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Abstract: Poly(ester amide)s are an emerging group of biodegradable polymers that may 

cover both commodity and speciality applications. These polymers have ester and amide 

groups on their chemical structure which are of a degradable character and provide good 

thermal and mechanical properties. In this sense, the strong hydrogen-bonding interactions 

between amide groups may counter some typical weaknesses of aliphatic polyesters like 

for example poly(-caprolactone). Poly(ester amide)s can be prepared from different 

monomers and following different synthetic methodologies which lead to polymers with 

random, blocky and ordered microstructures. Properties like hydrophilic/hydrophobic ratio 

and biodegradability can easily be tuned. During the last decade a great effort has been 

made to get functionalized poly(ester amide)s by incorporation of -amino acids with 

hydroxyl, carboxyl and amine pendant groups and also by incorporation of carbon-carbon 

double bonds in both the polymer main chain and the side groups. Specific applications of 

these materials in the biomedical field are just being developed and are reviewed in this 

work (e.g., controlled drug delivery systems, hydrogels, tissue engineering and other uses 

like adhesives and smart materials) together with the main families of functionalized 

poly(ester amide)s that have been developed to date.  
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1. Introduction 

Synthetic biodegradable polymers offer an alternative to nondegradable materials used in 

biomedical applications. Polymers can be synthesized with tailored mechanical and degradative 

properties by changing the composition and microstructure and consequently can be designed to fulfill 

specific requirements. Polymers can also be easily processed in different forms (i.e., multi- or 

monofilaments for surgical sutures, porous scaffolds with desired pore morphologic features conducive 

to tissue ingrowth or as micro/nanospheres for controlled drug delivery). Functionalized polymers are 

receiving great attention for these applications since they can link different kinds of drugs or modulate 

cellular function and induce tissue ingrowth [1,2].
 

Polyesters constitute nowadays the main family of synthetic biodegradable polymers used as 

commodity materials and even in the biomedical field. Most applications and studies concern 

polyglycolide, polylactide, poly(-caprolactone) and their copolymers. Considerable work has been 

performed with functionalized polyesters since they allow a subsequent chemical modification to achieve 

desirable properties including hydrophilicity, biodegradation rate or bioadhesion, to attach compounds 

with pharmacologic activity or in general targeting the subsequent medical treatments. Different 

strategies have been developed to synthesize functionalized polyesters with biologically relevant and 

compatible molecules. In this way, multihydroxy functional polyesters can be prepared by 

copolymerization of -caprolactone with 5-ethylenedioxy--caprolactone and subsequent deprotection and 

reduction steps [3]. Polyesters functionalized with acid groups were easily prepared by reacting hydroxyl 

terminated oligo(-caprolactone)s with anhydrides like succinic, maleic and glutaric anhydrides [4]. This 

acid functionality could be enhanced by conversion to an acid chloride or an anhydride functionality by 

reaction with thionyl chloride or acetic anhydride, respectively. Polymerization of lactones containing 

protected functional groups (e.g., hydroxyl-, bis(hydroxyl)-, amino- and carboxyl-substituted) is also a 

suitable strategy when protecting groups could easily be removed [5].
 

Besides aliphatic polyesters, various types of functionalized synthetic polymers have been designed, 

tested and, in some cases, commercialized for biomedical applications, although in general are still in a 

premature stage. Poly(ester amide)s (PEAs) constitute a promising family of biodegradable materials 

since they combine a degradable character, afforded by hydrolizable ester groups (–COO–) placed in the 

backbone, with relatively good thermal and mechanical properties given by the strong intermolecular 

hydrogen bonding interactions that can be established between their amide groups (–NHCO–). Currently, 

a considerable variety of PEAs have been studied including the use of different monomers (e.g., -amino 

acids, ,-aminoalcohols or carbohydrates) or different polymer microstructures (e.g., ordered, blocky or 

random monomer distributions) [6,7]. The presence of hydrolytically cleavable ester bonds in the 

backbone and the lowering of the crystallinity make also poly(ester amide)s promising materials for their 

use in medical fields. Note also that the incorporation of -amino acid moieties may lead to 

biocompatible materials and, depending on their side groups, to functionalized polymers.
 

This review is focused on the synthesis and potential applications of functionalized PEAs. In this 

way, two synthetic routes will be discussed in Section 2: (a) Ring opening polymerization of 

functionalized lactones and (b) Polycondensation of functionalized monomers with reactive hydroxyl, 

amine or ester activated end groups. Section 3 is devoted to highlight relevant examples of 

functionalized PEAs, whereas main potential applications are discussed in Section 4. 
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2. Synthesis of Functionalized Poly(ester amide)s  

2.1. Ring Opening Polymerization 

2.1.1. Polydepsipeptides 

Copolymers of α-hydroxy acids and α-amino acids, polydepsipeptides, are mainly prepared by the 

ring-opening polymerization of morpholine-2,5-dione derivatives. The use of single ring monomers 

logically led to poly(ester amide)s with a regular chemical structure, whereas random and even block 

copolymers were prepared according to the selected synthetic procedure (e.g., one step or two step 

synthesis) and using the appropriate combination of morpholine-2,5-diones.  

Derivatives of the 6-membered ring of morpholine-2,5-dione were synthesized by three main 

procedures [8] (Figure 1): (a) Cyclization of N-(α-haloacyl)-α-amino acid salts [9-13], (b) Intramolecular 

transesterification of N-(α-hydroxyacyl)-α-amino acid esters [14,15] and (c) Cyclization of O-(α-

aminoacyl)-α-hydroxycarboxylic acids [16,17]. The first method probably gave the higher yields but 

conduced also to some degree of racemization when optically active monomers were employed. In this 

case, cyclization goes through an intramolecular SN reaction mechanism that may cause some racemization 

at the stereocenter of the hydroxy acid unit (C6). The third method based on an intramolecular amidation 

showed the lowest yields but some racemization at both C3 and C6 stereocenters. 

Figure 1. Synthesis of morpholine-2,5-dione derivatives and polymerization reaction.  

X
NH

O

O

OR1

R2
-

M+

M+ = Na+X = Cl, Br

R1 = H, CH3     R2 = alkyl

HO
NH

OR3

O

OR1

R2

R1, R2 , R3 = H, alkyl

H2N
O

OY

O

OR1

R2

Y = H, C6Cl5

R1, R2 = H, alkyl

O

NH

OR1

R2O

n

O
NH

O

OR1

R2

Method 1 Method 2 Method 3

Sn(Oct)2 Lipase
ring-opening

polymerization
ring-opening

polymerization

 



Polymers 2011, 3              

 

 

68 

Polymerization of morpholine-2,5-diones were usually carried out in bulk using stannous octoate 

[Sn(Oct)2] as a catalyst, at reaction temperatures close to the melting temperature of the monomer, and 

adding water or alcohol molecules as initiators [18]. It was postulated that the ring opening reaction 

was initiated by a tin (II) hydroxyl or alkoxide group. Similarly, polymerizations were successfully 

assayed with several calcium alcoholates. Interestingly, the ring opening reaction didn’t take place 

with N-alkyl substituted morpholine-2,5-diones, suggesting that the amido NH group should be 

involved in a reaction leading to a chelating intermediate when ring-opening occurred by attack at the 

ester group [19]. It is also assumed that an alkyl substitution at C3 decreased polymerizability in 

homopolymerization and even in copolymerization with other cyclic monomers.  

