
Citation: Kampeerapappun, P.;

O-Charoen, N.; Dhamvithee, P.; Jansri,

E. Biocomposite Based on Polylactic

Acid and Rice Straw for Food

Packaging Products. Polymers 2024, 16,

1038. https://doi.org/10.3390/

polym16081038

Academic Editor: Juliana

Botelho Moreira

Received: 26 February 2024

Revised: 27 March 2024

Accepted: 7 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Biocomposite Based on Polylactic Acid and Rice Straw for Food
Packaging Products
Piyaporn Kampeerapappun 1 , Narongchai O-Charoen 2, Pisit Dhamvithee 3 and Ektinai Jansri 4,*

1 Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
piyaporn.k@mail.rmutk.ac.th

2 Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of
Technology Thanyaburi, Pathumthani 12110, Thailand; narongchai.o@en.rmutt.ac.th

3 Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology,
Srinakharinwirot University, Nakhon Nayok 26120, Thailand; pisitd@g.swu.ac.th

4 Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology,
Srinakharinwirot University, Nakhon Nayok 26120, Thailand

* Correspondence: ektinai@g.swu.ac.th

Abstract: Plastic containers, commonly produced from non-biodegradable petroleum-based plastics
such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), raise significant
environmental concerns due to their persistence. The disposal of agricultural waste, specifically rice
straw (RS), through burning, further compounds these environmental issues. In response, this study
explores the integration of polylactic acid (PLA), a biodegradable material, with RS using a twin-screw
extruder and injection process, resulting in the creation of a biodegradable packaging material. The
inclusion of RS led to a decrease in the melt flow rate, thermal stability, and tensile strength, while
concurrently enhancing the hydrophilic properties of the composite polymers. Additionally, the
incorporation of maleic anhydride (MA) contributed to a reduction in the water absorption rate.
The optimized formulation underwent migration testing and met the standards for food packaging
products. Furthermore, no MA migration was detected from the composite. This approach not only
provides a practical solution for the disposal of RS, but also serves as an environmentally-friendly
alternative to conventional synthetic plastic waste.

Keywords: biocomposite; food packaging; sustainability; waste straw; polylactic acid

1. Introduction

Recently, Thailand has faced significant challenges in the management of rice straw
(RS) after harvesting. Current management methods vary, and include collection using a
baler for sale, plowing it into the soil, and incineration. Each method has its own advantages
and disadvantages depending on labor and cost. However, the most popular method is
burning, as it is the easiest, fastest, and has a relatively lower cost. The ensuing impacts
include the degradation of cultivated land, and the destruction of organic matter and soil
nutrients, leading to the generation of smoke, ash, and micro-dust, and, most significantly,
contributing to climate change [1,2]. This issue is a very important problem that should
be resolved not only in Thailand, but throughout the world. Moreover, particulate matter
(PM) from biomass burning is emitted into the air, affecting air quality and human health,
leading to cardiovascular morbidities, respiratory symptoms, and increased adult mortality
in high-risk groups [3–5].

RS can be utilized diversely, for example, in animal feed, as a substrate for mushroom
cultivation, as biomass, and for biochar production [6]. Additionally, it can be mixed with
polymers to produce various products such as automotive components, artificial wood,
and composite films [7–12]. RS can help increase the strength of the polymer when it has
an appropriate particle size and is mixed in proportion [13–16]. Although the use of RS as
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reinforcement in composites is a good alternative way to utilize it, new problems may arise
when these composites are discarded. They are scarcely recycled due to the difficulty of
the recycling process. Therefore, with sustainability in mind, the production of RS-based
composites should involve the use of biodegradable materials as the matrix.

