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Abstract: Endogenous stimuli-responsive injectable hydrogels hold significant promise for practical
applications due to their spatio-temporal controllable drug delivery. Herein, we report a facile
strategy to construct a series of in situ formation polypeptide hydrogels with thermal responsiveness
and enzyme-triggered dynamic self-assembly. The thermo-responsive hydrogels are from the diblock
random copolymer mPEG-b-P(Glu-co-Tyr). The L-glutamic acid (Glu) segments with different γ-alkyl
groups, including methyl, ethyl, and n-butyl, offer specific secondary structure, facilitating the forma-
tion of hydrogel. The L-tyrosine (Tyr) residues not only provide hydrogen-bond interactions and thus
adjust the sol–gel transition temperatures, but also endow polypeptide enzyme-responsive properties.
The PTyr segments could be phosphorylated, and the phosphotyrosine copolymers were amphiphilies,
which could readily self-assemble into spherical aggregates and transform into sheet-like structures
upon dephosphorylation by alkaline phosphatase (ALP). P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr)
copolymers showed good compatibility with both MC3T3-E1 and Hela cells, with cell viability above
80% at concentrations up to 1000 µg/mL. The prepared injectable polypeptide hydrogel and its
enzyme-triggered self-assemblies show particular potential for biomedical applications.

Keywords: polypeptides; enzyme responsive; thermo-sensitive; injectable hydrogel; phosphotyrosine

1. Introduction

Over the past few decades, injectable hydrogels have attracted great interest and are
being leveraged for drug delivery, sensors, scaffolds, and actuators [1–5]. The unique
injectability confers the feasibility of injection of an aqueous solution of polymers into the
body, followed by in situ gelation driven by specific physiologically relevant endogenous
or exogenous stimuli. In contrast to systemic delivery, locally delivered therapies offer
more advantages in terms of minimal adverse effects, minimal invasive administration
procedures, and spatio-temporal controlled drug delivery and release [6–9]. Among the
various stimuli, such as temperature, redox signals, pH, enzymes, and glucose, that have
been employed for sol-to-gel phase transitions, temperature is of particular interest for
its advantages in practical applications [10–17]. Thus, thermosensitive hydrogels that
have a mild sol-to-gel over-behavior and convert to a gel state at body temperatures are
highly desirable.

Inspired by the self-assembly and diverse functions of nature proteins and peptides,
synthetic polypeptides that have analogical compositions and structures similar to nature
proteins are potential building blocks for the formation of supramolecular hydrogels due
to their unique secondary structures such as random coil, α-helix and β-sheet and their
responsiveness to physiological signals or external stimuli [11,18]. The inherent compati-
bility, tunable biodegradability, controllable secondary structure, versatility, and scalable
synthetic strategy of polypeptides also contribute to their wide applications as depots
for local drug delivery, antibacterial materials, and scaffolds [7,11,19–23]. The sol-to-gel
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transition temperature is highly influenced by the secondary structures and composites
of synthetic polypeptides [24,25]. Therefore, how to tailor the sol-to-gel transition temper-
ature and the mechanical properties of hydrogels via regulation of secondary structures
is proposed [26,27]. Polypeptides based on Glu have been extensively investigated, and
polyglutamate derivatives have a propensity to adopt α-helical rigid conformation be-
cause of the intramolecular hydrogen bond [28–30]. Serine and tyrosine prefer to form
β-sheets due to their intermolecular hydrogen bonding interactions [31–33]. The α-helical
domain commonly exists in protein networks involving mechanical signals. The β-sheet
is mainly found in amyloids, silk, and titin [34,35]. For example, spider silks comprise
10–15% domains of antiparallel β-sheet crystals embedded in a hydrophilic protein matrix.
This nanoconfinement structure endows spider silks with high stiffness and toughness [36].
Inspired by spider silks, random copolymers based on different amino acids may provide
a facile strategy to develop injectable hydrogels with diverse structures and mechanical
properties. Moreover, tyrosine can be modified by phosphorylation, and controlling the
conformation of proteins by phosphorylation/dephosphorylation can further modulate
the biological activity of proteins [37]. It has been reported in the literature that phosphory-
lation/dephosphorylation efficiently regulates the folding of amphiphilic short peptides to
form a fiber network conformation [38]. We extend this concept to the polymers studied in
this paper.

