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Abstract: The epoxy foam material filled with an absorbing agent effectively absorbs electromag-
netic waves. In this study, epoxy resin was used as the matrix, and acetylene carbon black was
used as the magnetic absorbing agent to prepare an absorbing foam material (epoxy/CB). The mi-
crostructure of acetylene carbon black (CB) and its distribution in epoxy resin, as well as the effects of
pre-polymerization time and CB content on the foam structure, were systematically characterized. Ad-
ditionally, two dispersion methods, the hot-melt in situ stirring dispersion method and the three-roll
milling dispersion method, were studied for their effects on the foaming process and absorbing prop-
erties of epoxy/CB. The results showed that with the prolongation of pre-polymerization time, the
pore size decreased from 1.02 mm to 0.4 mm, leading to a more uniform pore distribution. Compared
to the hot-melt in situ stirring dispersion method, the three-roll milling dispersion method effectively
improved the dispersion of CB in epoxy resin, reducing the aggregate size from 300–400 nm to
70–80 nm. The pore diameter also decreased from 0.453 mm to 0.311 mm, improving the uniformity
of particle size distribution. However, the absorbing material prepared with the three-roll milling
dispersion method exhibited unsatisfactory absorption performance, with values close to 0 dB at
mid-low frequencies and around −1 dB at high frequencies. In contrast, the absorbing material
prepared with the hot-melt in situ stirring dispersion method showed better absorption performance
at high frequencies, reaching around −9 dB.

Keywords: epoxy; acetylene carbon black; wave absorption; foam

1. Introduction

Thermosetting epoxy foam materials are commonly used in the manufacturing of
lightweight, high-strength sandwich structure composite components due to their ad-
vantages of low density, high strength, damage tolerance, good heat resistance, and low
moisture absorption [1–8]. Epoxy foam was first developed by the US Company Shell in
the late 1940s, but it was not until the 1970s that it began to be applied. Its earliest applica-
tions were in the aviation industry, specifically in the manufacturing of the components
of aircraft.

The preparation methods of epoxy foam plastics mainly include chemical foaming [9–12],
physical foaming [13,14], and hollow microsphere methods [15–17]. The former two
methods are suitable for manufacturing low- and medium-density foam plastics, while the
latter method is mostly used for high-density foam plastics. The physical foaming method
utilizes the heat released from the resin curing reaction to sublime or evaporate low-boiling
point liquids into gas, dispersing them in the resin for foaming. The mixture is then poured
into molds or sprayed to produce epoxy foam plastic products or coatings.

The preparation methods of chemical foaming mainly consist of two categories:
one-step and two-step methods. The one-step method involves direct foaming and cur-
ing in the resin matrix, while the two-step method consists of pre-polymerization and
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foaming–curing processes. In the one-step method, due to the low resin viscosity and weak
cell wall strength in the initial stages of the reaction, the formed cell structure is unstable,
prone to rupture, collapse, or the creation of large voids. Additionally, the large amount
of heat generated by the exothermic reaction is difficult to dissipate, leading to the risk of
explosion, scorching, and other issues. These problems can be effectively addressed by
the two-step method. During the pre-polymerization process, the resin system undergoes
chain extension, branching, and partial cross-linking to achieve a certain degree of curing
and viscosity, enough to support the bubbles generated during the foaming–curing process.
The pre-polymerization reaction helps the system to dissipate some of the reaction heat,
reducing the concentration of heat during the foaming–curing process, thus preventing
scorching and ensuring a more stable and uniform cell structure [14,18–20].