Polylactic acid (PLA) is a bio-based polymer that naturally degrades under suitable
conditions. It is a highly favored biodegradable polymer due to its excellent mechanical
properties, low thermal expansion coefficient, and versatility in forming various prod-
ucts [17]. In previous studies, Mat Zubir et al. [18] used a two-roller mill mixer to prepare a
composite material consisting of PLA and RS to study the effect of different ratios of RS on
the mechanical properties of PLA/RS composites. It was found that the content of RS fibers
increased from 5% to 25%, causing the tensile strength and elongation of the composites to
decrease, while the Young’s modulus increased. Some researchers employed pretreatment
methods on RS before it is mixed with PLA, utilizing various substances. For example,
Liao et al. [19] ground RS and treated it with NaOH for 24 h, followed by washing with
distilled water until it reached neutrality. Subsequently, it was mixed with PLA and PEG
using an internal mixer at RS ratios of 10, 20, and 30 wt%, and subjected to mechanical
property testing. The results indicated that the introduction of RS fibers did not lead to any
improvement in the mechanical properties of the PLA matrix. However, the tensile strength
of the composite increased as the RS fiber content increased from 10% to 30%. Yu et al. [20]
discovered that using 120 µm sized RS particles, which underwent pretreatment with an
alkali, ultrasound techniques, and a combination of both when mixed with PLA at a 1:99
mass ratio through a twin-screw extruder, can significantly increase the matrix and parti-
cles’ adhesion in all cases. Furthermore, this composite material exhibited reduced water
absorption compared to PLA/RS composites without pretreatment. Additionally, PLA-g-
MA was utilized as a compatibilizer for the composite, and some studies employed both
pretreated RS and PLA-g-MA. Nyambo et al. [21] observed enhancements in tensile and
flexural strength, with increases of approximately 20% and 14%, respectively, in PLA mixed
with 30% wheat straw composites upon the addition of 3 and 5 phr PLA-g-MA compared
to those without the addition of maleic anhydride. These improvements were attributed
to the strong interfacial adhesion between the fibers and the matrix, which contributed
to the observed increase in strength. Asheghi-Oskooee et al. [22] identified the optimal
processing conditions for preparing PLA-g-MA and incorporating it into a composite of
PLA with treated RS. The mechanical properties, such as Young’s modulus, tensile strength,
impact strength, and tensile toughness, of PLA mixed with pretreated RS and PLA-g-MA,
or without PLA-g-MA, showed an increase compared to the PLA/RS composite.

This research was designed to simplify the raw material preparation process, mini-
mizing chemical usage, in contrast to the complex methods of pretreatment or grafting
typically employed. This approach allows farmers to actively engage in material prepara-
tion. Compostable packaging products, incorporating PLA reinforced by RS, were subjected
to migration testing for food contact materials. However, the addition of maleic anhydride
(MA), a colorless crystalline substance, into the PLA matrix for compatibility or plasticiza-
tion purposes could pose hazards to humans. Therefore, an assessment was conducted to
test the release of MA from the packaging.

2. Materials and Methods
2.1. Materials

The RS variety of Pathum Thani 1 was obtained from Kamphaeng Phet, Thailand.
It was collected immediately after harvest and dried in the sun for 3 days. An initial
quantity of 200 g of RS was reduced in size using a Retsch SM100 cutting mill (Retsch,
Haan, Germany) for 10 min, followed by sieving with a mesh size of 300 µm. After grinding,
the RS was spongy, soft, lightweight, and spreads easily in the air. The matrix material
used in this study was polylactic acid (PLA), grade 4043D, a product of NatureWorks LLC
derived from PTT Global Chemical PCL (Bangkok, Thailand). It has a melt flow rate of
6.00 g/10 min under the conditions of 210 ◦C/2.16 kg, a peak melt temperature ranging
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from 145 ◦C to 160 ◦C, a glass transition temperature between 55 ◦C and 60 ◦C, and a
specific gravity of 1.24 g/cm3. Maleic anhydride (MA), obtained from Tokyo Chemical
Industry Co., Ltd., Tokyo, Japan, with a molecular weight of 98.06 and a purity greater than
99.0%, was employed as a compatibilizer and/or plasticizer in the composite.

2.2. PLA/RS Composite Preparation

PLA and RS were placed in a UF-260 Memmert universal oven (Memmert, Schwabach,
Germany) at 80 ◦C for 6 h to remove moisture before use. PLA/RS composite pellets
were prepared using an E101 twin-screw extruder (Chareon Tut Co., Ltd., Samutprakarn,
Thailand) within a temperature range of 100–170 ◦C from the feed section to the die section,
with a screw speed of 80 rpm. The mixing ratios between PLA and RS were 90:10, 80:20,
and 70:30, represented as PLA/RS10, PLA/RS20, and PLA/RS30, respectively. The same
process was repeated while incorporating 1% (phr) MA content, resulting in PLA/RS10MA,
PLA/RS20MA, and PLA/RS30MA. Then, an injection machine was employed to produce
the test specimens, with the processing temperature set at 100–190 ◦C from the feed section
to the nozzle section.