Enzymes such as lipases were another type of efficient catalyst [20-22] for polymerizations that, in 

this case, proceeded through ring-opening at the ester bond. Thus, the polymerization behavior was 

strongly influenced by the configuration of the hydroxyl acid moiety but not by the configuration of 

the -amino acid moiety since steric effect of hydroxyl acid side chains decreased the activity of the 

cyclic monomer. In general, enzymatic polymerization gave rise to an enhanced racemization (mainly 

at the amino acid residue) than more conventional Sn(Oct)2-catalyzed polymerizations.  

2.2. Polycondensation Methods 

Polycondensations are usually applied to react diamide-diol, diester-diamine, ester-diamine or 

diamide-diester monomers with dicarboxylic acid derivatives or diols, as shown in Figure 2. Reaction 

of ,-aminoalcohols with acid anhydrides or dicarboxylic acid derivatives is another typical way to 

get PEAs from condensation reactions. It is easy to get functionalized PEAs when monomers 

incorporate -amino acid or carbohydrate units, or have at least one unsaturated monomer which could 

be for example a simple dicarboxylic acid derivative.  

Figure 2. Examples of poly(ester amide)s prepared by polycondensation reactions of 

diamide-diol (a,b), diester-diamine (c), ester-diamine (d) and diamide-diester  

(e) monomers. 
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Figure 2. Cont.  
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2.2.1. Melt Polycondensation 

 

This method is advantageous for industrial production because no post-treatment is necessary after 

the polymerization reaction. This is performed under reduced pressure and temperature to favor the 

elimination of condensation products and using transesterification catalysts. The synthesis is usually 

carried out in two temperature steps: The first one operates under milder conditions and gives rise to a 

prepolymer; in the second step the temperature is significantly raised to favor the condensation process 

and to get a high molecular weight sample. 

This procedure has been successfully applied to prepare poly(ester amide)s containing -amino 

acid units by reaction of a diol with a diamide-diester previously obtained by condensation of a diacid 

chloride with an -amino acid methyl ester [23,24] (Figure 3). Secondary reactions derived from the 

required high temperatures constitute the main disadvantage of this method that may limit the final 

molecular weight and cause problems when monomers have functional side groups highly susceptible 

to undertake these undesirable reactions. 

 

2.2.2. Interfacial Polymerization 

 

Interfacial polymerization can be carried out by reaction of a diacid chloride soluble in an organic 

solvent with a diamine or a diol soluble in a water medium. Reaction is strongly influenced by the solvent 

system, catalytic and surfactant additives. The choice of the organic solvent is important since it affects 

other polymerization factors, such as the potential partition of reactants between the two phases, the 

diffusion of the reactants, reaction rate, solubility and swelling or permeability of the growing  

polymer [25]. Surface-active agents can be added to increase interfacial area and contact between 

reactants. Phase-transfer catalysts, generally a small symmetric quaternary ammonium cation, may favor 

the nucleophilic displacement reaction characteristic of the interfacial polycondensation [26].
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Figure 3. Poly(ester amide)s incorporating -amino acids prepared by melt 

polycondensation of a diamide-diester monomer. 
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Interfacial polymerization reaction can be carried out at room temperature and consequently typical 

problems associated to the melt condensation process can be avoided. However, the low-temperature 

interfacial method has also several drawbacks, among which numerous side reactions that lead again to 

chain-termination and unit-heterogeneity should be noted. Interactions between aliphatic diacid 

chlorides and tertiary amines are especially noteworthy side reactions that prevent the formation of 

high molecular weight polymers. 

Typically poly(ester amide)s containing -amino acid units can be, in this case, prepared by 

reaction of a diacid chloride with a diester-diamine obtained by previous condensation of a diol with 

two -amino acid units [27-30]. Since the diester-diamine is unstable as free base and tends to produce 

undesirable side reactions, the monomer is prepared as a stable salt of di-p-toluenesulfonic acid 

(Figure 4). 

 

2.2.3. Solution Polycondensation 

 

High polymerization rates, mild reaction conditions, high molecular weights and minimal side 

reactions are expected features of solution polycondensation reactions that make use of condensing 

agents or activation groups for the carboxylic acid in order to facilitate aminolysis reactions.  

Activation of carboxylic groups is a well known method in peptide chemistry that is based on the 

activation of the carboxylic acid by leaving groups that form new ester or imide derivatives 

(Figure 5(a)). These leaving groups are liberated as low-molecular weight by-products after 

polycondensation. Figure 6 shows typical reactions to obtain -amino acid derivatives by reaction of 
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an activated dicarboxylic acid with a diester-diamine [31,32] (obtained by condensation of a diol with 

two -amino acid units) and a ester-diamine [33] (obtained by condensation of an ,-aminoalcohol 

with an -amino acid unit that gave rise to an aregic polymer).  

 

Figure 4. Poly(ester amide)s incorporating -amino acids prepared by interfacial 

polycondensation of a diester-diamine monomer. 
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Figure 5. Main activating groups (a) and condensing agents (b) employed in solution 

polycondensation reactions.  
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Figure 6. Poly(ester amide)s incorporating -amino acids prepared by solution 

polycondensation of a diester-diamine (a) and an ester-diamine (b) monomer. 
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Esterification reactions between carboxylic and hydroxyl functions can also be favored by the use 

of condensing agents such as a carbodiimide (Figure 5(b)) that facilitate the elimination of water 

molecules under mild conditions. This procedure was applied to get functionalized PEAs  

from hydroxycarboxylic acids prepared from acid anhydrides (e.g., maleic anhydride) and  

aminoalcohols [34]. 

2.2.4. Solid/Liquefied State Polycondensation 

A thermal polycondensation reaction based on the elimination of a metal halide as a driving force 

was also applied to prepare PEAs based on chloroacetate derivatives of an -amino acid [35,36] or a 

diamine [35,37] (Figure 7). Polymerizations can take place in the solid phase, the liquefied phase, or 

both phases, depending on the length of the monomers (i.e., the number of methylene groups) and the 

metal cation involved (e.g., cesium, potassium or sodium). In fact, these two conditioning factors have 

an influence on the melting point of the monomer, which can be either higher or lower than the 

required reaction temperature. This depends also on the cation and decreases in the order  

cesium < potassium < sodium salt. The method appears suitable to prepare functionalized PEAs using 

protected L-lysine as a diamine. Furthermore, the inorganic salt by-product can easily be removed by 

extensive washing with water, giving rise to a highly porous material of interest for some biomedical 

applications.  