Structural absorbing foam not only has excellent electromagnetic wave absorption
properties but also features high strength, lightweight, and sound absorption and shock
mitigation capabilities. Owing to its strong designability and integrated multifunctionality,
it is suitable for the manufacturing and processing of complex-shaped and full-height sand-
wich components, attracting increasing attention. Park et al. [21] designed and fabricated a
sandwich-type radar-absorbing structure (RAS) for X-band frequency. By incorporating
conductive fillers such as carbon black and MWNT into composite panels and polyurethane
foam cores, the absorption capacity of RAS was effectively enhanced. Additionally, the
sandwich structure improved the mechanical strength of the RAS. Gao et al. [22] prepared
asymmetrically conductive epoxy/functionalized reduced graphene oxide/nickel chain
microcellular foam (a-EP/f-RGO/Ni chain microcellular foam) using a hot compression
method, followed by foaming using supercritical carbon dioxide (scCO2). The a-EP/f-
RGO/Ni chain microcellular foam with a f-RGO content of 5 vol% and a nickel chain
content of 5 vol% exhibited enhanced conductivity (10−1 S/m). Compared to the ho-
mogenous conductive structure EP/f-RGO/Ni chain (h-EP/f-RGO/Ni chain) microcellular
foam with the same filler content, it showed higher S/m in the X-band and superior EMI
shielding effectiveness (40.82 dB). Lei Yu et al. [23] prepared cement-based foam composite
materials with different densities, MWCNT content, and various layer combinations. The
optimal electromagnetic wave (EMW) absorption performance of the single-layer com-
posite material demonstrated an effective absorption bandwidth (EAB) of 9.76 GHz and a
minimum reflection loss (RLmin) of −13.6 dB. In comparison to the single-layer samples, the
double-layer samples exhibited a wider EAB of 12.7 GHz, with the RLmin being −32.9 dB at
the same thickness. Xu et al. [24] utilized Sapiumse biferum kernel oil-based polyurethane
foam (BPUF) as a porous matrix and Fe3O4 as an absorber to prepare a novel renewable
microwave-absorbing foam. The results showed that the mBPUF exhibited a porous mul-
tilayer structure, providing a scaffold and matching layer for Fe3O4 nanoparticles. The
effective reflection loss (RL ≤ −10 dB) frequency range for the mBPUF was from 4.16 GHz
to 18 GHz. While some progress has been made in the research of structural absorbing
foam, the focus has largely been on low-temperature-resistant PU foam systems. There
is relatively less research on high-temperature-resistant structural absorbing foam, which
cannot meet the corresponding requirements for temperature resistance, absorption, and
load bearing. Therefore, it is necessary to research and develop high-temperature-resistant
structural absorbing foam with good absorption performance and load-bearing capacity to
meet the increasing demands for high absorption, load bearing, and temperature resistance.

Epoxy structural foam exhibits excellent heat resistance and mechanical properties,
meeting the requirements for high-temperature resistance and load bearing of wave-
absorbing foam. High-temperature-resistant structural absorbing foam involves adding
absorbents into the resin system, which can be foamed through a reaction. The shape, size,
and interface interaction between the absorbent and the polymer will affect its dispersion
in the matrix [25–30]. The method of dispersing the absorbent and its distribution in the
foam will also impact the cell structure and absorbing performance [31–34]. Therefore, in
this work, a wave-absorbing foam material composed of epoxy resin and acetylene carbon
black (CB) was first prepared using in situ mechanical stirring and the three-roll milling
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method. The particle morphologies in the foam matrix of the two preparation methods
were compared. The effects of pre-polymerization time and CB content on the morphology
and absorption properties, compression strength, and modulus of foam were analyzed.

2. Materials and Methods
2.1. Materials

Bisphenol A epoxy resin E51 (epoxide equivalent of 190–210 g/eqv.; viscosity of
2500 m·Pa·s at 40 ◦C) was purchased from Nantong Xingchen Synthetic Material Co., Ltd.
(Nantong, China). 4,4′-Diaminodiphenylsulfone (DDS) was purchased from Hansoh High
New Material (Tianjin) Co., Ltd. (Tianjin, China), and acetylene carbon black (CB) was
sourced from Zhangjiakou Xiahuayuan Battery Factory (Zhangjiakou, China). The foaming
agent azodicarbonamide (AC), an industrial product with a decomposition temperature of
215 ◦C and a gas yield of 210 mL/g, was purchased from Beijing Letai Chemical Co., Ltd.
(Beijing, China), and all materials were used in the manner in which they were received.
The molecular structure of the foaming agent is shown in Figure 1.
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Figure 1. Molecular structure of azodicarbonamide.

2.2. Preparation

Hot-melt in situ stirring method: CB was gradually added to the E51 resin by stirring
the paddle until the CB was completely added. When the mixture was stirred evenly, the
curing agent DDS (40% of the resin content) was added and stirred.

Three-roll milling dispersion method: E51 and DDS were mixed in a mass ratio of
100:40, and then CB was added. The mixture was further rolled to disperse the black
carbon evenly using a three-roll grinder with a roll gap of 0.5–0.8 µm and a roll speed of
250–300 rpm to obtain the epoxy/CB wave-absorbing resin.

