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Abstract: In this mini-review we report on current developments of hybrid materials based 
on semiconductor nanocrystals integrated into polymer matrices for direct light conversion, 
their present limitations, as well as their high potential for future applications. 
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1. General Introduction 

1.1. Semiconductor Nanocrystals 

Semiconductor nanocrystals (NCs) with sizes ranging between 2 and 10 nm present unique  
size-dependent optical properties based on the quantum size effect [1,2] opening new doors for 
application in photovoltaics (PV) [3,4], lasing [5,6], light emitting diodes (LEDs) [7] and other  
opto-electronic devices [8,9], thermoelectric applications [10], memory devices [11] and fluorescence 
biological labeling [12–14].  

Tailoring the properties of these materials can be achieved by simply tuning the particle size 
without introducing any changes in the chemical composition, or by changing the material composition. 
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By changing the material composition as well as the size of the individual NCs the range for PL 
emission can be tuned covering the entire optical spectrum starting from UV to the NIR (Figure 2). 
The high quantum yield (QY), extraordinary photostability, pure color and the PL emission tunabilty 
of semiconductor NCs make them an obvious target of investigation for applications of white light 
generation. Examples for light emitting NCs are ZnO, CdS, CdSe, CdTe and CdSe core, core-shell or 
core-multishell structures which absorb UV or blue light and convert it into light of longer wavelengths. 

1.2. Semiconductor NCs/Polymer Nanocomposites 

Colloidal semiconductor NCs can form various hybrid materials by e.g., being integrated into 
different host materials including polymers. The incorporation of NCs into solid matrices from their 
growth solution is of interest for technologically useful applications as well as for fundamental studies 
of NC-matrix interactions. Polymers offer opportunities for flexible, lightweight, and mechanically 
stable NC nanocomposites [19]. Semiconductor NC-polymer composites combine the advantages of 
both components and have been realized for light emitting displays [7], light conversion layer [20] 
such as LED covers or in solar concentrators [21], optical bar coding [22], photocatalyst [23] and 
photovoltaics [4]. The main challenge in the preparation of NC-polymer composites is preventing a 
macroscopic phase separation and the aggregation of NCs in the hybrid material which would lead to 
film inhomogeneities and fluorescent quenching effects limiting the respective optical device performance. 

Colvin et al. reported on the first hybrid NC-polymer light emitting diodes (LEDs) in 1994 [7].  
A thin layer of CdSe NCs was deposited on a conductive support, and combined with a 100 nm thick 
soluble poly(p-phenylenevinylene) PPV derivative layer. Since then, a lot of progress has been 
achieved for optimizing all parameters of NC-polymer hybrid LEDs. The introduction of CdSe@CdS 
core-shell NCs made a significant improvement for the NCs-polymer hybrid LED [24]. The efficiency 
was increased twenty times by increasing the efficiency of the radiative recombination and device 
internal quantum efficiency, while the lifetime was increased as well by a factor of hundred. Other 
potential application for NC-polymer based LEDs are offering large area lighting systems and 
backlighting for flat panel displays. Such applications require LEDs emitting multi-color light or white 
light. Recently, Wood et al. fabricated a full color AC-driven display based on inject-printed 
NCs/polymer composites [25]. Semiconductor colloidal NCs integrated in solvent based polymers 
have a potential to compete with other technologies such as OLEDs and full-color quantum dot 
displays [26]. The lifetime of hybrid organic-NC based LED devices is still limited to some extend by 
the instability of the metal contacts and degradation of organic components under high current 
operation conditions [11]. In order to avoid such limitations, some non-conductive polymers are 
combined with semiconductor NCs forming a photoluminescent conversion layer for commercially 
available e.g., blue LEDs [20,27]. In the following we concentrate on the description of NC-polymer 
hybrid materials based on non photoactive polymers for light conversion applications. 

The first down-conversion LED was achieved by coating a transparent CdSe@ZnS core-shell 
polylaurylmethacrylate (PLMA) hybrid composite on the surface of a GaN light-emitting diode. 
Saturated-color light with different wavelengths has been generated by tuning the size of NCs  
(Figure 3).  
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The chemical structure of various polymers utilized as polymeric hosts for luminescent semiconductor 
NCs are shown in Figure 5. 