 

Figure 7. Synthesis of poly(ester amide)s by bulk polycondensation and formation of 

metal halide salts from chloroacetate derivatives of an -amino acid (a) or a diamine (b).  
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3. Main Families of Functionalized Poly(ester amide)s 

3.1. Functionalized Poly(ester amide)s from Polymerization of Morpholine-2,5-dione Derivatives 

Functionalized PEAs can be obtained by ring opening polymerization of morpholine-2,5-diones 

derived from -amino acids like L-aspartic acid, L-glutamic acid, L-lysine, L-serine (or L-tyrosine) 

and L-cysteine (Figure 8), which provide pendant carboxylic acid, amine, hydroxyl and thiol groups, 

respectively [38-43]. The synthesis of the six-membered ring required a previous protection of 

functional groups, which should be stable under the polymerization conditions [8]. Protective groups 

must be selectively removed without cleavage of ester and/or amide bonds of the polymer main chain 

once the polymerization step is finished. 

The benzyl group was usually employed to protect carboxylic acid (e.g., aspartic or glutamic acids) 

and hydroxyl (i.e., tyrosine or serine) functions [14], respectively. The p-nitrobenzyl group appears 

adequate for thiol groups (e.g., cysteine), whereas the benzyloxycarbonyl group was employed for the 

ε-amino group of lysine. All these protective groups can easily be removed by catalytic hydrogenation 

without affecting the ester linkages of the polymer chain. 

Polydepsipeptides derived from morpholine-2,5-diones containing glycolic acid and protected  

L-lysine, L-aspartic acid or L-glutamic acid [40,43] have been successfully synthesized although final 

molecular weights were low. In general, substituted morpholine-2,5-diones have a low reactivity and 

strategies based on the copolymerization with more reactive lactones (e.g., -caprolactone and 

D,L-lactide) were proposed [14,44] as well as the copolymerization of lactones with amino acid 

carboxyanhydrides [45]. 

Figure 8. Synthesis of morpholine-2,5-diones constituted by -amino acids with protected 

amine (a) and carboxyl, hydroxyl or thiol (b) functional groups.  
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Biodegradable copolymers having pendant reactive groups were obtained by ring-opening 

polymerization of L-lactide with morpholine-2,5-diones constituted by glycolic acid and aspartic acid 

or L-lysine, or L-lactic acid and L-lysine [39,40]. Interestingly, these polymers showed a faster 

enzymatic and hydrolytic degradation than polylactide 

Gonsalves et al. [46] copolymerized the protected morpholine-2,5-dione derived from L-lactic acid 

and L-serine with different feed ratios (80 to 94 mol%) of L-lactide. After removal of the protective 

benzyl groups a copoly(ester amide) with pendant free hydroxy functional groups was obtained 

(Figure 9). These were also reacted with diisocyanate-terminated poly(ethylene glycol) to render 

polymers with a different degree of crosslinking (depending on the amount of free hydroxyl groups). 

The addition of poly(ethylene glycol) decreased the Tg (from 64 °C to 5 °C) and drastically increased 

the amorphous character. 

Barrera et al. synthesised a copolymer of L-lactic acid and L-lysine containing about 2 mol% of 

L-lysine residues [39,47]. Further reaction of pendant lysine with N

-(benzyloxycarbonyl)-L-lysine-N-

carboxyanhydride provided up to a 35-fold increase in the lysine residue [48]. 

 

Figure 9. Synthesis of copolymers from L-lactide and a morpholine-2,5-dione derived 

from L-lactide and protected L-serine.  
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3.2. Poly(ester amide)s Prepared by Polycondensation Reactions and Containing Functionalized 

-Amino Acids 

 

The thermal polycondensation method based on the formation of metal halide salts as a driving 

force (Section 2.2.4.) was successfully applied to get potentially functionalized PEAs using the ethyl 

ester of L-lysine as a diamine unit. No secondary reactions such as transesterification occurred under 

the required polymerization conditions (Figure 10) [49]. 

 

Figure 10. Synthesis of poly(ester amide)s derived from glycolic acid and L-lysine ethyl 

ester by a thermal polycondensation reaction induced by the formation of metal halide salts. 
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Atkins et al. [50,51] used a simple and versatile strategy based on orthogonal protecting groups to 

get PEAs from polycondensation reactions of a diester-diamine and a diacid chloride. This method 

allows the incorporation of basic and acid functions using L-lysine or L-aspartic acid to prepare the 

diester-diamine monomer. Copolymerizations could also be performed using monomers based on 

different -amino acids (Figure 11). Removal of the protective groups provides appropriate pendant 

amine or carboxylic acid functionalities to attach different compounds. For example, the carboxylic 

acid groups of a polymer containing L-aspartic acid units were converted to N-hydroxysuccinimidyl 

esters, which provided useful templates for further derivatization. 
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Figure 11. Scheme of functionalized copoly(ester amide)s based on different 

diester-diamine monomers and succinyl chloride.  
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Chu et al. [52] have reported a method that allows the preparation of random PEAs having free 

amine groups (Figure 12). The procedure involved two steps: A ring-opening reaction of a protected 

amino acid derivative (e.g., N

-(benzyloxycarbonyl)-L-lysine-N-carboxyanhydride (Z-LysNCA)) with 

di-p-toluenesulfonic acid salts of bis-L-phenylalanine hexane-1,6 diester (Phe-6)), followed by 

solution polycondensation of the above mixture of monomers with di-p-nitrophenyl sebacoylate. The 

pendant free amine groups on copoly(ester amide)s were easily regenerated by a subsequent 

deprotection under a simple acid treatment. The content of amine groups of the resulting functional 

PEA copolymers was controlled by adjusting the feed ratio of Phe-6 to Z-LysNCA. 

Figure 12. Random poly(ester amide)s with functional amine groups from  

N

-benzyloxycarbonyl)-L-lysine N-carboxyanhydride derivatives.  
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All PEAs having L-lysine content were amorphous and exhibited Tgs ranging from 18 to 32 °C. The 

bulky pendant protective group in the L-lysine unit decreased the glass transition temperature due to 

its plasticizing effect. After deprotection, the recovered pendant amine groups strengthened 

intermolecular interactions among PEA chains via hydrogen bonds and increased the glass transition 

temperature. The preliminary data of cell proliferation and cytotoxicity of these new functional and 

positive charged PEAs show that they support bovine aortic endothelial cell proliferation 

without cytotoxicity. 