Herein, we report a facile strategy to construct a series of in situ injectable reversible
polypeptide hydrogels with thermal responsiveness for local injection by ring opening
polymerization (ROP) of γ-alkyl-L-glutamic acid N-carboxyanhydride (Glu-NCA) and
L-tyrosine N-carboxyanhydride (Tyr-NCA) using mPEG as an initiator to obtain block
copolymer mPEG-b-P(Glu-co-Tyr) at a low degree of polymerization (DP ≤ 18), providing
satisfactory dispersion or aqueous solubility. The PGlu segments present both α-helix
and β-sheet secondary structures, facilitating the formation of hydrogel. PTyr segments
with phenolic groups provide polar side chains and additional intermolecular hydrogen
bonds with pendant carbonyls of PGlu segments or water molecules, which promotes
the self-assembly of polypeptides. It is worth mentioning that the PTyr could also be
phosphorylated, and the corresponding phosphorylated polypeptide could respond to
alkaline phosphatase (ALP) and conduct dynamic self-assembly.

2. Materials and Methods
2.1. Materials and Characterization

Methoxy polyethylene glycol amino (mPEG45-NH2, Mn = 2000) was purchased from
Pengsheng Biological Company (Shanghai, China) and used without further purification.
L-glutamic acid (L-GA) and L-tyrosine (L-Tyr) were purchased from Macklin Biochemical
Company (Shanghai, China). ALP was obtained from BiDe Pharmaceutical Technology
Company (Shanghai, China). Ultra-dry dimethylformamide (DMF), ultra-dry triethy-
lamine, and ultra-dry phosphorous oxychloride were purchased from Anhui Zesheng
Technology Company (Anhui, China). Phosphate buffer (PBS) pH 7.4 was purchased from
Servicebio (Wuhan, China). All other reagents and solvents were purchased from Komeo
Chemical Reagent (Tianjin, China), and all other reagents were used directly without further
purification. HeLa (a human cervical cancer cell line) and MC3T3-E1 (mouse embryonic
osteoblast cell line) were purchased from the American Type Culture Collection (ATCC,
Rockville, MD, USA). HeLa cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS), and
MC3T3-E1 cells were cultured in α-MEM culture medium containing 10% FBS.

Nuclear magnetic resonance hydrogen (1H NMR) (Bruker, AVANCE400, Karlsruhe,
Germany, GRE) spectrometer and Fourier transform infrared (FTIR) spectroscopy (Bruker,
Vetor-22, Karlsruhe, Germany, GRE) were used to characterize the chemical structure of
compounds. Dynamic light scattering (DLS) (Malvern, Zetasizer S90, Malvern, UK) was
used to determine the zeta potential of the product. Scanning electron microscopy (SEM)
(FEI, Nova Nano SEM 450, Portland, OR, USA) was used observed the morphology of
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polymers. The secondary structure determination of copolymers was characterized by
circular dichroism (CD) (Applied Photophysics, Chirascan CD, Shanghai, China) spec-
troscopy. The dynamic mechanical properties of hydrogels were characterized by rheology
tests, which were performed using a rotational rheometer (Anton Paar, MCR-92, Graz,
Austria). The 450 nm absorbance of the surviving cells was measured by the Bio-Rad 680
enzyme labeler (Agilent, BioTek Epoch 2, Santa Clara, CA, USA). The optical photographs
of cell morphology were recorded by a trinocular biological microscope (Weiyi Optical
Instrument, WYS-41XD, Tianjin, China).