Foaming process: Resin was heated to 120–140 ◦C to pre-polymerize for a certain time.
After that, it was cooled to 100–110 ◦C, and the foaming agent AC (5 wt% of the resin
content) was added and mixed thoroughly to obtain the pre-foamed material. Finally, the
pre-foamed material was placed in a compression mold and foamed at 180 ◦C for 2–3 h to
obtain the absorbing foam.

2.3. Characterization and Measurements

Electromagnetic parameters of CB: A mixture of 10 wt% acetylene carbon black and
paraffin was uniformly prepared to create a circular sample with an inner diameter of
3.04 mm, an outer diameter of 7.0 mm, and a length of 2 mm. The test was conducted using
a vector network analyzer within a frequency range from 2 to 18 GHz.

The reflectivity of wave-absorbing foam: The reflectivity of the foam was tested
within the frequency range from 2 to 18 GHz using an HP 8722ES vector network an-
alyzer (Agilent Technologies Inc., Santa Clara, CA, USA). The foam sample size was
200 mm × 200 mm × 10 mm.

Scanning electron microscopy (SEM) observation: The morphology of the samples
was observed with a Camscan 3100 electron microscope from the Aylesbury, UK with an
acceleration voltage of 20 kV. The samples were cryogenically fractured and then sputtered
with gold before observation. To calculate the average pore diameter, image-processing
(Matlab R2023a For Windows) software was utilized.

Compression strength and modulus of the samples: Compression stress–strain curves
were obtained using a Shimadzu AG-I universal testing machine (Tokyo, Japan) at a
compression speed of 3 mm/min following ASTM D 1621-A standards [35]. The samples
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had dimensions of 50 mm × 50 mm × 26 mm, and five samples were tested in each group
to obtain the average values.

The viscosity of the mixture was measured with a Techcomp SNB-2E digital rotary
viscometer (Hefei, China).

The foam density of the cylindrical epoxy foams was quantified on cut samples and
calculated as follows:

ρ f =
m
V

=
4m

πd2h
(1)

where m is the mass of the epoxy foam sample. To measure the skeletal density ρ, of
the cured epoxy foam, ~0.5 g ground powder of epoxy foams was subjected to helium
displacement pycnometry (AccuPyc l1 1350, Micrometrics, Aachen, Germany).

3. Results and Discussion
3.1. Absorbent Characteristics

The characteristics of the absorbent mainly include its electromagnetic parameters,
particle size, shape, and aggregation state, all of which can impact the material’s absorbing
properties. The SEM image of the CB is shown in Figure 2, which demonstrates that the CB
is loosely aggregated, and each aggregation is composed of individual primary particles
(approximately 50 nm in size). The particle size of CB is in the nanometer range, possessing
a high surface energy. During the melt dispersion process, it is prone to aggregation,
leading to the formation of a network structure within the filler.
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Figure 2. SEM images of CB: (a) low magnification; (b) high magnification.

Figure 3 depicts the dielectric constant and magnetic permeability of 10 wt% CB. The
real and imaginary parts of the permittivity are 46 and 55 at 2 GHz, respectively. As the
frequency increases, they decrease linearly, reaching 8 and 15 at 18 GHz. The real and
imaginary parts of the magnetic permeability are 1 and 0, respectively, showing minimal
variation across the entire frequency range. Both the real and imaginary parts of the
permittivity decrease with increasing frequency, indicating that CB exhibits good wave-
absorbing properties at high frequencies. The loss of CB is primarily attributed to dielectric
loss and occurs in dielectric loss wave-absorbing materials. As the frequency increases,
the permittivity gradually decreases, which is advantageous for widening the bandwidth.
When the CB content is low, the particles are uniformly and independently dispersed in the
matrix with a large distance between adjacent particles, which can hardly form a conductive
network, resulting in less contribution to electromagnetic wave absorption. With an increase
in the CB content, CB particles may come into contact or be sufficiently close to form a
continuous conductive path or network through tunneling effects or electronic transitions,
leading to an improvement in electromagnetic wave absorption. Additionally, due to the
small size and large specific surface area of CB particles containing a high proportion of
surface atoms and a large number of dangling bonds, interface polarization and multiple
scattering also become important factors in inducing wave-absorbing loss [36].
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3.2. Distribution State of CB in Epoxy Foam

