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Abstract: Hydrogels are soft–wet materials with a hydrophilic three-dimensional network struc-
ture offering controllable stretchability, conductivity, and biocompatibility. However, traditional
conductive hydrogels only operate in mild environments and exhibit poor environmental tolerance
due to their high water content and hydrophilic network, which result in undesirable swelling,
susceptibility to freezing at sub-zero temperatures, and structural dehydration through evaporation.
The application range of conductive hydrogels is significantly restricted by these limitations. There-
fore, developing environmentally tolerant conductive hydrogels (ETCHs) is crucial to increasing the
application scope of these materials. In this review, we summarize recent strategies for designing
multifunctional conductive hydrogels that possess anti-freezing, anti-drying, and anti-swelling prop-
erties. Furthermore, we briefly introduce some of the applications of ETCHs, including wearable
sensors, bioelectrodes, soft robots, and wound dressings. The current development status of different
types of ETCHs and their limitations are analyzed to further discuss future research directions and
development prospects.

Keywords: conductive hydrogels; anti-freezing; anti-drying; anti-swelling; applications

1. Introduction

Flexible conductive materials can convert external stimuli, such as stress, strain, tem-
perature, and humidity, into electrical signals (such as current, resistance, and capaci-
tance) [1–3]. Due to their unique stimuli-responsive characteristics, flexible conductive ma-
terials are commonly used in research fields such as human motion monitoring [4], human
health monitoring [5], remote medical control [6], artificial skin [7], and soft robotics [8].
Traditional flexible conductive materials usually consist of flexible substrate materials
(PDMS, polyurethane, polyetherimide, and Ecoflex) and rigid conductive materials (such
as metal nanomaterials, carbon-based materials, and conductive polymers). The former
provides stretchability, while the latter provides conductivity. However, traditional flexible
conductive materials face challenges such as complex manufacturing processes, insufficient
mechanical stretchability, poor compatibility with human tissues, and insufficient cohesion
between the rigid conductive elements and the flexible substrate [9,10]. The limitations
of traditional flexible conductive materials significantly impede large-scale commercial
production and long-term utilization. Hence, it is of great research significance to de-
velop flexible conductive materials with good biocompatibility, simple processing methods,
excellent mechanical properties, high sensitivity, and long-term stable service.

In response to the aforementioned limitations, researchers have made significant
strides in developing flexible conductive materials with hydrogels as the primary compo-
nents. By controlling the composition and structure of hydrogels and integrating them
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with conductive materials, such as ion- or electron-conductive materials [11,12], materials
with an excellent combination of mechanical properties (such as stretchability, compress-
ibility, and fatigue resistance) and conductivity can be obtained [13]. Hydrogel-based
flexible conductive materials exhibit mechanical properties similar to those of the skin,
displaying good biocompatibility and stable and sensitive responses to external stimulus
signals [14,15]. These qualities have greatly increased their application potential in the
realm of sensing [16–18], including the monitoring of electrocardiogram and electroen-
cephalogram signals [19], soft robotics [20], human motion monitoring [21], controlled
drug release [22], photothermal therapy [23], and smart wound dressing [24,25].

Nevertheless, there are still outstanding issues in the actual application environment in
research on conductive hydrogels. Due to the presence of a large amount of water and the
hydrophilic network structure of their matrix, hydrogels have poor anti-freezing and anti-
dehydration properties and insufficient swelling resistance. Consequently, their structure
and functionality are compromised, severely constraining their applicability in complex
environments. For instance, conductive hydrogels need to maintain their properties within
a specific temperature range; indeed, when exposed to high or sub-zero temperatures,
they become rigid and fragile due to water evaporation or water freezing, respectively.
In addition, prolonged exposure to dry environments and water evaporation from the
matrix affect their elasticity and conductivity [26]. Furthermore, conventional conductive
hydrogels may exhibit substantial volumetric expansion due to the absorption of significant
quantities of water from humid surroundings, reducing their mechanical and conductive
properties [27]. This limits their applications under extreme conditions [28–30]; therefore,
the development of hydrogels with environmental tolerance is imperative to broadening
their application scope in flexible sensing and biomedical areas.

Recently, researchers have devised a range of strategies aimed at tackling these obsta-
cles, such as adding anti-freezing organic solvents, using salt solutions, and performing sur-
face modification with hydrophobic elastomers to reduce water evaporation and swelling
or prevent conductive hydrogels from freezing [31–33]. Additionally, some methods also
involve the modification of the network structure with chemical or physical binding to
promote the anti-swelling performance of conductive hydrogels [34]. With these meth-
ods, environmentally tolerant conductive hydrogels (ETCHs), which possess improved
anti-freezing, anti-drying, and anti-swelling properties, have been successfully created.
Such advancements allow for the effective use of conductive hydrogels in flexible sensors,
bionic soft robots, biomedical materials, and other fields under extreme environments
while maintaining their excellent stability and durability.