2.3. Characterizations
2.3.1. Melt Flow Index

An XRL-400A melt flow index tester (C.B.N. Material Test Co., Ltd., Samutprakarn,
Thailand) was utilized to determine the melt flow index (MFI), which indicates the rheology
of materials. The test data were presented as weight (g) per 10 min. Testing conditions
adhered to the ASTM D1238 standard [23], with a temperature of 210 ◦C and a load of
2.16 kg. Neat PLA was processed with a twin-screw extruder under the same conditions as
described in Section 2.2, to ensure comparable results with the other samples.

2.3.2. Particle Size Distribution

The particle size distribution was measured with a Mastersizer 3000 laser diffraction
particle size analyzer (Malvern Instruments, Malvern, UK) using the dry analysis method.
A total of 3 g of RS powder was fed into the system at a feed rate of 25% and a pressure
of 2 bar until a laser obscuration rate of 0.49% was reached. A particle refractive index of
1.540 and a particle absorption index of 0.01 were utilized. The sample underwent five
consecutive runs, yielding the average particle size as well as the parameters Dv10, Dv50,
and Dv90.

2.3.3. Mechanical Properties

The tensile, flexural, and Izod impact strength were established for evaluation of the
mechanical properties of the materials in this research. Tensile strength was determined
according to the ASTM D638 standard [24], using a 3400 series universal testing machine
(Instron (Thailand) Ltd., Bangkok, Thailand) with a cross-head speed of 50 mm/min. The
outcomes were reported in terms of tensile strength (MPa) and tensile modulus (GPa). Simi-
larly, flexural strength (three-point) was assessed following the ASTM D790 guidelines [25],
employing a machine with a cross-head speed of 2 mm/min. The results were reported
in terms of flexural strength (MPa). The Izod impact strength assessment was conducted
according to ASTM D256 [26], utilizing an impact pendulum model 9050 (Instron (Thailand)
Ltd., Bangkok, Thailand). V-notched Izod specimens were employed in the experiment,
with the results expressed in units of kJ/m2.

2.3.4. Morphology Analysis

The RS powders were examined at 5× magnification using an Eclipse LV100N POL
polarized light microscope (Nikon Instruments, Tokyo, Japan). The analysis was performed
using NIS-Elements v.4.0 software to evaluate particle size and shape.

After the tensile test, the specimens were examined for the distribution and homogene-
ity of the reinforcement in the matrix using a JSM-6510LV scanning electron microscope
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(SEM) (Jeol Ltd., Tokyo, Japan). The sputter coater was utilized to enhance conductivity by
covering the specimens with gold on their cross-sections. An accelerating voltage of 10 kV
was employed for SEM image analysis of the biocomposites.

2.3.5. Thermal Behavior

A DSC 25 differential scanning calorimeter (DSC) (TA Instrument, New Castle, DE,
USA) was used to analyze the thermal transitions of materials. The analysis involved
a three-step operation sequence. In the first step, the specimen was heated at a rate of
10 ◦C/min, progressing from 0 ◦C to 200 ◦C; it was then held for 5 min to eliminate thermal
history, resulting in the first heat curve. Subsequently, in the second step, the specimen was
cooled down at the same rate as the heating step, from 200 to 0 ◦C, yielding the cooling
curve. In the last step, the specimen was reheated at the same rate until it reached 200 ◦C,
producing the second heat curve.

The values of the melting temperature transition (Tm), glass temperature transition
(Tg), and enthalpy for calculating the percentage of crystallinity (Xc) of the materials were
determined from the second heat curve. Equation (1) was then applied to estimate the
Xc value.

Xc(%) = 100 × ∆Hm − ∆Hc

∆Hf × XPLA
(1)

where
∆Hm is the melting enthalpy;
∆Hc is the crystallization enthalpy;
∆Hf is the melting enthalpy of 100% crystalline PLA (93 J/g);
XPLA represents the PLA weight fraction.
The correlation between temperature and weight loss of the materials was investigated

using a TGA 550 thermogravimetric analyzer (TA Instruments, DE, USA) in a nitrogen
atmosphere. The heating rate was 10 ◦C/min, and the specimen weighed between 3 and
5 g. The temperature range covered was from 50 ◦C to 600 ◦C.