 
Figure 5. Chemical structures of suitable polymer hosts for the integration of 
semiconductor NCs. Poly(methyl methacrylate) (PMMA), PLMA, Nylon, Poly(lauryl 
methacrylate-co-ethylene glycol dimethacrylate) (P(LMA-co-EGDM), Cellulose triacetate 
(CTA), and BP-PFCB. 

 
 

3. Synthesis Approaches for NC Polymer Based Hybrid Materials 
 

There are in principle three distinguishable approaches for obtaining polymer NC hybrid materials. 
 

3.1. Integration of as Synthesized Semiconductor NCs into Polymers by Physical Mixing 
 

Physical mixing of NC solutions and polymer solutions is a first obvious approach for obtaining 
NC-polymer hybrid materials, especially for thin films. Even when serious chemical attacks to the NC 
surface are avoided during the solution mixing, PL QY is often reduced by the agglomeration of NCs 
due to phase segregation processes. An example is shown in Figure 6. Physical mixing is often used 
with organic soluble polymers, such as PMMA [29,31], cellulose [23,32] and so on. In order to 
maintain or even increase the PL QY, additional protective shells e.g., out of CdS [32], ZnS [20] 
and/or silica [33] are utilized for covering the core NCs. Bomm et al. [32] prepared CdSe@CdS NCs 
and cellulose triacetate (CTA) nanocomposites with a PL OY of 52% by using this physical mixing 
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Additionally the protecting trioctylphosphine (TOP) ligand was also used to prevent the agglomeration 
and chemical attack on CdSe/ZnS QDs. Woelfle et al. introduced a poly(methyl methacrylate) (PMMA) 
compatible ionic liquid to protect the CdSe/ZnS QDs [38]. However, the chemical attack during the 
thermal polymerization process could not be completely avoided. In both cases the resulting 
nanocomposites exhibited photoluminescence QYs of less than 40%.  

Recently, Bomm et al. reported a new method to incorporate CdSe@CdS core @shell nanorods into 
P(LMA-co-EGDM) by UV-polymerization lauryl methacrylate (LMA) monomers with the cross-linking 
agent ethylene glycol dimethacrylate (EGDM) monomers in the presence of the CdS@CdS NRs [32]. 
They found that a high concentration of a liquid UV-initiator led to a significant decrease of PL QY. 
70% PL QY was observed for this hybrid material by using only 0.1 wt % of a UV-initiator. Figure 8 
shows the effect of the concentration of the UV-initiator on the PL behavior of the nanocomposites. A 
decrease in PL QY is observed for high UV-initiator concentration. After incorporation of NCs into 
polymer, to maintain the optical properties of NCs in the hybrid materials is of outermost importance 
for light conversion application. As we mentioned before, the NCs phase separation and agglomeration, 
which could significantly reduce the transparency and PL QY of the NCs/polymer hybrid, should be 
avoided. NCs should be homogenously distributed in the polymer matrix without forming 
agglomerates. TEM investigation were carried out on this CdSe@CdS NR/P(LMA-co-EGDM) 
nanocomposites confirming the absence of agglomerates within the hybrid material (Figure 9). 

 
Figure 8. Absorption and PL spectra of CdSe@CdS NR/P(LMA-co-EGDM) composites 
containing 0.05 wt % NRs (aspect ratio 6:1) with low (0.1 wt %, solid line) and high  
(0.5 wt %, dotted line) concentrations of the UV-initiator. (The figure is reproduced from [32] 
with permission). 
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Figure 9. (a) TEM image of CdSe/CdS nanorods (aspect ratio 6) after synthesis. (b) TEM 
image of a CdSe/CdS NR/P(LMA-co-EGDM) composite film. (The images are reproduced 
from [32] with permission).  