The distribution state of the absorber in foam materials is an important factor affecting
its wave-absorbing performance [37]. The distribution state of the absorber in the foam is
mainly determined by the absorber’s shape characteristics and the dynamic factors of pore
generation and growth during the foaming process. The distribution of CB in the epoxy
foam is shown in Figure 4. It can be observed from the figure that the distribution of CB
in the epoxy foam is non-uniform, and the CB particles mainly aggregate at the nodes of
the foam’s network structure. This situation is primarily caused by the Gibbs–Marangoni
effect, exudation, and gravitational effects, which induce the flow of the liquid film, leading
to the relative displacement of CB particles along the liquid film. Simultaneously, due to
the re-agglomeration of CB and the capillary action of the liquid, CB particles are bonded,
ultimately causing the aggregation of CB toward the exudation region. As a result, the
majority of the CB is concentrated at the nodes of the network structure in the epoxy/CB
foam, making it difficult for CB particles to form interconnected conductive paths in
this system.
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The interface interaction with polymers, size, and the morphology of the absorber will
affect its dispersion in the polymer matrix. Moreover, the response to the same dispersion
method varies depending on the shape of the absorber. Figure 5 shows the cross-sectional
SEM images of the epoxy/CB composites prepared with in situ mechanical stirring and
three-roll milling. It can be observed that severe CB aggregation occurs during mechanical
stirring, with an aggregate size of approximately 300–400 nm, resulting in poor dispersion.
However, after three-roll milling, the large aggregates are broken down, and the aggregate
size reduces to approximately 70–80 nm, indicating improved dispersion of the CB. During
mechanical stirring, the shear force is relatively small, making it difficult to break up the
CB aggregates, leading to severe aggregation. In contrast, strong shear forces are generated
between the rolls during three-roll milling, which effectively disperses the CB aggregates,
resulting in good dispersion. CB is a high-surface-energy material with weak adsorption to
organic substances and is prone to particle re-agglomeration, leading to poor dispersion
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in the epoxy matrix and weakening the effectiveness of CB. However, under the action
of strong shear forces, the CB aggregates can be broken apart, disrupting their network
structure and achieving good dispersion.

Polymers 2024, 16, x FOR PEER REVIEW 6 of 15 
 

 

sectional SEM images of the epoxy/CB composites prepared with in situ mechanical stir-
ring and three-roll milling. It can be observed that severe CB aggregation occurs during 
mechanical stirring, with an aggregate size of approximately 300–400 nm, resulting in 
poor dispersion. However, after three-roll milling, the large aggregates are broken down, 
and the aggregate size reduces to approximately 70–80 nm, indicating improved disper-
sion of the CB. During mechanical stirring, the shear force is relatively small, making it 
difficult to break up the CB aggregates, leading to severe aggregation. In contrast, strong 
shear forces are generated between the rolls during three-roll milling, which effectively 
disperses the CB aggregates, resulting in good dispersion. CB is a high-surface-energy 
material with weak adsorption to organic substances and is prone to particle re-agglom-
eration, leading to poor dispersion in the epoxy matrix and weakening the effectiveness 
of CB. However, under the action of strong shear forces, the CB aggregates can be broken 
apart, disrupting their network structure and achieving good dispersion. 

 
Figure 5. Cross-sectional SEM images of epoxy/CB resin prepared using different dispersion meth-
ods: (a) in situ mechanical stirring; (b) three-roll milling. 

Viscosity has a significant impact on the formation of foam materials, directly deter-
mining the foam growth process, and higher viscosity will reduce the foam growth rate. 
The addition of an absorber will inevitably affect the system viscosity, thus affecting the 
final foam structure. The effect of the dispersion process on the constant temperature vis-
cosity characteristics of the epoxy/CB resin is shown in Figure 6. As shown in the figure, 
with mechanical stirring, the initial viscosity is about 19 Pa·s, and after mechanical three-
roll milling, the viscosity decreases to 1.6 Pa·s. After 50 min of pre-polymerization, the 
viscosity of the blank resin is 6 Pa·s. When CB is dispersed using mechanical stirring, the 
viscosity quickly rises to 35 Pa·s, and after dispersion using three-roll milling, the viscosity 
is 9.5 Pa·s. It can be seen that regardless of the dispersing method used, the addition of CB 
causes an increase in system viscosity. Compared to in situ mechanical stirring, three-roll 
milling has a smaller impact on viscosity and therefore has a lesser impact on the foaming 
process. This is because three-roll milling generates strong shear forces that help to dis-
perse the CB and break the network structure of CB aggregates. The addition of filler par-
ticles generally increases the system viscosity, leading to processing difficulties. Com-
pared to in situ mechanical stirring, three-roll milling has a smaller impact on viscosity, 
which is beneficial for processing performance. 