Cytotoxicity, ability to support cell growth, inflammatory properties, and mechanical properties 

have been investigated for some amino and carboxylic acid functionalized PEAs. These were prepared 

by solution polycondensation of diamide-diols containing the -amino acid units and the p-nitrophenyl 

ester of the appropriate dicarboxylic acid [53]. Results indicate that all forms of PEAs were 

noncytotoxic and noninflammatory in vitro. The amino-functionalized PEAs best supported 

endothelial cell adhesion, growth, and monolayer formation. Data suggested that PEAs could be a 

viable biomaterial for use in tissue engineering applications, particularly for use as a vascular graft.  

Random copoly(ester amide)s having pendant hydroxyl groups were prepared by a two-step 

polycondensation using dimethylolpropionic acid (DMPA), a diamine derived from glycine  

and 1,6-hexanediol, and sebacoyl dichloride. Among the three reactants, DMPA is a diol containing a 

pendant carboxyl group, which after incorporation into the molecular chain provides the possibility of 

further connecting drugs or other bioactive molecules to the polymer [54].  

 

3.3. Unsaturated Poly(ester amide)s 

Another approach to get functionalized PEAs is based on the incorporation of reactive 

carbon-carbon bonds which can be placed on either the side or the main chain.  

A series of biodegradable functional amino acid-based PEAs were designed and synthesized by the 

solution co-polycondensation of amino acid (L-phenylalanine and DL-2-allylglycine) based monomers 

and p-nitrophenyl esters of dicarboxylic acids [55] (Figure 13). Polymers incorporated pendant  

carbon-carbon double bonds through the DL-2-allylglycine units and consequently the content on 

these functional groups could be adjusted by tuning the feed ratio of L-phenylalanine to  

DL-2-allylglycine containing monomers. The glass transition temperature of PEAs decreased on 

increasing the methylene chain in both the amino acid and dicarboxilic acid segments. The reactivity 

and utility of the pendant double bonds was verified using a free-radical addition method [50,56,57], 

which converts them into carboxylic acid, amine, and sulfonate functionalities by reaction with  

3-mercaptopropionic acid, 2-aminoethanethiol hydrochloride and sodium-3-mercapto-1-propanesulfonate, 

respectively. In this way, the incorporation of the functional pendant carbon-carbon double bonds 

along the polymer chains could significantly expand the biomedical applications via either their 

capability to conjugate bioactive agents or prepare additional useful functional derivatives. 

A series of copoly(ester amide)s with positively charged guanidine side groups and pendant 

carbon-carbon double bonds were similarly prepared by co-polycondensation of amino acid 

(L-arginine and DL-2-allylglycine) based monomers and p-nitrophenyl esters of dicarboxylic  

acids [58]. All these cationic PEAs showed good solubility in polar solvents like water, alcohol, 
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DMSO, and DMF. The cytotoxity studies indicated that the new PEAs were nontoxic to bovine aortic 

endothelial cells at the tested concentrations and exposure times.  

Figure 13. Synthesis scheme for the preparation of poly(ester amide)s derived from amino 

acids and having pendant carbon–carbon double bonds and subsequent carboxylic acid, 

amine, and sulfonate functionalization. 
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The use of unsaturated diols and/or diacids could provide the PEA backbone of reactive double 

bonds [59-62]. These bonds are new reactive sites that could be used to make crosslinked hydrogel 

networks, which are highly interesting as drug carriers, as will be discussed in the next section [63].
 

Unsaturated PEAs containing -amino acids have been synthesized by the conventional method, 

based on the condensation of bis(-amino acid) ,-alkylene diesters and p-nitrophenyl esters of 

aliphatic dicarboxylic acids. Unsaturated or even mixtures of unsaturated and saturated dicarboxylic 

acids can be employed. Incorporation of the unsaturated units (e.g., by using bis-p-nitrophenyl 

fumarate) brings C=C double bonds in the backbone that increase rigidity and the glass transition 

temperature (respectively to saturated polymers with a similar chemical structure). 

Chu et al. studied the polymerization of the p-toluenesulfonic acid salt of L-phenylalanine  

butane-1,4-diester with different mixtures of di-p-nitrophenyl esters of saturated (succinic, adipic or 

sebacic acids) and unsaturated (fumaric acid) dicarboxilic acids [59,64]. Copolymers could be 

obtained with rather high Mn molecular weights which varied between 14,600 and 36,900 g/mol. 
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Copolymers having different unsaturation levels and properties were easily achieved by the adjustment 

of the feed ratio of the two dicarboxylic monomers. Thermal properties, solubility, and biodegradation 

rate was found to vary within the range defined by the characteristics of pure saturated and unsaturated 

polymers. In vitro biodegradation tests showed that these copolymers could be enzymatically 

hydrolyzed by -chymotrypsin even at a low enzyme concentration, although their hydrolysis in a 

pure PBS buffer medium was slow. It was also found that the biodegradability of copolymers was 

affected by the length of the methylene groups in the saturated dicarboxylic units (the increase resulted 

in a lower hydrolyzable ester bond density and a slower biodegradation rate). The applied 

methodology seems highly interesting to tune properties in order to meet the requirements for a wide 

range of biomedical uses. 

The range of application of amino acid based PEAs can be expanded by employing oligo(ethylene 

glycol)s instead of conventional diols in the solution polycondensation performed from 

diester-diamine monomers [65]. The obtained poly(ether ester amide)s have new blocks with ether 

linkages that may enhance hydrophilicity, flexibility and biodegradability. Depending on the type and 

concentration of monomers used, such as -amino acid, saturated or unsaturated dicarboxylic acids, 

different dialcohols and oligo(ethylene glycol)s, materials with a wide range of thermal, mechanical, 

and biological properties could be attained in order to meet applications for pharmaceutical, 

biomedical, and tissue engineering applications. 

A series of biodegradable random unsaturated/saturated poly(ether ester amide)s were synthesized 

by solution polycondensation of diamine salts of phenylalanine and triethylene glycol with the 

p-nitrophenyl active esters of mixtures between unsaturated (fumaric acid) and saturated dicarboxylic 

acids (succinic, adipic and sebacic acid) (Figure 14) [62]. These random copolymers were obtained 

with fairly good yields and Mn molecular weights ranging from 3,000 to 27,000 g/mol, and 

polydispersity indices between 1.52 and 2.13. Copolymers showed a high degradability in 

-chymotrypsin enzyme solutions and the biodegradation rates decreased with the unsaturated content. 

Interestingly, it was concluded that upon adjusting monomers feed ratio, copolymers could have 

controlled chemical, physical, and biodegradation properties. 

Figure 14. Synthesis of poly(ether ester amide)s constituted by saturated and unsaturated 

dicarboxylic acid units. 
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A series of unsaturated PEAs was synthesized using a mixture of diester-diamine monomers 

derived from oligo(ethylene glycol) and 2-butene-1,4-diol, and a mixture of p-nitrophenyl esters of 

saturated and unsaturated diacids [60,66] (Figure 15). Note that unsaturations were present in both 

diacid and diol moieties. 