 
 
Without an additional protecting shell for the CdSe core material, the QY of CdSe-PMMA or  

CdSe-BP-PFCB hybrid materials is rather limited. Very recently, we developed a simple reproducible 
and up-scalable one pot approach for the incorporation of crude CdSe core QDs into nylon without the 
need of further purification steps. 60% PL QY was reached by this CdSe core NCs nylon  
composite [18]. No significant loss in PL intensity was observed for the hybrid material compared to 
NC solutions and no additional protective shell was needed for the NCs which makes the process easy 
and up-scalable and. In Figure 10(a) the principle of the in-situ polymerization process of nylon in the 
presence of CdSe QDs is shown. The resulting hybrid material is moldable in any shape, transparent 
and highly luminescent (Figure 10(b)). As it is depicted in Figure 10(a), the polymerization of  
6-aminocaproic acid monomers was performed at 220–250 °C in the presence of as-prepared 
unpurified TOPO and HDA capped core CdSe QDs using a straight forward process under nitrogen  
atmosphere [18]. The excess ligand molecules are separated during solidification due to phase 
separation between the QD-nylon phase and the ligand phase and can be easily removed. Therefore 
even unpurified crude QDs can be used directly after synthesis without applying any extra purification 
step. Differently sized QDs can be incorporated into the nylon polymer resulting in different color 
emitting hybrid materials and laser scanning microscopical (LSM) investigation of the hybrid films 
revealed a homogenious PL emission at the microscopic level [18]. The transparency of the resulting 
product can be increased by fast cooling of the liquid phase. The QD hybrid materials can be processed 
while kept in liquid phase above 150 °C and different forms and shapes are available. After 
incorporation of the QDs into the polymer matrix, no significant loss of PL QY was observed. 

Another successful approach for obtaining functional NC-polymer hybrid films is the attachment of 
polymerizable capping ligands directly onto the NC surface, which can lead to a strong binding of NCs 
to the resulting polymer matrices. Zhang et al. capped octadecyl-p-vinyl-benzyl dimethylammonium 
chloride (OVDAC) on CdTe NCs in aqueous solution via electrostatic interactions [39]. CdTe  
NC-polymer bulk composites were obtained after the radical polymerization reaction was induced by 
azobis-isobutyronitrile (AIBN) as initiator. The phase separation and agglomeration of the NCs from 
the polymer host was avoided by the strong attachment of CdTe NCs to the polymer matrix during 
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by NC-/hybrid materials. Current research focuses on two directions, one is to increase the quality of 
the emission color (CRI and CCT), and another is to obtain higher luminescence efficiency. 

For obtaining a good emission color, the most common approach is mixing different emitting NCs 
in the polymer. Chung et al. reported a white emission by using mixtures of differently sized CdSe 
core NCs incorporated in PMMA as a phosphor [27]. The white LED was fabricated by covering  
a 460 nm emitting blue LED with a CdSe NC-PMMA nanocomposite layer. Two white light emitting 
realizations were presented, the first one was based on a single phosphor film containing CdSe NCs 
emitting at 580 nm and the second one was based on a dual phosphor film containing CdSe NCs 
emitting at 555 and 625 nm respectively. In the single phosphor realization the CRI is with 15.7 very 
low. The CRI value was increased to 61.1 after choosing the dual phosphor realization. In order to 
avoid the reabsorption effect by mixing differently emitting NCs together in one polymer layer, a 
double layer approach was introduced where the longer emission wavelength NC-polymer layer was 
coated on top of the shorter emission wavelength NC-polymer layer. However, limited by the low PL 
QY of CdSe NCs, the luminous efficiency of white LEDs were lower than 6 lm/W at an operating 
current for the blue LED of 20 mA. The design of NCs with a broad emission signal is an alternative 
approach for achieving white light spectra. Schreuder et al, examined thirteen dissimilar polymers as 
potential encapsulates for special designed broad emitting (white-light emitting) NCs [31]. They found 
that encapsulates based on cyclosiloxane or bisphenol-A type epoxy structures caused extensive 
aggregation of the NCs even at low loading levels (less than 0.5% w/w) due to the solubility difference 
between the polymers and the NCs. Biphenylperfluorocyclobutyl (BP-PFCM) exhibited the most 
robust, color stable, and homogenous encapsulation properties enabling a high loading of NCs as well. 
White-light emitting CdSe NCs encapsulated in the BP-PFCB polymer were coated on various  
UV-LEDs creating a white light source with chromaticity coordinates of (0.324, 0.322) and a high 
color-rendering index of 93 with a luminescence efficiency below 1 lm/W since the original PL QY of 
such white-light emitting CdSe NCs is already very low. The luminescence efficiency of such CdSe 
NCs-BP-BFCB nanocomposite covered LEDs increased up to 5.3 lm/W by optimizing the thickness of 
the hybrid films and the utilization of different types of UV LEDs [43]. A lot of researchers also 
choose the CCT which is a criterion for the quality for warm white light as overall quality parameter 
for optimizations. Chandramohan et al. demonstrated a warm white light (CCT of 3,436 to 4,500 K) 
emitting LED with a CRI of 87.4 using green-light-emitting CdSe NC-PMMA hybrid materials 
covering a InGaN/GaN based blue emitting LED [44]. Very recently, Chung et al. fabricated a warm 
(CCT of 3,237.4 K) white light emitting LED with a CRI of 83.8 and a luminescence efficiency  
of 4.14 lm/W by combining blue LED emitting at 430 nm with a nanocomposite film based on  
(Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alto-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)] 
(PFPV) and CuInS2-ZnS nanoparticles [45]. 