In this study, as shown in Scheme 1, we reviewed recent works on ETCHs with
anti-freezing, anti-drying, and anti-swelling properties, providing a brief overview of the
current design strategies employed for their development. Additionally, we explored
potential applications based on the distinctive attributes of ETCHs, concluding that these
multifunctional anti-freezing, anti-drying, and anti-swelling conductive hydrogels have
great potential for future development.



Polymers 2024, 16, 971 3 of 32Polymers 2024, 16, x FOR PEER REVIEW 3 of 35 
 

 

 

Scheme 1. Schematic of the functionalized ETCHs and their applications. 

2. Structure Design and ETCH Preparation Methods 

2.1. ETCHs with Anti-Freezing and Anti-Drying Characteristics 

2.1.1. Immersion in Salt Solution  

Traditional conductive hydrogels are prone to freezing when the internal water 

reaches the freezing point, leading to flexibility and functionality loss. To increase the op-

erational temperature range for the utilization of conductive hydrogels, as demonstrated 

in Table 1, researchers have found that supplementing them with inorganic salt solutions 

(LiCl, NaCl, CaCl2, etc.) can be an effective anti-freezing and anti-drying strategy [35–37], 

as doing so lowers the freezing point, reducing the evaporation of water in the hydrogel 

network. The underlying mechanism consists of the salt solution disrupting the arrange-

ment of the water molecules and increasing the intermolecular forces among them. The 

dissolved salt is dissociated into ions; as a result, ions interact with water to form hydrated 

ions, making it difficult for water molecules to form a regular crystalline structure and less 

likely for water to evaporate. Additionally, a salt solution can also provide good ion con-

ductivity to hydrogels. For instance, Zhang et al. [38] utilized zwi�erionic sulfobetaine 

methacrylate (SBMA) and N-(2-hydroxyethyl) acrylamide (HEAA) for copolymerization 

at 70 °C. Then, the resulting hydrogel was immersed in a 6 M LiCl solution for soaking to 

create an anti-freezing and anti-drying ion-conductive hydrogel. The addition of LiCl not 

only endowed the hydrogel with high ion conductivity (25.8 S/m) at room temperature 

but also allowed it to maintain good conductivity (2.21 S/m) even at a low temperature 
(−40 °C), as demonstrated in Figure 1a–c. In addition, the incorporation of a salt solution 

might improve the mechanical performance of hydrogels. An example of this technique is 

given in the work by Wu et al. [39], who successfully balanced the anti-freezing and me-

chanical properties of hydrogels and advanced their application in sub-zero-temperature 

environments. As shown in Figure 1d, the authors used a salt solution replacement 

Scheme 1. Schematic of the functionalized ETCHs and their applications.

2. Structure Design and ETCH Preparation Methods
2.1. ETCHs with Anti-Freezing and Anti-Drying Characteristics
2.1.1. Immersion in Salt Solution