Figure 15. Chemical structure of copoly(ester amide)s with unsaturated diol and diacid units. 
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Unsaturated random copoly(ester amide)s were also synthesized by reaction of a mixture of phthalic 

and maleic anhydrides with -caprolactam and a mixture of ethylene and neopenthylene glycols [67]. 

The final oligomers (Mn 2,100–2,600 g/mol) were effectively crosslinked using vinyl acetate and 

benzoyl peroxide—ascorbic acid—as initiator-accelerant agents. The new materials showed a high 

compressive strength (104.0 MPa) and were hydrolytically degradable. Heat treatment conditions and 

crosslinker content played an important role to decrease the cumulative mass loss during the 

hydrolysis process. Measured properties suggested that these copolymers might be potentially used as 

a new type of bone fixation material. Copolymers with similar characteristics were prepared by the 

same procedure but changing -caprolactam with 1,6-hexanediamine [68] or glycine [69]. In the first 

case, preliminary biocompatibility in mice, skin was evaluated and the results were promising for their 

expected biomedical applications. Mechanical properties of composites constituted by the glycine 

derivative and calcium polyphosphate fibers were also evaluated. Results indicated that the mechanical 

strength increased very quickly as the fiber content raised. Flexural and compressive strength achieved 

maximal values when this content was close to 50–60 wt%. 

A series of biodegradable unsaturated PEAs containing also ethylene glycol moieties (from 1  

to 4 units) was successfully prepared through interfacial polycondensation of 1,6-hexanediamine and 

the unsaturated diacylchloride derived from a previous reaction of maleic anhydride with 

oligo(ethylene glycol) (Figure 16) [70]. The obtained poly(ether ester amide)s were amorphous, and 

stable up to 300 °C under nitrogen, showed good hydrophilicity and improved solubility. Polymers 

were hydrolyzable in a rapid and steady way, increasing the rate of hydrolytic degradation by 

increasing the number of ether linkages per repeat unit. 
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Figure 16. Synthesis of unsaturated poly(ether ester amide)s from maleic anhydride and 

oligo(ethylene glycol). 
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An unsaturated dicarboxylic-terminated oligoester was prepared by reaction of ethylene glycol 

lactate diol with maleic anhydride [71]. The oligoester was then melt-polycondensed with  

toluene-2,4-diisocyanate to render a crosslinked resin with unsaturated double bonds (Figure 17). The 

new polymer showed a porous structure due to the formation of CO2 in the last synthesis step and was 

degradable. As a result of introducing isolated C=C double bonds, the polymer was flexible enough to 

exhibit shape-memory characteristics. It is worth mentioning that the glass transition temperature was 

close to human body temperature which meets one of the basic requirements for medical applications. 

Figure 17. Crosslinked unsaturated poly(ester amide)s containing lactic acid units. 
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Chu et al. [72] reported an original way to get amino and carboxylic acid pendant groups from 

unsaturated poly(ester amide)s and poly(ether ester amide)s based on -amino acids 

(i.e.,  L-phenylalanine). These functional groups were easily incorporated by the grafting of a thiol 

onto the unsaturated polymer via a thiol–ene reaction in the presence of a radical initiator (Figure 18). 

This one-step functionalization reaction was carried out with very high yields (close to 100%) under 

mild conditions and had clear advantages over synthesis based on selective protection and deprotection 

of functionalized -amino acid derivatives.  
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Figure 18. Amino and carboxylic acid functionalized poli(ester amide)s and poly(ether 

ester amide)s by reaction of the unsaturated polymer with the indicated thiols.  
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3.4. Carbohydrate Derivatives 

 

Polyesters derived from highly functionalized carbohydrates (e.g., hexitols such as sorbitol, iditol, 

glucitol, galacticol or mannitol and other alditols like xylitol, ribitol or arabitol) can be effectively 

synthesized by using lipases such as Novozyme 435, a lipase B from Candida antarctica immobilized 

on a resin [73-75]. The method is attractive since it appears to be regioselective, requiring mild 

reaction conditions, and the terminal hydroxyl groups of the hexitol or alditol units react faster. Thus, 

it is feasible to get polymers with different non reacted hydroxyl side groups. The procedure has not 

yet been applied to prepare PEAs, but hexitol and alditol derivatives have been synthesized by 

different methods, which seem interesting to review. In addition, the use of carbohydrates is also 

receiving greater attention since, in concert with the depletion of oil resources, the effective utilization 

of renewable resources (e.g., plant-biomass and carbohydrates) appear as an alternative that can be 

steadily supplied and used for polymer syntheses. 

 

3.4.1. Derivatives of L-Arabinose and D-Xylose 

 

L-Arabinose and D-xylose were transformed into 1-amino-1-deoxy-2,3,4-tri-O-methyl- 

5-O-[(pentachlorophenoxy)succinyl]-L-arabinitoland1-amino-1-deoxy-2,3,4-tri-O-methyl-5-O-

[(pentachlorophenoxy)succinyl]-D-xylitol hydrochlorides, respectively, in a seven step synthesis and 

then polymerized in solution using ethyldiisopropylamine as an acid acceptor (Figure 19) [76,77]. The 

regular PEA was derived from arabinose melted above 135 °C [140] whereas the polymer derived 

from xylose was amorphous indicating a great chain conformational flexibility that may contribute to 

the decreasing of cohesive forces between chains [78]. Degradation of this kind of polymers was found 

to occur by hydrolysis of the ester linkages at a rapid rate which depended on the crystallinity and 

hydrophilicity of the samples [79]. PEAs containing succinic acid units degraded faster according to a 

postulated mechanism where succinimide rings were formed [80]. 
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Figure 19. Chemical structure of poly(ester amide)s derived from L-arabinose or D-xylose. 
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Random copolymers were also prepared from appropriate mixtures of the above indicated 

arabinose-succinyl monomers and 5-amino-1-O-[(pentachlorophenoxy)glutaryl]pentanol hydrochloride 

(Figure 20) and their hydrolytic degradation studied [81]. Results demonstrated that the degradation 

rate could be enhanced by increasing the amount of the sugar-based monomer incorporated in the 

polymer chain. In this way, small amounts of this monomer were enough to produce a noticeable 

increase in polymer degradability.  

Figure 20. Chemical structure of copoly(ester amide)s containing L-arabinose, succinyl 

and glutaryl units.  
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3.4.2. Derivatives of Hydrophobic -Amino Acids and Dianhydrohexitols 

Dianhydrohexitols (e.g., 1,4:3,6-dianhydrosorbitol and 1,4:3,6-dianhydromannitol) were used as 

secondary diols to react with -amino acids (L-phenylalanine, L-leucine, L-isoleucine, and  

L-methionine) in the presence of p-toluenesulfonic acid [82]. The obtained diester-diamines were then 

polycondensed in solution using the p-nitrophenyl active esters of even dicarboxylic acids with a 

number of methylene groups ranging from 4 to 10 (Figure 21). To our knowledge, PEAs derived from 

functionalized -amino acids have not so far been prepared although their synthesis shows no 

additional problems regarding the above related PEAs. 