In order to improve the overall luminescence efficiency, a lot of research groups try to increase the 
PL QY of the light converting hybrid material. Weaver et al. for example studied the fluorescence 
quenching behavior during the incorporation of CdSe@ZnS NCs into cyanoacrylate, epoxy and 
silicone [46]. They found that excess of amines in the NCs solution passivated the NCs surface and 
preserved the PL QY of the NCs-polymer composites. Yu et al. reported on a white light LED with a 
luminescence efficiency of 44.2 lm/W by mixing a relatively high amount of CdSe NCs (20% by 
weight) into PFPV [47]. Since the luminescence efficiencies achieved for light conversion layers so far 
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are still low, efforts have to be dedicated for the development of NCs/polymer composites with high 
QY. Low cost and high PL QY hybrid materials would be the key parameters for NC based white light 
conversion materials towards their utilization and for commercializing. First commercially available 
NCs/polymer based white light converter plates are already on the market (Figure 11).  

 
Figure 11. Photograph of Quantum LightTM optics from the company QD Vision, 
Lexington, MA, USA for converting cold white light emitting LEDs into warm white light 
sources (Image source: www.qdvision.com, 2010, copyright QD Vision). 
 

 
 

4.2. Light Conversion Layers in Concentrator Solar Cells 
 

One main driving force of photovoltaic (PV) research and development is attaining higher power 
conversion efficiencies at lower costs. Compared with expensive prices of high efficient PV modules, 
it is preferable to convert incident light from the solar spectrum collected at large areas to 
monochromatic light and concentrate the converted light onto a small area of a high efficient solar 
cells with optimized power conversion efficiencies for the chosen monochromatic light . Based on this 
concept, luminescent solar concentrators (LSC) were developed in the late 1970s as an alternative 
approach to lower the costs of PV. The achievable efficiency of LSCs is dependent on how well it is 
spectrally matched with the attached absorbing fluorescent material. Recently, Goldschmidt et al. 
reported two independent methods to increase the collection efficiency of LSCs. One is to combine 
two different dyes to enlarge the utilizable spectral range. The other is to increase the collection 
efficiency by using a photonic structure acting as a band stop reflection filter in the emission range of 
the dye. Figure 12 demonstrates the principle of a multi-fluorescent concentrator cell based on 
Goldschmidt’s concept [48]. 

However, over 60% of the total solar photon flux occurs at wavelengths above 600 nm, which is 
beyond to the absorption range of most organic dyes. Novel luminescent photo stable materials with 
absorptions reaching to the infrared are needed for increasing the efficiency of LSCs. Semiconductor 
NC based hybrid materials have good potential to match this need. NCs can provide excellent PL QY 
with sufficient long term stabilities. For example PLQE of 85% has been reported for core-shell  
NCs [49], and PL QY of 70% for the transparent NCs/polymer composites so far [32]. 
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high sensitive fluorescence detection screens or the development of fluorescence standards for three 
dimensional confocal laser scanning microscopy. Since cadmium and lead based materials are 
considered toxic and therefore not environmental friendly, the development of cadmium and lead-free 
NC materials are of high importance for future applications. Luminescent NCs based on Y2O3@Eu2O3, 
InP@ZnS, MnSe@ZnSe might be promising materials to be incorporated into polymers for various 
light conversion applications [28,33,51]. 