Traditional conductive hydrogels are prone to freezing when the internal water reaches
the freezing point, leading to flexibility and functionality loss. To increase the operational
temperature range for the utilization of conductive hydrogels, as demonstrated in Table 1,
researchers have found that supplementing them with inorganic salt solutions (LiCl, NaCl,
CaCl2, etc.) can be an effective anti-freezing and anti-drying strategy [35–37], as doing
so lowers the freezing point, reducing the evaporation of water in the hydrogel network.
The underlying mechanism consists of the salt solution disrupting the arrangement of
the water molecules and increasing the intermolecular forces among them. The dissolved
salt is dissociated into ions; as a result, ions interact with water to form hydrated ions,
making it difficult for water molecules to form a regular crystalline structure and less
likely for water to evaporate. Additionally, a salt solution can also provide good ion
conductivity to hydrogels. For instance, Zhang et al. [38] utilized zwitterionic sulfobetaine
methacrylate (SBMA) and N-(2-hydroxyethyl) acrylamide (HEAA) for copolymerization at
70 ◦C. Then, the resulting hydrogel was immersed in a 6 M LiCl solution for soaking to
create an anti-freezing and anti-drying ion-conductive hydrogel. The addition of LiCl not
only endowed the hydrogel with high ion conductivity (25.8 S/m) at room temperature
but also allowed it to maintain good conductivity (2.21 S/m) even at a low temperature
(−40 ◦C), as demonstrated in Figure 1a–c. In addition, the incorporation of a salt solution
might improve the mechanical performance of hydrogels. An example of this technique
is given in the work by Wu et al. [39], who successfully balanced the anti-freezing and
mechanical properties of hydrogels and advanced their application in sub-zero-temperature
environments. As shown in Figure 1d, the authors used a salt solution replacement
strategy to prepare high-toughness and anti-freezing ion-conductive hydrogels by freezing
polyvinyl alcohol (PVA) hydrogel precursor solution and immersing it in potassium acetate
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(KAc) solution for 96 h. Due to the salting-out effect on PVA by KAc, the hydrogel achieved
the best anti-freezing performance when the salt concentration was adjusted to 50 wt%.
The resultant hydrogel could withstand a low temperature (−60 ◦C) while simultaneously
possessing a conductivity value of 1.2 S/m. Moreover, the salting effect on PVA by KAc
significantly enhanced the mechanical properties of the hydrogel, which demonstrated
an ultimate tensile strength of 8.2 MPa and toughness of 25.8 MJ/m3. Another example
is displayed in Figure 1e; Zhang’s group [40] developed a poly(SBMA-co-AA) hydrogel
based on zwitterionic sulfobetaine methacrylate (SBMA) and charged monomer acrylic acid
(AA) and then immersed it in LiCl solutions with various weight percentages to modify
its mechanical, anti-freezing, and anti-drying properties, as well as its ionic conductivity.
As shown in Figure 1f, the addition of LiCl effectively lowered the freezing point of the
hydrogel (−9.25 ◦C kg mol−1), which displayed good transparency for 30 days even at
−80 ◦C after having been absorbed in a 30 wt% LiCl solution. In addition, the anti-freezing
performance of the hydrogel could be enhanced with the increase in the concentration
of LiCl solution. Moreover, the hydrogel sample stored at 25 ◦C and 54% humidity for
up to one week retained nearly 100% of its water content. Interestingly, lyophilized
conductive hydrogels can spontaneously absorb water for recyclable use, which extends
their service career, an essential characteristic for their application in extreme environments.
Wu et al. [41] developed a conductive hydrogel consisting of polyacrylamide (PAM),
chitosan (CS), and chitosan-modified graphene oxide nanosheets (CGO nanosheets). Then,
the hydrogel was immersed in NaCl salt solution to yield the final anti-freezing conductive
hydrogel. The high-concentration NaCl salt solution (21.2 wt%) significantly changed the
network structure of the hydrogel by allowing water molecules to form hydrogen bonds
(Figure 1g), resulting in exceptional mechanical and anti-freezing properties. Even when
exposed to the cold temperature of −20 ◦C for 30 days, the hydrogel preserved satisfactory
conductivity (4.10 S/m). With this breakthrough study, the authors paved the way for the
future development of ion-conductive hydrogels for application in extreme environments.

In summary, the incorporation of salt solutions can greatly improve the anti-freezing,
anti-drying, and ionic conductivity properties of conductive hydrogels. However, this
preparation method might have a negative impact on the equilibrium between the mechan-
ical properties and electrical conductivity of hydrogels. In addition, some salt solutions
might be toxic to humans and prevent the utilization of conductive hydrogels in the biomed-
ical field. Therefore, the selection of an appropriate salt solution remains a crucial aspect in
designing anti-freezing and anti-drying conductive hydrogels with desirable mechanical
and biocompatible performance.

Table 1. Performances of anti-freezing and anti-drying conductive hydrogel by immersion in salt
solution strategy. “-” means not investigated.

Materials Solvent
Composition

Anti-
Freezing

Temperature
Anti-Drying Property Application Ref.

GA/PAA-
CNC/betaine CaCl2 −30 ◦C - Motion sensor [35]

Cellulose/ECH ZnCl2/CaCl2 −30 ◦C - Strain and pressure sensor [36]
PAM/SA LiCl −30 ◦C 92% of water retention Motion sensor [37]

SBMA/HEAA LiCl (6 M) −40 ◦C 79.8% of water retention Strain sensor [38]

PVA KAc
(50 wt%) −60 ◦C 90% of water retention after 10 days Soft robot and ionic skin [39]

SBMA/AA LiCl
(30%) −80 ◦C 100% of water retention after 10 days Human motion detection [40]

PAM/CS/CGO NaCl
(21.2 wt%) −56.8 ◦C - Strain sensor [41]
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Figure 1. (a) Preparation process of SBMA-HEAA hydrogel. (b) Interactions among the anti-freezing
hydrogel. (c) Ion-transmission mechanism of anti-freezing hydrogel. From ref. [38] used with permis-
sion by Royal Society of Chemistry. (d) Preparation of hydrogel with PVA and KAc. From ref. [39]
used with permission by Royal Society of Chemistry. (e) Monolithic structure of environmental ionic
hydrogel. (f) Anti-freezing property of LiCl solution and ionic hydrogel. From ref. [40] used with
permission by Elsevier. (g) Schematic diagram of anti-freezing nanocomposite conductive hydrogel.
From ref. [41] used with permission by Elsevier.