Figure 21. Chemical structure of poly(ester amide)s constituted by dianhydrohexitols,  

-amino acids and dicarboxylic acids.  
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All these polymers appear highly interesting since diols are available in industrial quantities, are 

derived entirely from renewable resources (starch) and are used in pharmacy (i.e., they are non-toxic). 

Problems associated with the low reactivity of the sterically hindered secondary hydroxyl groups were 

avoided with the preparation of O,O’-bis--aminoacyl derivatives which led to sterically unhindered 

(by the bicyclic fragments at least) and highly active functional amino groups that facilitated the 

polymer synthesis. In this way, polymers could be obtained with rather high molecular weights  

(e.g., 32,000 g/mol for the derivative of phenylalanine, sebacic acid and mannitol) and narrow 

polydispersities (1.0–1.7). Polymers had glass transition temperatures of up to 60–120 °C due to the 

presence of rigid cycles and higher than the related polymers derived from alkylenediols. 

Degradation studies performed with -chymotrypsin and lipase revealed highest tendency towards 

enzyme catalyzed hydrolysis for the PEAs based on L-phenylalanine, probably due to the highest 

hydrophobicity of the benzyl side groups. Hydrolysis decreased with the length of the diacid unit 

(i.e., with increasing hydrophobicity of the polymer backbone) since a competitive interaction between 

the hydrophobic acyl residue and the hydrophobic sites of the enzyme led to a non-productive binding 

and a decrease in the overall hydrolysis rate. In any case, degradation rates were comparable with 

those found for related -alkylenediol derivatives demonstrating that hydrolysis was not prevented 

by the rigid bicyclic fragments. 

A series of similar PEAs, but derived from dianhydro-D-glucitol, were also synthesized by solution 

polycondensation. Again, relatively high number-average molecular weights were attained (i.e., up  

to 3.8 × 10
4 

g/mol). These PEAs were, in general, degraded more slowly than the corresponding 

polyesters having the same aliphatic dicarboxylic acid units, both in composted soil and in an activated 

sludge. However enzymatic degradation tests using papain (an enzyme able to favor ester-bond and 

amide-bond cleavages) indicated a faster degradation for these new PEAs. 

Intraocular polymer delivery systems based on biodegradable PEAs derived from 

bicyclic-fragments of 1,4:3,6-dianhydrohexitols such as D-glucitol, D-mannitol or L-iditol have been 

patented [83]. It has been claimed that the new systems released opthalmologic agents in a consistent 

and reliable manner into the exterior or interior of the eye by biodegradation of the polymer. 

 

4. Biomedical Applications of Functionalized Poly(ester amide)s 

Incorporation of functional pendant groups has expanded the applications of PEAs for two main 

reasons: (a) They allow tailoring properties such as mechanical, thermal, biodegradation rate and 

hydrophilicity; and (b) they allow further chemical conjugation with a wide variety of drugs, targeting 

groups, cell signaling molecules or other biological agents.  

4.1. Drug Delivery Systems 

Development of new synthetic degradable polymers for controlled release of drugs and proteins has 

been the focus of much attention since 1990s. First polymers were based on lactide and glycolide units 

due to their biodegradability and safe history as suture materials. Capability for processing into micro- 

and nanoparticles expanded their pharmaceutical applications for both oral and parenteral 

administration. The successful use of these polymers led to the evaluation of other aliphatic polyesters 

such as poly(-caprolactone). However, high crystallinity and hydrophobicity may cause an 
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incomplete drug release that justifies the development of new polymers, copolymers and blends. In 

this way, a new series of materials with tailored properties can be achieved. 

Random copolymers of lactide and morpholine-2,5-diones with reactive (hydrophilic) side-chain 

groups such as those derived from glycolic and aspartic acids or glycolic acid and lysine had been used 

to prepare microspheres with reactive surfaces [84-86]. These showed an efficient entrapment of ionic 

drugs and a slow drug release because of electrostatic interactions of the drug with the ionic side-chain 

groups of the polymer matrix. Amphiphilic block copolymers consisting of polylactide as hydrophobic 

segments and polydepsipeptides with amino or carboxylic acid groups as hydrophilic segments 

(Figure 22) were also considered. The microspheres of both random and block copolymers showed 

controlled release of growth factors to promote rapid growth of cells and regeneration of tissues.  

 

Figure 22. Amphiphilic block copolymers consisting of polylactide and polydepsipeptide 

with interest as drug delivery systems.  
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Some hyperbranched PEAs are now produced on an industrial scale and commercialized (Hybranes, 

Figure 23) at a very competitive cost. These PEAs were obtained from a monomer derived from a 

cyclic anhydride and a diisopropanol amine. Polycondensation was carried out via an oxazolinium 

intermediate in bulk, at relatively mild conditions, in the absence of catalyst [87]. By varying and 

combining anhydrides, and modification with several types of end groups, a large variety of structures 

with concomitant properties and industrial applications were obtained. In particular, compounds appear 

as promising candidates for pharmaceutical formulations as drug carriers (e.g., acetaminophen) [88]. It 

was also demonstrated that this kind of hyperbranched polymer with a large number of functional 

groups can act as solubilization enhancers for poorly water-soluble drugs, such as glimepiride, an 

antidiabetic drug [89]. Advantages are clear since the poor aqueous solubility and slow dissolution rate 

of glimepiride may lead to irreproducible clinical response or therapeutic failure due to subtherapeutic 

plasma drug levels. From an economical point of view, low oral bioavailability results in wasting a 
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large portion of an oral dose and increases the cost of drug therapy, especially in the case of 

expensive drugs.  

Figure 23. Chemical structures of commercial hyperbranched poly(ester amide)s: Hybrane 

S1200 (a), and Hybrane HA1690 (b). 
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PEAs with elastomeric and bioabsorbable characteristics can also be used as coatings to which 

drugs can be covalently conjugated. Furthermore, composition and microstructure can be easily varied 

to allow a desired rate of degradation and drug release. Degradation rate of PEAs tends to increase 

with levels of inflammation, a feature that can be taken into account to control a treatment agent 

release rate (e.g., when the agent is directly linked to polymer side chains). 