2.2. Synthesis of PEG-b-P(MGlu-co-Tyr) Copolymer

The synthesis of PEG-b-P(MGlu-co-Tyr) (abbreviated as P(MGlu-co-Tyr)) block copoly-
mers was prepared by ROP of different proportions of Tyr NCA and MGlu NCA using
mPEG45-NH2 as the macroinitiator. Briefly, Tyr NCA (0.93 g, 4.5 mmol), MGlu NCA
(1.83 g, 9.75 mmol), and mPEG45-NH2 (1.50 g, 0.75 mmol) were dissolved in anhydrous N,
N-dimethylformamide (DMF) under a nitrogen atmosphere. The reaction was stirred for
72 h at 35 ◦C and then precipitated into diethyl ether. The obtained P(MGlu-co-Tyr) was
filtered and dried at room temperature in vacuo. The yield was 71%. 1H NMR (400 MHz,
TFA-d) δ 7.16–6.95 (m, 6H, -C6H4-), 6.93–6.77 (m, 6H, -C6H4-), 4.78 (dd, 17H, -COCHNH-),
3.90 (d, 180H, -PEG), 3.80 (d, 46H, -CH3), 2.65–2.54 (m, 30H, -CH2C6H4-), 2.34–2.24 (m,
17H, -COOCH2-), 2.14 (d, 18H, -NHCHCH2-).

2.3. Synthesis of PEG-b-P(MGlu-co-Tyr/P)

P(MGlu-co-Tyr) (50 mg) was dissolved in anhydrous N-Methyl Pyrrolidone. Anhy-
drous triethylamine (200 µL) and phosphoryl chloride (200 µL) were then added. The
reaction was stirred overnight, and then a sodium bicarbonate solution was added. PEG-b-
(MGlu-co-Tyr/P) (abbreviated as P(MGlu-co-Tyr/P)) was obtained by dialysis (molecular
weight cutoff: 3500 Da) against deionized water for 2 days and then lyophilized. (Yield:
63%). 1H NMR (400 MHz, TFA-d) δ 7.31 (s, 21H, -H2PO4), 4.85 (s, 9H, -COCHNH-), 4.43 (s,
5H, -COCHNH-), 3.97 (s, 180H, -PEG), 3.81 (d, 38H, -CH3), 3.38 (p, 26H, -NHCHCH2CH2-),
3.09 (s, 14H, -CH2C6H4-), 2.59 (d, 33H, -NHCHCH2-).

2.4. Gel Phase Diagram and Gel Time Measurement

The sol-to-gel transition behavior of the copolymers was determined by the vial
inversion method. A certain concentration of polymer solution was prepared with PBS (pH
7.4) and added to a vial. Then, the polymer solution was stirred in an ice bath for more than
36 h to form a homogeneous system. Finally, the temperature was increased by 1 ◦C every
ten minutes by the gradient temperature increase method, and the maximum temperature
was set at 60 ◦C. The gel temperature was recorded through the vial inversion method by
observing that there was no flow within half a minute (N = 3). To determine the gelation
time, vials containing the polymer solutions at 0 ◦C were immersed directly into a 37 ◦C
water bath. The vial was taken out every 5 s and inverted to observe whether the solution
flowed. The gelation time was recorded when stable hydrogels formed. Each data point
from the above test represented the average and standard deviation of three measurements.

2.5. Rheology Test

The dynamic mechanical properties of hydrogels were characterized by rheology tests,
which were performed using a rotational rheometer. The PBS 7.4 aqueous polymer solution
was placed between parallel plates of 25 mm diameter with a gap of 1.0 mm. The edge of the
sample was covered with silicone oil to prevent water evaporation. The data were collected
under 1% strain and 1.0 rad/s. Temperature test range of 10–70 ◦C for PGlu hydrogels and
10–60 ◦C for P(MGlu-co-Tyr) hydrogels, and the heating rate was 0.5 ◦C/min. In addition,
to further investigate the stability of hydrogels, the variation of hydrogel modulus with
angular frequency at physiological temperature was tested.
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2.6. In Vitro Cytotoxicity Analysis