2.1.2. Incorporation of Organic Solvent

Directly incorporating organic solvents with inherent anti-freezing properties before
the crosslinking of conductive hydrogels is another method for improving the freezing
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resistance of these materials [42]. Researchers have reported that the freezing point of the
liquid phase in conductive hydrogels can be successfully reduced with the incorporation
of organic solvents with a freezing point lower than that of water. As shown in Table 2,
this innovative approach has facilitated the development of double-solvent system-based
conductive hydrogels with anti-freezing and anti-drying characteristics [43–45]. As a
representative example, Song et al. [46] utilized a binary solvent composed of dimethyl
sulfoxide (DMSO/water 1:2) as a dispersion medium to dissolve polyvinyl alcohol (PVA),
cellulose nanofibers (CNFs), and aluminum chloride hexahydrate (AlCl3·6H2O), fabricat-
ing an ion-conductive hydrogel with anti-freezing and anti-drying properties (Figure 2a).
The nanocomposite organohydrogel prepared by using a simple one-pot method exhib-
ited high tensile strain (up to 696%), high toughness (3.54 MJ/m3), excellent moisture
retention performance (85% hydrogel weight retained after 30 days), and a wide working
temperature range (from −50 ◦C to 50 ◦C). Furthermore, the PVA-CNF organohydrogel
exhibited remarkable flexibility, stretchability, and compressibility even at the extremely
low temperature of −50 ◦C. This unique behavior can be attributed to the formation of
strong hydrogen bonds between DMSO and water (Figure 2b), allowing the hydrogel to
regain its original shape after compression. The results also demonstrate the significant
role of DMSO in lowering the freezing point of water, resulting in an organohydrogel
exhibiting remarkable resistance to freezing and drying. Notably, after 30 days of storage at
room temperature, the organohydrogel system lost only 15% of its initial mass. In addition
to DMSO, glycerol is another organic solvent widely used for producing anti-freezing
and anti-drying conductive hydrogels. Jiang’s team [47] took inspiration from mussels
to develop a time-efficient method for creating multifunctional hydrogels with adhesion,
anti-freezing, and anti-drying properties. As shown in Figure 2c, the hydrogel was pro-
duced by employing tannic acid-modified cellulose fibers (TA@CNFs), PAM, metal Cu2+,
and glycerol. By utilizing the glycerol–water (50 wt%) binary solvent in the presence of
Cu2+ and the TA@CNF catalytic system, the polymer was rapidly polymerized to form a
network structure, a method which was found to be much faster than the traditional ther-
mally induced free-radical polymerization method. Further, this process contributed to the
hydrogen bond interaction between glycerol and water molecules, effectively suppressing
the freezing of water; as a result, the conductive hydrogel exhibited long-term stability in
extremely cold environments. Zhang et al. [48] developed UV-blocking nanoparticle-lignin
sulfonate nanorods (LSNs) and incorporated them into a polyacrylamide/polyacrylic acid
(PAM/PAA) polymer network by using a simple method. Firstly, dispersed lignin sul-
fonate solution was supplemented with anhydrous ethanol and then subjected to rotary
evaporation to form spindle-like nanorods. Then, the LSNs and AM/AA were dissolved
in a water/glycerol (6:1) binary solution to obtain an anti-freezing, anti-drying, and UV-
shielding hydrogel (Figure 2d). Due to the LSNs and hydrogen bonding between water
and glycerol, the obtained hydrogel could withstand the extremely cold temperature of
−60 ◦C for a week and maintain the initial state after storage at room temperature (60%
relative humidity) for 15 days. Gao et al. [49] developed a chitosan–gelatin–glycerin–NaCl
(CGGN) organohydrogel film sensor with a thickness of only 0.1 mm, which is sensitive
to humidity and temperature. Due to the binary solvent composed of water/glycerin,
this sensor possesses a wide relative humidity (RH) range (20–90%), high transparency,
and anti-freezing properties (−30 ◦C~50 ◦C). The above work provides a basis to intro-
duce novel methodologies for fabricating a new generation of electronic skin sensors and
wearable devices capable of discerning multiple stimuli.