2.3.6. Water Absorption Test

The water absorption test of the material was in accordance with ASTM D570 stan-
dards [27]. The specimens were prepared with a diameter of approximately 50 mm and a
thickness of 3.2 mm. They were then dried at 50 ◦C in an oven for 24 h and weighed (W0).
Subsequently, they were placed in a container with distilled water maintained at 23 ◦C for
24 h. Afterwards, the water on the surface of the specimens was quickly removed with a
dry cloth, and they were immediately reweighed (Wt). The water absorption capacity (WA)
was calculated as a percentage using Equation (2).

WA(%) = 100 × Wt − W0

W0
(2)

where
WA is the water absorption percentage;
W0 is the starting weight;
Wt is the specimen’s weight at time t.

2.3.7. Migration Testing for Food Contact Materials (FCMs)

The composite with the highest strength was chosen as the representative for testing.
The test is divided into an analysis of lead and cadmium content according to methods
for food analysis of the Department of Medical Sciences (DMSc) and the National Bureau
of Agricultural Commodity and Food Standards (ACFS) [28]. The test results must not
detect the presence of either substance. Another test was conducted to measure the residue
remaining from evaporation according to JETRO 2008 standards and testing methods for
implements, containers, and packaging [29]. Specific migration testing applies either to an
individual substance or to a group of similar substances. The established limits are based



Polymers 2024, 16, 1038 5 of 15

on the toxicological hazard posed by each substance. Test conditions were determined to
replicate actual operating conditions at temperatures lower than 100 ◦C, specifically set at
60 ◦C for 30 min. Four types of solvents were used as food simulants: distilled water (for
foods with a pH of more than 5), 4% acetic acid (for foods with a pH of less than 5), 20%
ethanol (for foods containing alcohol), and n-heptane (for food containing fat or oil).

2.3.8. Gas Chromatography-Mass Spectrometry (GC-MS)

The determination of MA was conducted using Agilent 7000C Triple Quadrupole
static headspace GC-MS/MS with 7890B GC (Agilent Technologies, Inc., Santa Clara, CA,
USA), operating in electron ionization mode for ion generation. The HP-5ms GC column
(30 m × 0.25 mm with 0.25 µm thickness) was utilized for the analysis.

To begin, 50 mg of the sample was placed in 20 mL headspace glass-sealed vials,
followed by extraction at 60 ◦C for 30 min. Injection utilized a split mode with a ratio of
20:1, with the injection port held at 300 ◦C, and a sample volume of 1 mL.

The column temperature was initially set at 40 ◦C for 3 min, then ramped up at a rate
of 4 ◦C/min until reaching 200 ◦C. Subsequently, it was further increased to 280 ◦C at a
rate of 20 ◦C/min and held at this temperature for 3 min. Helium served as the carrier gas,
flowing at a constant rate of 1.0 mL/min. Molecular ions within the mass range of 29 to
500 m/z (mass-to-charge ratio) were analyzed for identification purposes.

3. Results and Discussion
3.1. Melt Flow Index

The MFI results are shown in Table 1 and Figure 1. It was discovered that the flow rate
decreased as the RS content increased, suggesting that RS obstructed the flow of molten
PLA [30]. However, the melt flow properties of the biocomposite were improved by adding
MA, as it functions as a lubricant [31], which facilitates movement under load.

Table 1. Melt flow index of PLA, PLA/RS composites, and PLA/RS-MA composites.

Samples Melt Flow Index (g/10 min) (210 ◦C/2.16 kg)

PLA (Processed) 25.37 (±1.14)
PLA/RS10 21.74 (±0.64)
PLA/RS20 18.80 (±0.60)
PLA/RS30 15.90 (±1.17)

PLA/RS10-MA 23.51 (±0.45)
PLA/RS20-MA 19.01 (±0.39)
PLA/RS30-MA 17.77 (±1.27)
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3.2. Particle Size Distribution

The RS was reduced in size using a cutting mill and passed through a sieve with
a mesh size of 300 µm. The particle size distribution of RS before the formation of the
composite is depicted in Figure 1.