Figure 5. Cross-sectional SEM images of epoxy/CB resin prepared using different dispersion methods:
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Viscosity has a significant impact on the formation of foam materials, directly deter-
mining the foam growth process, and higher viscosity will reduce the foam growth rate.
The addition of an absorber will inevitably affect the system viscosity, thus affecting the
final foam structure. The effect of the dispersion process on the constant temperature
viscosity characteristics of the epoxy/CB resin is shown in Figure 6. As shown in the figure,
with mechanical stirring, the initial viscosity is about 19 Pa·s, and after mechanical three-
roll milling, the viscosity decreases to 1.6 Pa·s. After 50 min of pre-polymerization, the
viscosity of the blank resin is 6 Pa·s. When CB is dispersed using mechanical stirring, the
viscosity quickly rises to 35 Pa·s, and after dispersion using three-roll milling, the viscosity
is 9.5 Pa·s. It can be seen that regardless of the dispersing method used, the addition of CB
causes an increase in system viscosity. Compared to in situ mechanical stirring, three-roll
milling has a smaller impact on viscosity and therefore has a lesser impact on the foaming
process. This is because three-roll milling generates strong shear forces that help to disperse
the CB and break the network structure of CB aggregates. The addition of filler particles
generally increases the system viscosity, leading to processing difficulties. Compared to
in situ mechanical stirring, three-roll milling has a smaller impact on viscosity, which is
beneficial for processing performance.
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The effect of the dispersion methods on the pore structure of epoxy/CB foam is shown
in Figure 7, and the pore size distribution is shown in Figure 8. Compared to mechanical
stirring, after three-roll milling, the pore diameter decreases from 0.453 mm to 0.311 mm,
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and the uniformity of pore size distribution improves. This is because the addition of CB
acts as a nucleating agent. For three-roll milling dispersion, these uniformly dispersed CB
particles act as nucleation points. During the foaming process, a large number of nucleation
points start to foam simultaneously; however, only a small amount of gas is available
for foam growth, leading to a reduction in pore size. The number of nucleation points
is only related to the quantity and particle size of the nucleating agent. When using in
situ mechanical stirring, more CB particles exist in the form of aggregates, resulting in
larger but fewer nucleation points. Hence, the nucleation density decreases, and the pore
size increases.
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The impact of the dispersion process on the absorption performance of the CB/epoxy
structural absorption foam is illustrated in Figure 9. As depicted in the graph, the foam
prepared by three-roll milling exhibits a reflectivity close to 0 in the 2–16 GHz range and a
reflectivity of around −1 dB in the 16–18 GHz range. Conversely, the foam produced by
mechanical stirring shows a reflectivity of approximately −2 dB in the 4–14 GHz range,
which rapidly decreases with increasing frequency after 14 GHz, reaching a reflectivity of
−9 dB at 18 GHz. The analysis above reveals that the foam prepared by three-roll milling has
well-dispersed CB; lower viscosity; and a finer, more uniform pore structure, which may be
advantageous for mechanical properties, but the absorption performance is not ideal. This
is related to the distribution state of the CB in the epoxy structural absorption foam. The
CB in the epoxy foam is unevenly distributed, mainly concentrated at the triangular nodes,
insufficient to form a chain-like conductive path in contact, and the tunnel effect is primarily
present. Three-roll milling generates strong shear, which can lead to the over-dispersion
of the CB, disrupting the network structure of CB, and thus resulting in deteriorated
absorption performance. In contrast, melt mechanical stirring, static interactions, and the
lack of shear force mean that CB particles are mainly distributed on the polymer surface,
making it easier to form a conductive network at lower concentrations.
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3.3. Influence of Pre-Polymerization Time on Pore Structure and Properties

The addition of the absorber leads to an increase in viscosity, which will inevitably
affect the subsequent pre-polymerization and foaming processes. Therefore, this section
examines the influence of pre-polymerization on the pore structure of the epoxy wave-
absorbing foam, providing a reference for the preparation of foam materials with uniform
pores and good performance.