The cytotoxicity was detected by the Cell Counting Kit-8 (CCK8) assay. The copoly-
mers were configured with pH 7.4 PBS as 31.25 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL,
500 µg/mL, and 1000 µg/mL solutions and irradiated with UV light for 2 h. MC3T3-E1
or HeLa cells were inoculated into 96-well plates (8000 cells/well), and 180 µL of DMEM
or α-MEM was added to each well, and incubated overnight at 37 ◦C in an atmosphere
of 5% CO2. Then the medium was removed, and a new 180 µL of medium was added
to each well. Polymer solution (20 µL) was added to each well, and PBS was used as the
control group. After 48 h, the CCK8 assay was performed by measuring the absorbance
of the surviving cells with the BioTek Epoch 2 enzyme labeler (450 nm). Cell viability (%)
was evaluated by standardizing the absorbance of the samples to the absorbance of control
wells. The measurements were repeated three times. According to previously reported
literature [39], the formula for calculating cell viability is expressed as follows:

Cell viability(%) =

(Asample − Ablank

Acontrol − Ablank

)
× 100

where Asample refers to the absorption value of the sample wells, Ablank is the absorption
value with the addition of an equal volume of medium, and Acontrol refers to the absorption
value of the sample wells with a polymer concentration of zero.

2.7. ALP Triggered Dynamic Self-Assembly

P(MGlu-co-Tyr/P) (20 mg) was incubated with ALP (5U/mL) in Tris HCl buffer (pH
8.8) under 37 ◦C for 24 h. Afterwards, the mixture was dialyzed (molecular weight cutoff:
3500 Da) against deionized water for 2 days to remove residual ALP. The micromorphology,
zeta potential, and secondary structure before and after ALP-mediated assembly were
observed by SEM, DLS, and circular dichroism spectroscopy (CD). The details of the
experiment are as follows:

A tiny amount of P(MGlu-co-Tyr/P) aqueous solution and P(MGlu-co-Tyr/P) aqueous
solution incubated with ALP and dialyzed to remove the residual ALP were taken on
clean silicon wafers, dried, and used SEM to observe the microscopic morphology. 1 mL of
P(MGlu-co-Tyr/P) aqueous solution and P(MGlu-co-Tyr/P) aqueous solution incubated
with ALP and dialyzed to remove the residual ALP were placed in a Malvern zeta potential
cuvette, respectively, and the zeta potentials were tested by DLS. P(MGlu-co-Tyr/P) and
P(MGlu-co-Tyr/P) treated with ALP incubation and dialyzed to remove excess ALP were
diluted to a concentration of 0.5 mg/mL with deionized water, mixed homogeneously, and
tested by circular dichroism at 20 ◦C, respectively.

3. Results
3.1. Synthesis and Characterization of Copolymers

The block copolymer poly(ethylene glycol)-block-poly(γ-alkyl-L-glutamate) (mPEG-b-
PGlu) (abbreviated as PGlu) with different functional groups including methyl, ethyl,
and n-butyl was synthesized by ROP of the corresponding γ-methyl-L-glutamate N-
carboxyanhydride (MGlu NCA), γ-ethyl-L-glutamate N-carboxyanhydride (EGlu NCA),
and γ-butyl-L-glutamate N-carboxyanhydride (BGlu NCA) using methoxy mPEG45-NH2
as a macroinitiator (Scheme 1A). The obtained copolymers were abbreviated as PMGlu,
PEGlu, and PBGlu, respectively. L-tyrosine N-carboxyanhydride (Tyr-NCA) monomer
could also be introduced to prepare copolymer P(MGlu-co-Tyr) (Scheme 1B). The DP of
each segment was controlled by adjusting the feed molar ratio of the NCA monomer during
polymerization (Table S1). The copolymer solution could form gels with an increase in
temperature, and the sol-to-gel transition was reversible (Scheme 1C). Scheme 1D presents
photographs of the reversible sol-to-gel transition of P(MGlu-co-Tyr). Next, the composi-
tion and structure of the obtained copolymer were characterized by 1H NMR spectra and
FTIR spectra.
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Scheme 1. Schematic illustration of polypeptide synthesis and hydrogel formation. (A) Synthetic
routes of poly(ethylene glycol)-block-poly(γ-alkyl-L-glutamate). (B) Synthetic routes of P(MGlu-co-
Tyr) copolymers. (C) Gel mechanism of reversible peptide hydrogels. (D) Photographs of reversible
phase transitions of P(MGlu-co-Tyr) copolymer solution at 8.0 wt % at 0 ◦C and 37 ◦C, respectively.