The average particle size of RS was 223.87 µm, with the particle size distribution
represented by Dv10 = 50.58 µm, Dv50 = 201.48 µm, and Dv90 = 431.38 µm (Figure 1). These
Dv values indicate that 10%, 50%, and 90% of the RS particles are below the corresponding
micron sizes, respectively. For instance, Dv90 = 431.38 µm means that 90% of the RS
particles are below 431.38 µm in size. The RS particle size could be larger than the opening
size of the sieve because RS particles are rod-shaped, with lengths greater than their
diameters (Figure 2). Therefore, these particles can pass through the sieve [32].
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3.3. Mechanical Properties

The results of tensile properties are shown in Figure 3 and Table 2. It was found that
neat PLA exhibited the highest tensile strength at 63.47 MPa and the lowest tensile modulus
at 1.38 GPa. However, in the cases of the biocomposites, an increase in the RS content
led to a decrease in tensile strength in both composites with MA and without MA. This
decrease can be attributed to the incompatibility between the matrix and reinforcement.
Specifically, PLA/RS10-MA exhibited the highest tensile strength at 58.08 MPa, while
PLA/RS30 showed the lowest tensile strength at 51.57 MPa. On the other hand, the tensile
modulus increased with increasing RS content, up to 20%, in the cases of the composites
both with MA and without MA. This increase can be attributed to the RS particles acting as
rigid fillers, which do not melt and thus increase the rigidity of PLA during processing [18].
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Table 2. Mechanical properties of PLA, PLA/RS composites, and PLA/RS-MA composites.

Samples Tensile Strength
(MPa)

Tensile
Modulus (GPa)

Flexural
Strength (MPa)

Izod Impact
Strength
(kJ/m2)

PLA 63.47 (±1.27) 1.38 (±0.03) 43.45 (±1.08) 10.6 (±1.21)
PLA/RS10 56.76 (±0.46) 1.51 (±0.02) 40.67 (±0.09) 7.36 (±0.23)
PLA/RS20 52.30 (±0.43) 1.69 (±0.03) 40.40 (±0.96) 7.06 (±0.32)
PLA/RS30 51.57 (±2.60) 1.69 (±0.04) 39.40 (±0.65) 7.06 (±0.18)

PLA/RS10-MA 58.08 (±0.31) 1.60 (±0.12) 44.93 (±1.04) 8.40 (±0.63)
PLA/RS20-MA 56.53 (±1.25) 1.97 (±0.09) 42.83 (±1.08) 8.23 (±0.30)
PLA/RS30-MA 53.73 (±0.31) 1.67 (±0.05) 38.27 (±1.18) 7.76 (±0.23)

At the same time, RS particles also insert themselves between PLA molecular chains,
inhibiting movement and causing the composite to lose its flexibility [20]. The composite
PLA/RS20-MA had the highest modulus of 1.97 GPa. In the case of 30% RS content, the
tensile modulus decreased in both cases because the RS particles were unevenly distributed.
The results of the comparison of the composites with MA and without MA clearly show
that MA acts as a plasticizer or compatibilizer that helps RS disperse well in PLA [31],
resulting in higher tensile properties than composites without MA in all cases.

The results of the flexural strength showed a similar trend to the tensile strength,
as shown in Figure 4 and Table 2. It was found that neat PLA had a flexural strength of
43.45 MPa, which is higher than that of the other composites except for PLA/RS10-MA. The
flexural strength of the composites decreased with increasing RS content in all cases. The
comparison of the composite with MA and without MA showed that adding MA helped
increase flexural strength, except in the case of PLA/RS30-MA. This exception is likely a
result of the inconsistent ratio of MA to RS, leading to excessive RS content, clustering of
RS particles, increased surface roughness of the specimen, and an uneven distribution of
force received from the loading head.
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The Izod impact strength is related to the force exerted on the embedded particles
to dislodge them from the matrix, and is an important energy dissipation mechanism in
particle-reinforced composites. It was found that neat PLA had the highest impact strength
at 10.6 kJ/m2, while the PLA/RS10-MA composite had the highest at 8.40 kJ/m2 (Figure 5
and Table 2). The Izod impact strength of the composites decreased with increasing RS
content in cases both with and without MA. Furthermore, the addition of MA resulted in
a higher Izod impact strength than without MA in all cases. These results align with the
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findings of the tensile strength test regarding the rigidity of the filler and the incompatibility,
including the dispersion of RS particles.
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3.4. Morphology Inspection

The distribution of RS particles on the cross-section of the specimens was investigated
with SEM, as shown in Figure 4. As expected, the composites exhibited a clear indication
of poor interphase between the PLA matrix and RS particles, suggesting incompatibility
between RS particles and PLA. There was a noticeable increase in phase separation as the
RS content increased, as depicted in Figure 6a–c. The results of the addition of MA showed
that it could help the RS particles merge well with PLA. This was evident from the RS
particles embedded in the PLA matrix, demonstrating a strong interphase between the
phases. Because MA is a coupling agent that reduces the hydrophilicity of the material,
it increases the adhesion force between phases. Moreover, it enhanced the dispersion of
the filler, thereby increasing the dimension stability of the composites [33]. However, it is
essential that the addition of MA corresponds to the content of filler or reinforcement [34].
In the case of PLA/RS30-MA, there appeared to be an inconsistency between the MA
and RS content, resulting in uneven distribution and some clumping, thereby leading to
mechanical properties that do not meet the desired standard.
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3.5. Thermal Properties