The effect of pre-polymerization time on the pore structure and size distribution of the
epoxy/CB foam is shown in Figures 10 and 11. The pores still exhibit a closed-cell spherical
structure, indicating that the addition of CB does not alter the foam’s pore structure. With
the extension of pre-polymerization time, the pore diameter decreases from 1.02 mm
to 0.4 mm, and the size distribution follows a typical normal distribution. As the pre-
polymerization time increases, the peak shifts toward a smaller size, and the distribution
becomes more uniform. This is because, with the extension of pre-polymerization time,
the increase in system viscosity due to resin cross-linking leads to enhanced foam growth
stability and improved uniformity, as it matches the gelation characteristics of the resin
with the decomposition rate of the foaming agent. A longer pre-polymerization time results
in a reduction in the pore diameter, which is advantageous for the mechanical properties of
the foam. Additionally, the increase in resin viscosity with longer pre-polymerization time
reduces the occurrence of foam collapse, leading to the improved processing properties
of the foam. However, when the pre-polymerization time exceeds 40 min, the viscosity
becomes excessively high, causing difficulty in the system flow and making it impossible
to fabricate the foam.
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3.4. Impact of CB Content on Pore Structure and Performance of Foam

Figure 12 illustrates the influence of the CB content on foam morphology. Mechanical
stirring was used to disperse the CB, which had a significant impact on the system viscosity,
thus limiting the amount of CB added. When the CB content exceeds 3 wt%, it becomes
difficult to achieve the designated pre-polymerization degree (pre-polymerization for
40 min). It can be observed from the graph that with the increase in the CB content, the pore
diameter slightly decreases, but the overall change is not substantial, remaining around
0.4 mm. The addition of the CB serves as a nucleating agent. The nucleating effect of the
nucleating agent is much greater than that of the free space of the molecule. However,
the number of nucleation points is only related to the quantity and particle size of the
nucleating agent. Since mechanical stirring was employed, the aggregation of CB was
relatively low, mostly existing in the form of aggregates. The number of aggregates is far
smaller than that of free space points, hence resulting in larger pore sizes. With an increase
in the amount of CB, the change is minimal.
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The influence of the CB content on the foam’s wave-absorbing performance is depicted
in Figure 13, while the corresponding foam density is illustrated in Figure 14. With an
increase in the CB content, the microwave absorption performance gradually enhances,
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primarily demonstrated by a decrease in reflectivity at the same frequency, a shift in the peak
toward the lower frequency direction, and a gradual widening of the effective bandwidth.
As the CB content increases, the foam density also increases. This is due to the increase
in system viscosity resulting from the higher CB content, which limits foam expansion
and subsequently raises foam density. Additionally, the increased system viscosity and
reduced flowability also contribute to higher foam density. The increase in the CB content
and the resulting higher density lead to a higher concentration of CB particles per unit
volume. This results in a greater number of CB particles available for electromagnetic wave
absorption, contributing to an increase in the dielectric constant and loss tangent, which is
beneficial for electromagnetic wave absorption. Furthermore, the higher concentration of
CB particles and the increased surface area aid in reflecting and attenuating electromagnetic
waves, promoting the formation of a conductive network and consequently enhancing the
wave-absorbing performance.
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Table 1 shows the effect of the CB content on the compression properties of the epoxy
wave-absorbing foam. Compared to the blank foam, the addition of CB increases the foam
wall thickness, leading to improved compression strength and modulus. This is because the
CB particles are primarily distributed at the cell junctures of the foam material, increasing
the foam wall thickness and enhancing its resistance to deformation, thereby increasing
strength and modulus. Additionally, the foam density nearly doubles, which is beneficial
for the improvement in compression strength and modulus. However, with an increase in
the CB content, the compression strength and modulus exhibit a trend of initially increasing
and then decreasing. This is due to the mechanical dispersion of the CB used to enhance the
foam’s microwave absorption performance in this study. The irregularly shaped and poorly
mechanically stable CB particles, existing mostly in the form of aggregates, exhibit weak
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mechanical strength and poor interface interaction with the polymer, leading to a reduction
in foam strength. Moreover, the presence of aggregates in the resin system can lead to stress
concentration, adversely affecting the foam’s compression properties. As the CB content
increases, dispersion becomes more difficult, resulting in larger and more aggregates, which
in turn harm compression strength and modulus. Therefore, the compression modulus
shows a maximum value at 2 wt% CB.