1H NMR spectra confirmed the successful synthesis of the four kinds of NCA monomers
and their corresponding PGlu derivatives (including PMGlu, PEGlu, and PBGlu)
(Figures S1 and 1A). The Tyr segment was successfully introduced by copolymerization of
MGlu NCA and Tyr-NCA monomers, as shown in Figure 1B. The composition and molec-
ular weight of the peptide blocks were calculated by the integrals of 1H NMR spectra at
3.70−3.80 ppm (−CH3 of MGlu), 1.20−1.25 ppm (−CH2CH3 of EGlu), 0.82−0.88 ppm
(−CH2CH2CH2CH3 of BGlu), 6.76−7.16 ppm (phenyl group of Tyr), 3.80−3.95 ppm
(−CH2CH2O− of PEG) (Figure 1A,B). The DP of copolymers was determined by 1H
NMR, as shown in Table S1. Figures 1C and S2 displayed FTIR spectra of the polypeptides
PMGlu, PEGlu, and PBGlu and the corresponding monomers MGlu NCA, EGlu NCA, and
BGlu NCA at room temperature, respectively. The successful synthesis of polymers was evi-
denced by the appearance of new absorbance at 1652, 1627 cm−1, representing the stretching
vibration of -C=O- on the main chain, peaks at 1550 cm−1 for the in-plane bending vibration
of -NH-, and the disappearance of the characteristic peaks at 1745–1880 cm−1 from the
C=O groups of NCA rings. The 1H NMR and FTIR spectroscopic analyses indicated the
successful synthesis of PMGlu, PEGlu, PBGlu, and P(MGlu-co-Tyr).
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Figure 1. Characterization of PGlu derivatives and P(MGlu-co-Tyr) copolymers. (A) 1H NMR of
spectra of PMGlu, PEGlu and PBGlu in TFA-d. (B) 1H NMR of spectra of PMGlu and P(MGlu-co-Tyr)
in TFA-d. (C) FTIR spectra of PMGlu, PEGlu and PBGlu in the solid state. (D) FTIR spectra of PMGlu
and P(MGlu-co-Tyr) in the solid state.
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3.2. Gel Phase Diagram

The thermo-responsive gelation behaviors of PGlu derivatives and L-tyrosine copoly-
mers P(MGlu-co-Tyr) were investigated with the test tube inverting method by the flow (sol)
and no flow (gel) standard. The phase diagrams of block copolymers with different side
chains (PMGlu, PEGlu, and PBGlu) and different compositions (PMGlu-co-Tyr) are shown
in Figure 2A,B. As shown in Figure 2A, all these polymers underwent a thermo-responsive
sol-to-gel transition at a concentration range of 6.0−16.0 wt % within a temperature range
of 10 to 60 ◦C. The sol-to-gel transition temperature depends on the polymer concentrations
and decreases with increasing polymer concentrations. The alkyl functional groups have
great influence on the thermo-responsive gelation behaviors.
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solutions. (C) Gelation time of PMGlu and PEGlu at different concentrations. (D) Gelation time of
PMGlu, P(MGlu12-co-Tyr3), and P(MGlu12-co-Tyr6) at different concentrations.