PEA coatings have been studied as efficient delivery systems of oxygen free radical scavengers 

(i.e., tempamine) which reduce tissue injury by neutralizing the toxic free radicals released during 

inflammation, and have therefore a positive effect on the vascular healing response. In particular, 

copoly(ester amide)s based on -amino acids (e.g., L-leucine and L-lysine), diols and dicarboxylic 

acids were demonstrated to be biocompatible with the arterial walls [90,91]. Furthermore, PEAs 

coatings loaded with a 50% of tempamine had a tendency to decrease arterial injury as demonstrated 

by in vivo studies, in contrast with the severe inflammation observed when stents were directly loaded 

with the drug (i.e., without using the polymer coating) [92]. Several PEA coated stents have been 

patented for different medical procedures, such as treating occluded regions of blood vessels, 

thrombosis and restenosis [93,94]. Usually, a polymer solution which includes a dispersed therapeutic 

substance is applied to the stent. The solvent is allowed to evaporate, leaving a coating of the polymer 

on the stent surface and the therapeutic substance impregnated in the polymer. 

A family of biodegradable copoly(ester amide)s based on naturally occurring -amino acids 

(e.g., L-leucine and L-lysine derivatized by either benzyl alcohol or the nitroxide radical 

4-amino-TEMPO as pendant group) has also been developed for applications ranging from biomedical 

device coatings to delivery of therapeutic biologics. An important feature of these coatings was their 

ability to support a natural healing response by attenuating the pro-inflammatory reaction to the 
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implant and promoting growth of appropriate cells for repair of the tissue architecture. As a measure of 

pro-healing tissue compatibility for cardiovascular applications, endothelial cells adhered, spread, and 

proliferated on PEAs. Furthermore, new polymers were non-hemolytic and did not deplete platelets or 

leukocytes from whole blood [95].  

4.2. Hydrogels 

Hydrogels are of great interest for their use as medical implants, biosensors, bioseparators, and 

matrices for drug delivery and tissue engineering since they have high water content like body tissues 

and may be highly biocompatible. Biodegradable hydrogels are of interest as drug delivery systems for 

two main reasons: (a) A permanent foreign-body reaction is not produced after the materials serve their 

intended functions due to their biodegradability; and (b) biodegradable hydrogels could provide a drug 

release mechanism different to a traditional diffusion-based controlled release. The biodegradation-based 

mechanism is critical for complete release of large molecular weight drugs, especially pharmaceutically 

active proteins and peptides [96]. Hydrogels can be prepared by photocrosslinking PEAs with 

unsaturation on their main chain or in the side chain (Figure 24). 

 

Figure 24. Preparation of hydrogels by photocrosslinking reactions involving 

carbon-carbon double bonds in the main (a) and side chain (b).  
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Hydrogels derived from copoly(ester amide)s with chemical structures displayed in Figure 15 

(i.e., having carbon-carbon double bonds in their main chain) were prepared by photocrosslinking with 

poly(ethylene glycol) diacrylate (Figure 25). In fact, poly(ethylene glycol) is one of the frequently 

used hydrogel precursors since in vivo use is approved by the U.S. Food Drug Administration. 

Furthermore, elastic modulus, hydrophilicity and swelling behavior of these kind of hydrogels can be 

improved since the hydrophobic character of initial copoly(ester amide)s is balanced [97,98]. Based on 

the weight loss data, -chymotrypsin had a much more profound effect on the hydrolysis (up to 32% 

weight loss on day 31) than PBS (less than 16%). The changes in elastic moduli and the interior 

morphology of the hydrogels were monitored during biodegradation and both the crosslinking density 

and the molecular weight between crosslinks determined. The differences in biodegradation rates 

showed that hydrogels could have controllable biodegradability by changing the concentration of 

-chymotrypsin, the type of unsaturated precursor and the feed ratio (i.e., the ratio between the PEA 

precursor and the acrylate coupler). 
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Figure 25. Poly(ethylene glycol) diacrylate coupler used to prepare hydrogels from 

unsaturated poly(ester amide)s. 
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New biodegradable hybrid hydrogels were also prepared by UV photocrosslinking with 

poly(ethylene glycol) diacrylate (Mn = 4,000 g/mol) or pluronic diacrylate (Mn = 7,000 g/mol) of 

pendant carbon-carbon double bonds in copoly(ester amide)s [99]. These were derived from 

L-phenylalanine and DL-2-allylglycine based monomers and p-nitrophenyl esters of dicarboxylic 

acids.
 
The content of the pendant double bond in these unsaturated poly(ester amide)s was tunable by 

adjusting the feed ratio of allylglycine to another regular amino acid like L-phenylalanine. All these 

hybrid hydrogels showed three-dimensional porous structures. The gelation efficiency was lower when 

pluronic diacrylate was employed due its longer chain and consequently a looser network structure 

was formed. The hydrophobicity, crosslinking density and mechanical strength of the hybrid hydrogels 

increased with an increase in allylglycine content (i.e., double bond content) in the precursor polymer, 

but their swelling and pore size decreased. The biodegradation rate of these hybrid hydrogels in an 

enzyme (-chymotrypsin) solution increased with an increase in the enzyme concentration and 

allylglycine content.  

The synthesis of poly (L-serine-alt-glycolic acid ) and copolymers of poly (L-serine- co-glycolic 

acid-co-lactide) and poly (L-serine- co-glycolic acid- co--caprolactone) has been performed from the 

appropriate morpholine-2,5-dione (Section 2.1.1) and lactide and -caprolactone rings. These 

biodegradable polymers contain a reactive primary hydroxy group on the side chain of serine and 

copolymers may show a variable degradation rate by changing the ratio of lactide and -caprolactone 

units. Polymers were also functionalized with the acrylate group through the reaction of the serine 

units with acryloyl chloride. Subsequent UV-photopolymerization of acrylate groups provided glassy 

and transparent networks with a gel content close to 90% that may be used for the purpose of 

encapsulating cells/drugs for injectable delivery [41]. 
 

4.3. Non-Viral Gene Carriers 

Gene therapy has a great potential to provide effective treatments for many human diseases but its 

success depends on finding safe and effective delivery systems. Safety issues associated with current 

viral vectors, such as immune response, toxicity, chromosomal integration, and short shelf-life, may be 

overcome with non-viral delivery systems. Among different approaches, synthetic polymers appear 

attractive because of versatility in properties and types of modifications, low immunogenicity, 

unrestricted plasmid size, better shelf-life and the possibility of repeated administration. However, 

synthetic polymers are not able to deliver therapeutic DNA at a comparable efficiency than viral-based 

gene carriers. 

PEAs based on arginine units were prepared by the solution polycondensation method (from a 

diester-diamine and an activated dicarboxylic acid) and both their biosafety and capability to transfect 

rat vascular smooth muscle cells, a major cell type participating in vascular diseases, was 
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demonstrated [100]. New PEAs showed high binding capacity toward plasmid DNA due to the strong 

basic guanidino group (pKa ~ 12.5), which can condense negatively charged DNA. The binding 

activity was found to decrease with the increase of the number of methylene groups in the diol 

segment of PEAs. Furthermore, the use of arginine based PEAs as potential gene carriers was 

postulated to benefit from the fact that polyarginine enters cells more efficiently than other 

polycationic polymers that have been assayed as gene carriers. 

