changing the value for the binary interaction of 
water and propan-1-ol from 64 K to 45 K (blue line, [56]) ternary phase behaviour of 
Boltorn H20 + water + propan-1-ol at 353.15 K. The red lines are tie lines which are 
calculated with ∆ߝଵଶ௅஼்/݇஻ ൌ  .ܭ 45

 

For the other ternary system, built up from Boltorn H20 + water + butan-1-ol (Figure 11), all 
parameters are given from the binary subsystems (Tables 5 and 6), and hence the ternary phase 
behaviour can be predicted. The increased molecular weight of butan-1-ol in comparison with propan-1-ol 
leads to a qualitative different phase behaviour. For this system also two separated miscibility gaps at 
constant temperature appear. For both mixtures, the miscibility gap arising from the Boltorn H20 + 
alcohol side in the Gibbs triangle is very similar (Figures 10 and 11). The most important qualitative 
difference can be observed from the miscibility gap starting on the Boltorn H20 + water side. Caused 
by the occurrence of the water + alcohol demixing behaviour, this miscibility gap runs from the  
butan-1-ol containing system to the water + butan-1-ol side (Figure 11). This is in contrast to the 
propan-1-ol containing system, where the binary LLE of water + alcohol is missing (Figure 10). The 
interaction parameters were gained by fitting it to the phase behaviour of the binary subsystems. In 
Figure 11 it can be recognized that the LCT in combination with the Wertheim lattice approach is 
nicely able to predict the whole phase diagram at constant temperature in good agreement with the 
experimental data, also from the quantitative point of view. This situation verifies the predictive power 
of the applied theoretical framework and places emphasis on the role of hydrogen bonding in  
the system.  
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Figure 11. Experimental (solid squares, [58]; open circles [129], open triangles 
interpolation from the binary data [54,58]) and predicted (lines) ternary phase behaviour of 
Boltorn H20 + water + butan-1-ol at 353.15 K using LCT in combination with Wertheim 
lattice theory. The red lines are tie lines. 

 

3.4. Polymer Mixtures 

Recently [55], it was demonstrated that the LCT does a good job in modeling the experimental 
phase diagram of polymer mixtures, composed from linear polybutadiene and linear polystyrene with 
different molecular weights. Within the LCT we assumed every polystyrene monomer occupy one 
lattice site and every butadiene monomer two of them [55]. The question arising now is the miscibility 
of a hyperbranched polymer and a linear polymer. From the practical point of view, the miscibility of 
polymer blends is a critical issue, if a small amount of hyperbranched polymer is added to a linear 
polymer to reduce their melt viscosity. In this situation a miscibility gap is highly unwanted. Figure 12 
demonstrates the cloud point curves occurring via adding the hyperbranched polymer Boltorn U3000 
to a linear polymer having different segment numbers. It can be seen that a very small value of the 
interaction energy (∆ε/kB = 3 K) creates a demixing, where the critical temperature depends strongly on 
the number of segments of the linear chain. For a short chain (M2 = 10) the miscibility gap occurs at 
very low temperatures, which are not relevant in practical applications. A slight increase of the 
segment number from M2 = 10 to M2 = 30 shifts the demixing curve over 300 K to higher 
temperatures, where the polymers are hardly stable. This situation can be relevant in technical 
applications, because the demixing is undesirable. In all phase diagrams an upper critical solution 
temperature (UCST) occurs. If a homogeneous phase must be prepared, then the systems must be 
heated above the UCST. However, at this high temperature most polymers start to degrade. If the 
molecular mass of the linear counterpart increases further, then the critical point is above all realistic 
temperatures. Maybe, the cloud-point curve can be shifted to lower temperature by a small change of 
the enthalpic effects via incorporation of functional groups in the linear polymer. However, the 
dominant effect is the entropic penalty for these kinds of mixtures. 
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Figure 12. LCT model calculations of the mixing (symbols: critical point, lines: cloud 
point curves) behaviour of hyperbranched polymer Boltorn U3000 + linear polymers 
having different segment numbers (solid line: M2 = 10, dashed line: M2 = 30, dotted line: 
M2 = 50), where ∆ε/kB = 3 K. 