DSC measurements of neat PLA and PLA/RS composites are presented in Figure 7,
with transition temperatures and calculated Xc values provided in Table 3 for clarity.
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In the case of the composites without MA, Tg values were similar to those of neat
PLA in the temperature range of 61–62 ◦C. Increasing the RS content caused the Tg to
increase until the RS content reached 20%, after which it decreased slightly. Meanwhile, in
the case of the composites with MA, Tg was lower than in both neat PLA and composites
without MA by approximately 3–5 ◦C. This was attributed to the better distribution and
loose agglomeration of RS particles. Consequently, the chains could move more easily,
facilitating crystallization in all cases [35]. In terms of the effect of the RS ratio on the Tc
value, it was observed that in the case of the composites without MA, there was a non-trend
fluctuation in the temperature range of 120–128 ◦C. However, in the case of the composites
with MA, the Tc showed a noticeable increase with increasing RS content, measuring 114.16,
122.99, and 130.22 ◦C, respectively. It is worth noting that in the case of neat PLA, Tc was
absent, which may be attributed to the use of a high cooling rate, possibly interfering with
the crystallization mechanisms. Considering the effect of the RS content on the Tm, it was
observed that in the case of the composites without MA, there was no trend fluctuation
in the range of 146–149 ◦C. However, in the case of the composites with MA, there was
a noticeable increase in Tm with increasing RS content, measuring 145.99, 147.61, and
152.01 ◦C, respectively.
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Table 3. Thermal properties of PLA and PLA/RS composites.

Samples

Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA)

Tg (◦C) Tc (◦C) Tm (◦C) Crystallinity
(%Xc)

Weight Loss
(%)

Temperature
Decomposition

(Tonset) (◦C)

Temperature
Decomposition

(Tpeak) (◦C)

PLA 61.71 - 148.05 0.12 99.63 293.07 342.32
RS - - - - 69.16 264.04 337.42

PLA/RS10 62.44 120.04 149.94 0.43 97.76 281.19 314.93
PLA/RS20 62.64 128.45 146.35 1.41 95.98 278.34 313.20
PLA/RS30 61.60 121.96 148.87 1.44 93.19 272.65 312.81

PLA/RS10-MA 58.33 114.16 145.99 2.06 95.13 291.08 326.25
PLA/RS20-MA 57.58 122.99 147.61 2.79 94.29 293.42 324.00
PLA/RS30-MA 61.77 130.22 152.01 2.97 86.85 281.77 314.55

The calculation of percent crystallinity (%Xc) revealed that neat PLA had the lowest
value at 0.12, while PLA/RS30-MA had the highest at 2.97. These results clearly demon-
strated that %Xc increased with an increase in the RS content, suggesting that RS particles
could easily induce crystallization in the composite. When comparing composites with
and without MA, the values were 0.43, 1.41, and 1.44 for the former and 2.06, 2.79, and
2.97 for the latter, respectively. This indicates that MA enhances the composite’s %Xc,
possibly by improving compatibility and aiding in better dispersion of the RS particles [36].
Furthermore, Figure 7 indicates that almost all materials exhibited a single melting peak,
except in the case of PLA/RA10-MA, which displayed a double melting peak. This phe-
nomenon may be attributed to the presence of two distinct crystal structures undergoing
melting [37–39].

The relationship between increasing temperature and the weight loss of the composites
was assessed using TGA, as depicted in Figure 8. In all cases, PLA, RS, and PLA/RS
composites exhibited one-step degradation. Table 3 illustrates that PLA demonstrated the
highest thermal stability within a decomposition temperature range of 293.07–342.32 ◦C,
with a weight loss of 99.63%. Conversely, RS exhibited decomposition within a temperature
range of 264.04–337.42 ◦C, with the lowest weight loss value recorded at 69.16%, likely
attributable to the ash fraction content after decay. In the case of the composite materials, it
was found that the decomposition temperature decreased with increasing RS content within
the temperature range of 272.65–326.25 ◦C. This phenomenon is expected, as the higher
thermal stability of the PLA content decreased and was replaced by RS particles with lower
thermal stability [38]. Additionally, composites with MA exhibited higher thermal stability
compared to those without MA, attributed to the enhanced surface adhesion between the
matrix and reinforcement [39,40].
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3.6. Water Absorption