Acknowledgments 

We thank the University of Freiburg and the “Deutsche Forschungsgemeinschaft” (DFG)  
within the DFG graduate school “Micro Energy Harvesting” for financial support. Y. Yuan  
acknowledges the support of the University of Freiburg for granting a Ph.D. scholarship within the 
“Landesgraduiertenförderung” program. We thank F.S. Riehle for fruitful scientific discussions. 

References 

1. Rossetti, R.; Nakahara, S.; Brus, L.E. Quantum size effects in the redox potentials, resonance 
raman spectra, and electronic spectra of CdS crystallites in aqueous solutions. J. Chem. Phys. 
1983, 79, 1086–1087. 

2. Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: 
The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.  

3. Zhou, Y.; Riehle, F.S.; Yuan, Y.; Schleiermacher, H.F.; Niggemann, M.; Urban, G.A.; Krueger, M. 
Improved efficiency of hybrid solar cells based on non-ligand exchanged CdSe quantum dots and 
poly (3-hexylthiophene). Appl. Phys. Lett. 2010, 96, 013304. 

4. Zhou, Y.; Eck, M.; Kruger, M. Bulk-heterojunction hybrid solar cells based on colloidal 
nanocrystals and conjugated polymers. Energy Environ. Sci. 2010, 3, 1851–1864. 

5. Klimov, V.I.; Mikhaelovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; 
Eisler, H.-J.; Bawendi, M.D. Optical gain and stimulated emission in nanocrystal quantum dots. 
Science 2000, 290, 314–317.  

6. Kazes, M.; Lewis, D.T.; Ebenstein, Y.; Mokari, T.; Banin, U. Lasing from semiconductor 
quantum rods in a cylindrical microcavity. Adv. Mater. 2002, 14, 317–321. 

7. Colvin, V.L.; Schlamp, M.C. Alivisatos, A.P. Light-emitting diodes made from cadmium selenide 
nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. 

8. Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, Y. Efficient near-infrared polymer 
nanocrystal light-emitting diodes. Science 2002, 295, 1506–1508. 

9. Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 
295, 2425–2427.  

10. Wang, R.Y.; Feser, J.P.; Lee, J.-S.; Talapin, D.V.; Segalman, R.; Majumdar, A. Enhanced 
thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288. 

11. Talapin, D.V.; Lee, J.; Kovalenko, M.V.; Schevchenko, E.V. Prospects of colloidal nanocrystals 
for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458. 

12. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as 
fluorescent biological labels. Science 1998, 281, 2013–2016. 



Polymers 2012, 4              
 

 

17

13. Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. 
Science 1998, 281, 2016–2018. 

14. Mitchell, P.G.; Mirkin, A.C.; Letsinger, L.R. Programmed assembly of DNA functionalized 
quantum dots. J. Am. Chem. Soc. 1999, 121, 8122–8123. 

15. Peng, X.; Mingos, D.M.P. Semiconductor Nanocrytals and Silicate Nanoparticles; Springer: 
Berlin, Germany, 2005; pp. 59–119. 

16. Riehle, F.S.; Bienert, R.; Thomann, R.; Urban, G.A.; Krüger, M. Blue luminescence and 
superstructures from magic size clusters of CdSe. Nano Lett. 2009, 9, 514–518.  

17. Yuan, Y.; Riehle, F.S.; Gu, H.; Thomann, R.; Urban, G.; Krueger, M. Critical parameters for the 
scale-up synthesis of quantum dots. J. Nanosci. Nanotech. 2010, 10, 6041–6045. 

18. Yuan, Y.; Riehle, F.S.; Nitschke, R.; Krueger, M. Highly photoluminescent and photostable CdSe 
quantum dot-nylon hybrid composites for efficient light conversion applications. Mater. Sci. Eng. B 
2012, doi: 10.1016/j.mseb.2011.12.003. 