4.4. Tissue Engineering 

Materials to be used for tissue engineering applications and in vivo implantation should be 

characterized in terms of cytotoxicity, ability to support cell growth, inflammatory properties, or 

mechanical properties. Some of these features have been evaluated for new functionalized PEAs 

(Section 3.2) obtained by solution polycondensation and derived from amino-fuctionalized (L-lysine 

derivative), carboxylic acid-fuctionalized (L-aspartic acid derivative) and neutral (L-phenyalanine 

derivative) PEAs [53]. Results indicated that all forms of investigated PEAs were noncytotoxic and 

noninflammatory in vitro, although the amino-functionalized PEA best supported endothelial cell 

adhesion, growth, and monolayer formation. Mechanical testing indicated that the elastic moduli of 

these materials were strongly dependent on the charge formulation, but exhibited linearly elastic 

behavior at small strains (<10%). Data suggested that PEAs could be a viable biomaterial for use in 

tissue engineering applications and particularly for use as a vascular graft [53]. Over 600,000 coronary 

artery bypass grafts are implanted each year in the United States and Europe which justifies interest 

towards the development of effective synthetic vessel replacements as an alternative to autologous 

graft procedures, which may carry a substantial risk to the patient (i.e., a synthetic polymer, which 

closely mimics the mechanical properties of blood vessels, may minimize compliance mismatch and 

reduce the frequency of graft failure). 

New PEAs based on the -amino acids L-phenylalanine and L-methionine and a  

diol (1,4-butanediol or 1,6-hexanediol) and sebacic acid were synthesized with high molecular weight 

and narrow polydispersity indices. Porous 3D scaffolds prepared from these PEAs were found to have 

excellent porosities and appeared to be highly interesting for vascular tissue engineering [101]. 

New biodegradable elastomeric PEAs have also been synthesized for tissue engineering 

applications [102]. These new materials allow overcoming some limitations of conventional 

crosslinked aliphatic polyesters: (a) High crosslink densities, which result in exceedingly high 

stiffness; (b) rapid degradation upon implantation; or (c) limited chemical moieties for chemical 

modification. Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s formed crosslinked networks 

through the hydroxyl group and polyol (glycerol and/or D,L-threitol) units (Figure 26), and featured 

tensile Young’s modulus on the order of 1 MPa and reversible elongations up to 92%. These polymers 

exhibited in vitro and in vivo biocompatibility and had projected degradation half-lives of up  

to 20 months in vivo. 
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Figure 26. Synthesis of elastomers based on a multifunctional amine group 

(e.g., 1,3-diamino-2-hydroxypropane), a polyol (glycerol or D,L-threitol) and dicarboxylic 

acids (e.g., sebacic acid).  
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Elastomeric biodegradable polymeric networks, and in particular semi-interpenetrating networks, 

can be formed using di- and poly-functional crosslinkers and functionalized poly(ester amide)s, based 

on -amino acids and having double bonds in their main chain. It has been claimed that such materials 

have an appropriate combination of elasticity and toughness to be suitable for implantable 

biodegradable internal fixation devices. Components can be introduced in certain embodiments in vivo 

in a liquid state (i.e., prior to crosslinking) or implanted after being crosslinked ex-vivo [103].
 

4.5. Smart Materials 

Stimuli-responsive polymers (e.g., thermosensitive polymers) are of great interest as materials for 

advances in biotechnology and the biomedical field due to their wide application as sensing, pollution 

control, drug delivery, biomimetic actuation, and catalysis. The thermosensitivity of any polymeric 

material can be regulated by controlling the hydrophobic–hydrophilic balance of the polymeric chains. 

Ohya et al. [104]
 
induced thermosensitivity in the polydepsipeptide constituted by glycolic and 

aspartic acids by attaching the moderately hydrophobic isopropylamine group into its carboxylic side 

group. The new polymer was fully degradable in vitro at room temperature by cleavage of the ester 

bonds in the main chain. The cloud point at 29 °C (between room and body temperature) makes the 

polymer attractive for implants and other biomedical applications. 

 

4.6. Composites and Adhesives 

With the emergence of commercial hyperbranched and dendritic polymers, having a 

three-dimensional morphology with high peripheral functionality, new opportunities have been created 

for formulating dental adhesives and composites with enhanced mechanical and physical properties. 

Hybrane, a commercially available poly(ester amide), was effectively incorporated into acrylate-based 

dental composite and adhesive systems [105]. Addition of this hyperbranched polymer caused a higher 

cross-link density as a result of the large number of reactive end groups on the periphery that could 

react with the constituents of the polymer network. The enhanced cross-linking led to higher 

compressive strength (from 253 ± 20 MPa to 386 ± 20 MPa) and lower polymerization shrinkage 
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(from 2.4 ± 0.2% to 1.5 ± 0.2 %) than a typical dental composite formulation. At concentrations higher 

than 0.5 wt%, the polymer acted as a plasticizer, reducing compressive strength and increasing 

shrinkage. It was also shown that the PEA added to the dental adhesive compositions increased the 

shear bond strength and enhanced the bond durability to a variety of dental surfaces. 

5. Conclusions  

Poly(ester amide)s constitute a peculiar family of biodegradable polymers, due to the presence of 

both ester and amide groups that guaranties degradability, and some improved properties with respect 

to related polyesters. A great effort has been made in the development of PEAs since the preparation 

of the first derivatives in the 1970s.  

Synthesis methodologies are currently well established and allow attaining samples with appropriate 

molecular weights for most uses. Both ring opening polymerization of morpholine-2,5-dione derivatives 

and polycondensation reactions appear to be suitable procedures. A considerable body of literature 

refers to the preparation of PEAs with different architectures, which could lead to amorphous, 

semicrystalline and elastomeric materials. Furthermore, published data shows that a wide variety of 

monomers can be employed and that -amino acid, carbohydrate or oligo(ethylene glycol) units can be 

easily incorporated. In this way, it is feasible to get a wide range of final properties. 

Since the 1990s, research on poly(ester amide)s has mainly focused on the preparation of 

functionalized polymers. Strategies are based on the incorporation of amine, hydroxyl and carboxyl 

pendant groups, or even on the incorporation of carbon-carbon double bonds in either the chain 

backbone or the pendant groups. In this way, a great number of biomedical applications for these new 

polymers are currently being studied to cover topics such as controlled delivery systems, hydrogels 

and tissue engineering. Furthermore, several hyperbranched PEAs with interesting properties for their 

use in the biomedical field have been commercialized at competitive prices and even the number of 

patents related to the use of functionalized PEAs is steadily increasing. However, great efforts appear 

still necessary to validate the highly promising properties of new PEAs and also to improve their 

performance properties.  
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