As shown in Figure 2A, PMGlu and PEGlu had similar sol-to-gel transition tempera-
tures; however, PBGlu showed much higher transition temperatures. For example, at the
concentration of 10 wt%, the critical gelation temperatures (CGT) were 17 ◦C and 24 ◦C
for PMGlu and PEGlu, respectively, and PBGlu could not form gels at this concentration.
Based on its excellent gelation ability, PMGlu was selected for copolymerization with
Tyr-NCA to obtain P(MGlu12-co-Tyr3) and P(MGlu12-co-Tyr6) with different compositions.
As shown in Figure 2B, the introduction of a small amount of tyrosine segments (P(MGlu12-
co-Tyr3)) helps to enhance the gelation ability compared with PMGlu, thereby reducing
the CGT. However, the sol-to-gel CGT increases as the composition of tyrosine increases.
Considering the same DP of PEG segments for all polymers, the difference in sol-to-gel
transition temperature was mainly attributed to the changes in the secondary structure
and intramolecular hydrogen bonding caused by copolymerization. In general, sol-to-gel
phase transition temperatures are correlated with the side-chain groups, hydrogen-bond
interactions, and secondary structures [13]. The gelation time of different copolymer solu-
tions was tested by increasing the temperature directly from 0 ◦C to 37 ◦C (Figure 2C,D).
The gelation time of all five copolymers exhibited similar trends to the phase diagrams,
which means that the hydrogelation time changes with the polymer concentration and
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composition. All these polymers could form hydrogels within 1 min, and all the gels are
injectable, ensuring their operability for practical applications.

3.3. Gel Mechanism and Secondary Structure

In order to investigate the mechanism of the thermo-responsive transition, temperature-
dependent 1H NMR and CD spectroscopy of PMGlu were recorded to explore the secondary
structure of peptide hydrogels. According to the variable-temperature 1H NMR spectra in
Figure 3A, the PEG characteristic peaks at 3.50 ppm shifted downfield as the temperature
increased from 20 to 60 ◦C, suggesting the gradual dehydration and restricted motion of
the PEG segment with increasing temperature [24]. According to the literature [40], the
CD spectra of typical α-helical structure have the lowest peaks at 208 nm and 222 nm,
and the characteristic peaks of typical β-sheet structure have the lowest peak near 216 nm
and a positive peak near 196 nm. When α-helix and β-sheet secondary structures coexist,
the peak shape and characteristic peaks change slightly [41]. The CD spectra of PMGlu
aqueous solution in Figure 3B showed a negative band at 226 nm and a negative shoulder
at 212 nm, corresponding to both α-helical and β-sheet. As the temperature increased
from 10 to 60 ◦C, β-sheet and α-helical conformations became stronger. The β-sheet and
α-helix conformations arise from intermolecular and intramolecular hydrogen binding
interactions, respectively. The sol-to-gel transition mechanism was mainly attributed to
the dehydration of hydrophilic PEG segments and the increment of hierarchically ordered
structure, including β-sheet and α-helix, at higher temperatures. The properties of side
chain groups and the composition of copolymers both have significant impacts on the
secondary structure of polypeptides [24,28].
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CD was used for the structure analysis of polypeptides. The CD pattern showed
negative valleys at 226 nm, confirming α-helical conformation for all three PGlu polypep-
tides, as shown in Figure 4A [28]. As the substituent changes from methyl to butyl, the
degree of helicity decreases. With the introduction of Tyr segments, the conformation of
P(MGlu-co-Tyr) gradually changed from α-helical to β-sheet, as the characteristic minima
at 226 nm transformed to 216 nm in the CD spectra (Figure 4B). Tyr has been reported to
have intermolecular hydrogen bond interaction and a propensity to form β-sheet confor-
mation [42,43]. So the difference between sol-to-gel CGT in Figure 2B could explain that
Tyr segments provide an increment of hydrogen bonds and β-sheet conformation, which is
beneficial for gel formation. Conversely, the secondary structures of PMGlu block will be
destroyed with the increase in the content of Tyr, which is not conducive to the formation of
hydrogel, and P(MGlu12-co-Tyr6) presents a higher phase transition temperature compared
with PMGlu. FTIR spectroscopy was carried out in the solid state to further investigate the
secondary structure of the polymers. Figure 4C shows the scale-expanded FTIR spectra
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of the amide stretching regions of PMGlu, PEGlu, and PBGlu, and the amide stretching
frequencies were mainly split into three bands: 1626 cm−1 and 1653–1660 cm−1, corre-
sponding to β-sheet and α-helical secondary structures, respectively. FTIR spectra further
confirmed that the copolymerization with Tyr segments changed the secondary structure of
polypeptides. With the increase in Tyr contents, β-sheet conformation increased (Figure 4D).
All these results confirm that the length and sequence of amino acid monomers influence
the secondary structures of polypeptides, which render the supramolecular self-assembly
of polypeptides into a three-dimensional network structure.
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3.4. Rheology Test