19. Cao, X.; Li, C.; Bao, H.; Bao, Q.; Dong, H. Fabrication of strongly fluorescent quantum  
dot-polymercomposite in aqueous solution. Chem. Mater. 2007, 19, 3773–3779. 

20. Lee, J.; Sundar, V.C.; Heine, J.R.; Bawendi, M.G.; Jesen, K.F. Full color emission from II-VI 
semiconductor quantum dot-polymer composites. Adv. Mater. 2000, 12, 1102–1105. 

21. Bomm, J.; Büchtemann, A.; Chatten, A.J.; Bose, R.; Farrell, D.J.; Chan, N.L.A.; Xiao, Y.;  
Slooff, L.H.; Meyer, H.; van Sark, W.G.J.H.M.; et al. Fabrication and full characterization of 
state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2011, 
95, 2087–2094. 

22  Yang, J.; Dave, S.R.; Gao, X. Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-
polymer complexes in homogeneous solution. J. Am. Chem. Soc. 2008, 130, 5286–5292. 

23. Liu, S.; Ke, D.; Zeng, J.; Zhou, J.; Peng, T.; Zhang, L. Construction of inorganic nanoparticles by 
micro-nanoporous structure of cellulose matrix. Cellulose 2011, 18, 945–956. 

24. Schlamp, M.C.; Peng, X.; Alivisatos, A.P. Improved efficiencies in light emitting diodes made 
with CdSe.CdS.core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 1997, 
82, 5837–5842. 

25. Wood, V.; Panzer, M.J.; Chen, J.; Bradley, M.S.; Halpert, J.E.; Bawendi, M.G.; Bulovic, V. 
Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv. Mater. 
2009, 21, 2151–2155. 

26. Kim, T.; Cho, K.; Lee, E.K.; Lee, S.J.; Chae, J.; Kim, J.W.; Kim, D.H.; Kwon, J.; Amaratunga, G.; 
Lee, S.Y.; et al. Full-color quantum dot displays fabricated by transfer printing. Nat. Photonic 
2011, 5, 176–182. 

27. Chung, W.; Park, K.; Yu, H.J.; Kim, B.; Kim, S.H. White emission using mixtures of CdSe 
quantum dots and PMMA as a phosphor. Opt. Mater. 2010, 32, 515–521. 

28. Menkara, H.; Gilstrap, R.A., Jr.; Morris, T.; Minkara, M.; Wagner, B.K.; Summers, C.J. 
Develoment of nanophosphors for light emitting diodes. Opt. Express 2011, 19, 972–981.  

29. Song, H.; Lee, S. Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices. 
Nanotechnology 2007, doi: 10.1088/0957-4484/18/25/255202. 



Polymers 2012, 4              
 

 

18

30. Nizamoglu, S.; Zengin, G.; Demir, H.V. Color-converting combination of nanocrystal emittrts  
for warm-white light generation with high color rendering index. Appl. Phys. Lett. 2008,  
doi: 10.1063/1.2833693. 

31. Schreuder, M.A.; Gosnell, J.D.; Smith, N.J.; Warnement, M.R.; Weiss, S.M.; Rosenthal, S.J. 
Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting. J. Chem. 
Mater. 2008, 18, 970–975. 

32. Bomm, J.; Buechtemann, A.; Fiore, A.; Manna, L.; Nelson, J.H.; Hill, D.; Sark, W.G.J.H.M.V. 
Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer 
composites. Beilstein J. Nanotechnol. 2010, 1, 94–100.  

33. Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Silica-coated 
InP/ZnS nanocrystals as converter material in white leds. Adv. Mater. 2008, 20, 4068–4073. 

34. Rogach, A.L. Semiconductor Nanocrystal quantum Dots: Synthesis, Assembly, Spectroscopy and 
Application; Springer Verlag: Berlin, Germany, 2008; pp. 173–176. 

35. Haggata, S.W.; Li, X.; Cole-Hamilton, D.J.; Fryer, J.R. Synthesis and characterization of II-VI 
semiconductor nanoparticulates by the reaction of a metal alkyl polymer adduct with hydrogen 
sulfide. J. Chem. Mater. 1996, 6, 1771–1780. 