Table 1. Effect of CB content on foam compression performance.

CB Content
(wt%)

Density
(kg·m−3)

Foam Wall
Thickness (mm)

Compression
Strength (MPa)

Compression
Modulus (MPa)

0 82.4 ± 2.1 0.014 ± 0.001 0.58 ± 0.02 16.0 ± 0.8
1 132.1 ± 3.2 0.021 ± 0.001 0.83 ± 0.05 26.1 ± 1.2
2 137.0 ± 3.4 0.023 ± 0.002 0.84 ± 0.06 31.7 ± 1.3
3 160.4 ± 4.5 0.032 ± 0.002 0.82 ± 0.04 28.5 ± 0.9

3.5. Effect of Foam Thickness on Electrical Performance

The influence of foam thickness on the wave-absorbing performance is shown in
Figure 15. The results indicate that with an increase in foam thickness for each system,
the peak reflectivity at the corresponding frequency gradually decreases and shifts toward
lower frequencies, while multiple reflectivity peaks appear. In the case of the CB system,
a 30 mm foam thickness results in three reflectivity peaks, measured at (5 GHz, −4 dB),
(10 GHz, −14 dB), and (14 GHz, −20 dB), with a wide absorption band observed between
9 and 11 GHz and between 13 and 18 GHz, where the reflectivity is below −8 dB.
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The thickness significantly influences the wave-absorbing performance of the foam.
Within our testing range, with the increase in foam thickness, the absorption peak strength-
ens, and the absorption band widens. An increased foam thickness results in multiple
reflections and the scattering of the electromagnetic waves within the foam, which increases
the propagation path of the waves within the material and thus has a certain impact on
wave absorption. The continual increase in thickness alters the wave impedance of the
material and also changes the reflection conditions of the incident waves on the material’s
surface, thus affecting the material’s absorption performance.

When the thickness of the absorbing foam equals one-fourth of the wavelength, the
phase of the reflected wave at the material’s surface is opposite to that of the incident wave,
leading to interference and cancellation, which maximally confines the total reflected wave
inside the foam. The energy of the electromagnetic wave is dissipated by the absorbent. At
this point, the thickness of the material matches the wavelength, and thus, the thicker the
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foam, the longer the wavelength it can match, resulting in a lower corresponding absorption
frequency. This phenomenon can also be explained by the following equation [38]:

fm =
c

2πµ′′d
(2)

where c is the speed of light, and d is the sample thickness. Equation (1) indicates that, with
an increase in sample thickness, the matching frequency shifts toward lower frequencies.
Additionally, as the absorber content or thickness increases, the absorption band also shifts
toward lower frequencies.

4. Conclusions

The present study investigated the preparation of high-temperature-resistant epoxy-
absorbing foam materials with added absorber acetylene carbon black using hot-melt in
situ stirring dispersion and three-roll grinding dispersion methods, and the following
conclusions were drawn:

(1) CB has good absorption performance in the high-frequency range, and a lower CB con-
tent is advantageous in reducing electromagnetic wave loss. Moreover, when the CB
content exceeds 3 wt%, pre-polymerization becomes difficult, making it challenging
to achieve the desired degree of pre-polymerization.

(2) Mechanical stirring results in the severe aggregation of CB, with aggregate sizes of
about 300–400 nm, leading to poor dispersion. However, after three-roll grinding,
the large aggregates are broken down, resulting in aggregate sizes of approximately
70–80 nm, thereby improving the dispersion of CB.

(3) Although three-roll grinding dispersion results in good dispersion of CB, lower vis-
cosity, and a fine and uniform pore structure, it may be advantageous for mechanical
properties. However, the absorption performance is not ideal, as the foam prepared us-
ing three-roll grinding has nearly 0 reflectivity in the 2–16 GHz range and a reflectivity
rate of around −1 dB in the 16–18 GHz range.

(4) With the prolongation of pre-polymerization time, the pore diameter decreases from
1.02 mm to 0.4 mm, exhibiting a typical normal distribution.

(5) The addition of CB increases the foam wall thickness, enhances its resistance to
deformation, and thereby increases its strength and modulus.
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