The dynamic mechanical properties of polymers with different side chain groups and
compositions were evaluated by the rheological tests. First, the storage modulus (G′) and
loss modulus (G′ ′) of PMGlu, PEGlu, and PBGlu (9.0 wt % aqueous solution) were recorded
with the increase in temperature. As shown in Figure 5A, PBGlu was present as sol with low
G′ when the temperature was between 10 and 60 ◦C. When the temperature was increased
to nearly 60 ◦C, the G′ increased sharply. The crossing point of G′ over G′ ′ represents the
sol–gel transition temperature, which was much higher than that of PMGlu and PEGlu.
The block copolymer PMGlu showed the highest G′ in the initial state and the strongest
gelation ability compared with PEGlu and PBGlu, which coincided well with the sol–gel
transition temperature and gelation time results. Notably, the G′ of PMGlu hydrogel
(136 Pa at 10 ◦C) is almost 6 orders of magnitude higher than that of PBGlu hydrogel
(1.29 × 10−5 Pa at 10 ◦C), indicating the important impact of pendant groups on hydrogel
performance. With the introduction of the Tyr segment, G′ was generally higher than G′′

for the three copolymers P(MGlu12-co-Tyr3), PMGlu, and P(MGlu12-co-Tyr6) hydrogels,
indicating the elastic nature. Importantly, the G′ values of these three polymers are in the
order of P(MGlu12-co-Tyr3) > PMGlu > P(MGlu12-co-Tyr6), implying that the viscoelastic
properties of polypeptide hydrogels could be tailored by the specific composition and
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concentration of precursor hydrogels (Figure 5B). PGlu and P (MGlu-co-Tyr) hydrogels are
physically crosslinked hydrogels formed through hydrophobic interactions [5,44], so that
their G′ is generally low and their mechanical properties perform poorly [45]. However,
they can be constructed with gelatin, cellulose, etc., to build a composite hydrogel and
improve their mechanical properties [45,46]. In addition, we also investigated the variation
of viscosity with polymer concentrations. As shown in Figures 5C and S3, the viscosity
increases with the increase in P(MGlu-co-Tyr) and PMGlu polymer concentration. G′ and
G′ ′ of the hydrogels maintain constant in the scanning range of 0.1–10 angular frequencies,
indicating good stability of peptide hydrogels (Figure 5D). The injectability of hydrogel
was shown in Video S1. The microstructure of the hydrogels was characterized by SEM
(Figure S4). The hydrogels exhibited interconnected, three-dimensional mesh-like porous
structures, and these interconnected porous structures may facilitate the transport and
release of drugs from the hydrogels.
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3.5. ALP Triggered Dynamic Self-Assembly

Polypeptide phosphorylation commonly occurs at tyrosine, threonine, and serine
residues. Phosphorylation of tyrosine is particularly interesting due to its critical role in
the pathway for intracellular signaling [15,47,48]. The construction of phosphotyrosine
polypeptides is promising for various biological applications. Phosphoric functionalized
polypeptide (P(MGlu-co-Tyr/P)) was obtained by esterification of phenol with phospho-
ryl chloride [49]. 1H NMR spectra revealed that the protons of the phenol ring shifted
downfield after reaction, proving that tyrosine was successfully phosphorylated in P(MGlu-
co-Tyr/P) (Figure S5). The zeta potentials of different copolymers were characterized by
DLS. As shown in Figure 6C, the zeta potential of P(MGlu-co-Tyr/P) was significantly lower
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than that of P(MGlu-co-Tyr) owing to the modification with phosphate groups. The cytotox-
icity of P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr) was further evaluated by incubation with
MC3T3-E1 and HeLa cell lines for 48 h with various concentrations of P(MGlu-co-Tyr/P)
and P(MGlu-co-Tyr). The relative viabilities of MC3T3-E1 and HeLa cells treated with
P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr) were measured by CCK8 assay and normalized to
the viability of cells treated with medium. Figure S6 depicts that P(MGlu-co-Tyr/P) and
P(MGlu-co-Tyr) have no obvious toxicity to both MC3T3-E1 and HeLa cells at concentra-
tions up to 1000 µg/mL, implying that P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr) are safe for
biological applications.
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co-Tyr/P) self-assembly via ALP. To evaluate the sensitivity of P(MGlu-co-Tyr/P) towards 