36. Haggata, S.W.; Cole-Hamilton, D.J.; Fryer, J.R. Control of average size and size distribution in 
as-grown nanoparticle polymer composites of MSe (M=Cd or Zn). J. Mater. Chem. 1997, 7, 
1969–1975. 

37. Firth, A.V.; Haggata, S.W.; Khanna, P.K.; Williams, S.J.; Allen, J.W.; Magennis, S.W.;  
Samuel, I.D.W.; Cole-Hamilton, D.J. Production and luminescent properties of CdSe and CdS 
nanoparticle polymer composites. J. Lumin. 2004, 109, 163–172. 

38. Woelfle, C.; Claus, R.O. Transparent and flexible quantum dot-polymer composites using an ionic 
liquid as compatible polymerization medium. Nanotechnology 2007, 18, 025402. 

39. Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lü, C.; Yang, B.; Gao, M. From water-soluble 
CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable 
surfactants. Adv. Mater. 2003, 15, 777–780. 

40. Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Zhou, L.; Harbers, G.; Craford, M.G. Novel 
color-sequential transflective liquid crystal displays. J. Display Technol. 2007, 3, 2–8. 

41. Tsao, J.Y. Solid-state lighting: Lamps, chips, and materials for tomorrow. IEEE Circuits Devices 
Mag. 2004, 20, 28–37.  

42. Nizamoglu, S.; Erdem, T.; Sun, X.W.; Demir, H.V. Warm-whiter light-emitting diodes integrated 
with colloidal quantum dots for high luminous efficacy and color redering. Opt. Lett. 2010, 35, 
3372–3374. 

43. Gosnell, J.D.; Rosenthal, S.J.; Weiss S.M. White light emission characteristics of  
polymer-encapsulated CdSe nanocrystal films. IEEE Photon. Technol. Lett. 2010, 22, 541–543. 

44. Chandramohan, S.; Ryu, B.D.; Kim, H.K.; Hong, C.; Suh, E. Trap-state-assisted white light 
emission from a CdSe nanocrystal integrated hybrid light-emitting diode. Opt. Lett. 2011, 36, 
802–804. 

45. Chung, W.; Jung, H.; Kim, S.H. Application of CuInS2-ZnS Nanocrystals Red Light Converter 
for white LED. In Proceedings of the 2011 Spring Meeting, Symposium G, Nice, France,  
9–13 May 2011. 



Polymers 2012, 4              
 

 

19

46. Weaver, J.; Zakeri, R.; Aouadi, S.; Kohli, P. Synthesis and characterization of quantum  
dot-polymer composites. J. Mater. Chem. 2009, 19, 3198–3206. 

47. Yu, H.; Chung, W.; Kim, S.H. White Light Emission from Blue InGaN LED with Hybrid 
Phosphor. In Proceedings of the 10th IEEE Conference on Nanotechnology (IEEE-NANO), Seoul, 
Korea, 17–20 August 2010; pp. 958–961. 

48. Goldschmidt, J.C.; Peters, M.; Bösch, A.; Henning, H.; Dimroth, F.; Glunz, S.W.; Willeke, G. 
Increasing the efficiency of fluorescent concentrator systems. Sol. Energy Mater. Sol. Cells 2009, 
93, 176–182. 

49. Shcherbatyuk, G.V.; Inman, R.H.; Wang, C.; Winston, R.; Ghosh, S. Viability of using near 
infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 
2010, 96, 191901. 

50. Image by Aushulz. Licensed: GNU. Available online: http://en.wikipedia.org/wiki/File: 
Chlorophyll_ab_spectra2.PNG (accessed on 22 December 2011). 

51. Anh, T.; Benalloul, P.; Barthou, C.; Giang, L.T.; Vu, N.; Minh, L. Luminescrnce, energy transfer 
and uoconversion machanisms of Y2O3 nanomat rials doped with Eu3+, Tb3+, Tm3+, and, Yb3+ ions. 
J. Nanomater. 2007, 10, 48247. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