The results of the water absorption test are presented in Figure 9. As anticipated, PLA
exhibited the lowest absorption rate at 0.58%, while the composites showed an increase
with rising RS content, with PLA/RS30 registering the highest value at 3.08%. This trend is
attributed to RS’s main component, cellulose, which is hydrophilic [34]. When comparing
cases with and without MA, it was observed that the addition of MA led to a reduction
in water absorption. This can be attributed to the enhanced interfacial adhesion between
RS and PLA, which limits the diffusion of water molecules into the composite [41,42].
The decrease in water absorption with the addition of MA may also be attributed to
the cross-linking reaction of components. Several factors contribute to the reduction in
water absorption with the addition of MA: alteration of pores within the specimens or
at the interface between the matrix and reinforcement, improved bonding between the
matrix interface and reinforcement [42,43], and decreased hydrophilicity due to the reduced
number of OH groups, thereby reducing the opportunities for bonding with water [44,45].
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3.7. Migration Testing for Food Contact Materials (FCMs)

The food container composite with the highest strength, PLA/RS20-MA (Figure 10),
was selected for migration testing and GC-MS analysis.
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The results of the plastic residue test found that there was no harmful heavy metal
contamination which is prohibited in food packaging, such as cadmium and lead, in the
samples (Table 4). In addition, the solubility of the chemicals from the plastic was tested at
60 ◦C for 30 min, followed by an analysis of the residue remaining from the evaporation
process used to extract the sample. It was found that there were dissolved residues of 11.5,
7.5, and 6.8 mg/dm3 from the extractions with water, 4% acetic solution, and 20% ethanol
solution, respectively, while no residue was found when dissolved in n-heptane at 25 ◦C
for 60 min. Color release from the plastic was not found in any of the solutions. Overall, all
test results were subjected to Thai Industrial Standards (TIS 655 Part 1-2010) [46] and the
announcement by the Ministry of Public Health (No. 435, 2022) of Thailand, as shown in
Table 4.

Table 4. Migration test.

Food Simulant Substitutes Residue Content
(mg/dm3)

Color Release
(mg/dm3)

Maximum Permitted
Concentrations

(mg/dm3) *

Distilled water 11.5 - <30
4% acetic acid 7.5 - <30
20% ethanol 6.8 - <30
n-heptane

(25 ◦C/60 min) - - -

* According to the maximum permitted concentrations of polypropylene, polyethylene, and polyethylene terephthalate.

The composite underwent testing for MA release at 60 ◦C for 30 min using GC-MS,
with the results shown in Figure 11.
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The two main peaks, detected at 32.1 and 40.1 m/z, corresponded to the molecular
structures of O2 [47] and atmospheric contaminants [48], respectively. The absence of MA
detection can be attributed to the lack of specific ionization, as evidenced by the absence of
the base peak at 54 and the M+ (molar mass) peak at 98 m/z [49,50].

4. Conclusions

In this research, the production of biocomposites from PLA mixed with RS was
investigated, considering different mixing ratios ranging from 10% to 30% (wt) of RS, along
with the effect of adding 1% (phr) of MA. For the preparation of the composite pellets and
testing specimens, a twin-screw extruder and an injection molding machine were utilized,
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respectively. The study revealed that as the RS content increased, the melt flow rate,
thermal stability, and tensile strength decreased, while the tensile modulus, percentage of
crystallinity, and water absorption rate increased. Furthermore, the addition of MA resulted
in an improvement in the melt flow rate, thermal stability, and mechanical properties, along
with a decrease in the rate of water absorption. The PLA/RS20-MA composite with the
highest tensile modulus was selected for migration testing for food contact materials and
was found to meet the standard, compared to commonly used packaging materials such as
PP, PE, and PET. Additionally, no traces of MA were detected in the composite material
through GCMS analysis. This study successfully offers a new alternative for mitigating
environmental pollution caused by the burning of rice straw, contributing to the fight
against global warming. It highlights the potential for producing biodegradable composites
from PLA and rice straw for use as environmentally-friendly food containers. Future
developments will focus on studying the biodegradability of PLA/RS biocomposites.
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