 

Figure 13. LCT model calculations of the mixing (symbols: critical point, lines: cloud 
point curves) behaviour of hyperbranched polymer Boltorn U3000 + hyperbranched 
polymer H20 (solid line), of Boltorn U3000 + H30 (dashed line) and Boltorn U3000 + H40 
(dotted line), where ∆ε/kB = 1 K. 

 

Figure 13 depicts the modelled phase behaviour if two different Boltorn hyperbranched polymers 
were mixed. If Boltorn H20 is mixed with Boltorn U3000 a miscibility gap with an UCST of 285 K 
occurs, even for a very small value for the interaction energy ∆ε/kB = 1 K. If Boltorn H30 is present the 
UCST and hence the demixing region shifts to much higher temperatures. This effect is caused by two 
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facts, first the molecular weight of Boltorn H30 is higher than the molecular weight of Boltorn H20 
and second the generation number increases from g = 2 to g = 3. Increasing both characteristic features 
(the generation number  and consequently the segment number M1) further leads to an UCST which 
is above the degradation temperature of the hyperbranched polymers. In other words, the LCT predicts 
that it is not possible to prepare a homogenous mixture made from Boltorn H40 and Boltorn U3000.  

In this context it appears worth mentioning that blends of branched and linear polyisoprene exhibit 
a relatively broad miscibility gap at room temperature [130]. Samadi et al. [130] measured the ternary 
phase diagram of branched polyisoprene + cyclohexane + acetone at room temperature and compare 
this diagram with the phase diagram of linear polyisoprene + cyclohexane + acetone at the same 
temperature. In the phase diagram with the branched polyisoprene an uncommon peninsula of 
immiscibility protrudes from the normal two-phase area resulting from the binary subsystem  
polymer + acetone. This unexpected peninsula is not present if the branched polymer is replaced by the 
linear polymer [130]. Additionally, the phase diagram of the system linear polyisoprene + branched 
polyisoprene + cyclohexane was measured [130]. In this ternary system one miscibility gap starting at 
the binary subsystem linear polyisoprene + branched polyisoprene occurs. Unfortunately, to the best of 
our knowledge, such experiments were not performed with hyperbranched polymers. 

Figure 14. Experimental (black open squares: n-dodecane [131–133]; red open squares:  
n-pentadecane [132–135]; blue open squares: n-eicosane [132,133]) and calculated vapour 
pressures of n-alkanes (black line: n-dodecane (σ = 3.11513 × 10−10 m; ε/kB = 109.94 K); 
red line: n-pentadecane (σ = 3.08592 × 10−10 m; ε/kB = 111.143 K); blue line: n-eicosane  
(σ = 3.04986 × 10−10 m; ε/kB = 112.69 K). The stars mark the experimental critical  
points [132,136].  

 

3.5. Compressible LCT 

In Section 2.2.2 a version of the LCT of compressible systems is presented. This version can be 
reformulated as an equation of state for pure components [111,112]. The derived equation of state 
(Equation (61)) can be used to calculate the thermodynamic properties of a pure component, for 

g
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instance the vapour pressure as function of temperature. In Figure 14 the calculated vapour pressures 
are compared with the experimental ones from literature [131–135] for relatively long chain n-alkanes. 
In this theoretical approach two parameters describing a pure component occur. The first parameter is 
the length of a cubic cell on the lattice  and the second one is the interaction energy, . From 
Figure 14 the potential of this new equation of state can be seen, because the experimental data were 
described with a high accuracy, although only two pure component parameters are used.  

4. Summary 

In summing up the theoretical investigations we can state that the LCT in combination with the 
Lattice Wertheim approach is a promising tool to calculate the thermodynamic properties of polymer 
containing systems, especially if hyperbranched polymers are involved. In this way it could be shown, 
that besides the architecture of the hyperbranched polymer, the influence of functional groups also has 
to be considered in the theoretical framework. 
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