Figure 6. (A) The chemical structure of P(MGlu-co-Tyr) and P(MGlu-co-Tyr/P) and schematic
diagram of self-assembly properties. (B) SEM images of (a) P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr/P)
incubation with ALP. Scale bars = 1 µm (a) and 5 µm (b). (C) Zeta potential of P(MGlu-co-Tyr),
P(MGlu-co-Tyr/P) and P(MGlu-co-Tyr/P) incubation with ALP. (D) CD spectra of P(MGlu-co-Tyr),
P(MGlu-co-Tyr/P), and incubation with ALP.

Phosphatase, especially ALP, is an active enzyme for hydrolyzing phosphate ester
groups from various substrates and has been widely explored for selectively inhibiting
cancer cells or drug delivery [50–53]. Figure 6A is a schematic representation of P(MGlu-
co-Tyr/P) self-assembly via ALP. To evaluate the sensitivity of P(MGlu-co-Tyr/P) towards
ALP, P(MGlu-co-Tyr/P) solution in PBS (pH 7.4) was incubated with ALP (5 U) for 24 h, and
the morphology of the polymer solution was observed using SEM. As shown in Figure 6B,
P(MGlu-co-Tyr/P) incubated with ALP for 24 h displayed sheet-like structures, while
P(MGlu-co-Tyr/P) exhibited uniform spherical morphology in PBS 7.4. The spherical mor-
phology may be attributed to the excellent solubility of phosphoric acid groups in aqueous



Polymers 2024, 16, 1221 11 of 13

solutions and the enhancement of intermolecular forces. While the sheet-like structures de-
rive from the enzymatic dephosphorylation of P(MGlu-co-Tyr/P), inducing the aggregation
of P(MGlu-co-Tyr). As shown in Figure 6C, after incubation with ALP, the zeta potential
of P(MGlu-co-Tyr/P) increased substantially and was nearly the same as P(MGlu-co-Tyr).
In addition, CD was used to record the secondary structure of P(MGlu-co-Tyr) before and
after phosphorylation (Figure 6D). The β-sheet conformation was significantly enhanced,
as evidenced by the appearance of a new sharp peak at 197 nm and the enhancement of
the negative peak at 209 nm after phosphorylation. The secondary structure transition
of P(MGlu-co-Tyr/P) could be attributed to the negative charge interactions of the pen-
dant phosphoric acid groups. After incubation with ALP, the β-sheet conformation was
significantly weakened.

4. Conclusions

In summary, the present work explored different strategies for the design of thermo-
responsive polypeptide hydrogels based on poly(glutamic acid) with different pendant
groups and random copolypeptides of glutamic acid and tyrosine. The obtained copolymers
could undergo thermo-responsive sol-to-gel transitions, and the gel behavior can be tailored
by adjusting the block length and compositions. The sol-to-gel transition mechanism was
mainly attributed to the dehydration of hydrophilic PEG segments and the formation of
hierarchically ordered α-helix and β-sheet structures, as evidenced by CD spectroscopy
and FTIR spectroscopy. Notably, the random copolypeptides with tyrosine segments
could be partially modified by the phosphate group, and the phosphorylation polypeptide
could respond to ALP and conduct dynamic assembly. The present work is helpful for
understanding and designing synthetic copolypeptide hydrogels, further exploring their
potential biomedical applications.
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Tyr/P) to MC3T3-E1 (a) and HeLa cells (b). (c) The optical image of MC3T3-E1 cells morphology.
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Tyr) hydrogel.
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