Besides directly incorporating organic solvents before the crosslinking of hydrogels,
another strategy that has also been effectively employed in engineering anti-freezing and
anti-drying conductive hydrogels is organic solvent substitution, whereby some of the water
molecules within the internal hydrogel network are replaced with organic solvents through
molecular diffusion, endowing these materials with anti-freezing and anti-drying character-
istics [50,51]. Many researchers have adopted this approach to improve ETCHs [52–54]. For
example, Sun et al. [55] prepared a high-toughness ETCH composed of PAM, montmoril-
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lonite (MMT), and carbon nanotubes (CNTs) and subjected it to glycerol solvent substitution
(Figure 3a). As shown in Figure 3b, the obtained organohydrogel exhibited a wide working
temperature range (from −60 ◦C to 60 ◦C) and maintained excellent conductivity, as well
as remarkable stretchability, at −60 ◦C for up to 30 days. The hydrogen bonding between
water and glycerol molecules endowed the organohydrogel with exceptional anti-freezing
properties. This strategy effectively addresses the challenges faced by conductive hydro-
gels. In another work, Zhai et al. [56] designed a robust and freezing-resistant conductive
hydrogel by using freeze casting and solution substitution (Figure 3c).
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hydrogen bonds. From ref. [46] used with permission by Elsevier. (c) The preparation process of
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process of an anti-freezing hydrogel and hydrogen bond within hydrogel. From ref. [48], used with
permission by Elsevier.
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From ref. [55], used with permission by John Wiley and Sons. (c) The freeze casting assisted with
solution substitution approach to prepare PVA-based conductive organohydrogel. From ref. [56],
used with permission by John Wiley and Sons.

Table 2. Performances of anti-freezing and anti-drying conductive hydrogel by incorporating organic
solvents. “-” means not investigated.

Materials Solvent Composition Anti-Freezing
Temperature Anti-Drying Property Application Ref.

PVA/SNF/CN Ethylene glycol/water −18 ◦C -
Human
motion

detection
[42]

PVA/EG Ethylene glycol/water −20 ◦C -
Human
motion

monitoring
[43]

(PVA)/CNCs-
PDDA/PA Glycerol/water −30 ◦C - Strain

sensors [45]

PVA/CNF DMSO/water (1:2
molar ratio) −50 ◦C

85% of hydrogel
weight retention after

30 days

Human
motion
sensor

[46]

AM/Cu-TA/CNF Glycerol/water
(50 wt%) −20 ◦C 70% weight retention

after 7 days
Strain
sensor [47]

PAM/PAA/LSNs Glycerol/water (6:1) −60 ◦C Keep the initial state
for 7 days

Energy
storage [48]

PAM/MMT/CNTs Glycerol/water (6:1) −60 ◦C
90% of hydrogel

weight retention after
30 days

Human
motion
sensor

[55]

PVA Ethanolic ferric
chloride (2 wt%) −30 ◦C - Strain

sensor [56]

Cu-TA/CNF/G 50 wt% EG −30 ◦C
90% of hydrogel

weight retention after
60 days

Human
motion
sensor

[57]

The PVA solution was first unidirectionally frozen by using liquid nitrogen and
subsequently immersed in a pre-cooled ethanolic ferric chloride (2 wt%) replacement
solution for three days. Following the vertical gradient decrease in temperature, the PVA
polymer chains unidirectionally crystallized and aggregated; additionally, the coordination
interaction between Fe3+ and the hydroxyl groups of the PVA polymer chains made the
latter further aggregate during the solution substitution process. Thence, the prepared
conductive PVA hydrogel was found to have high tensile strength (6.5 MPa), excellent
tensile strain (1710%), and good electrical conductivity (6.5 S/m). Furthermore, the ethanol
substitution solvent imparts anti-freezing properties to organohydrogels, enabling their
utilization in extreme environments. In addition to these organic solvents, ethylene glycol
can also be used as an anti-freezing and anti-drying replacement solvent. For example,
Han et al. [57] developed an anti-freezing, anti-drying, and conductive organohydrogel
based on PAM, cellulose nanocrystals modified with tannic acid (CNC-TA), and graphene
(G). The free water in the hydrogel network was thereafter replaced with ethylene glycol
(50 wt%) to prepare the target ETCH.

The final ETCH displayed outstanding freezing resistance (ability to withstand a tem-
perature of −30 ◦C for 24 h) and impressive moisturizing properties (ability to withstand a
temperature of 60 ◦C for 96 h) due to the interactions between water and ethylene glycol.

After adding organic solvents to a hydrogel system, the free water molecules in the
hydrogel network form hydrogen bonds with the organic solvent molecules, reducing
the transition temperature of the liquid phase within the hydrogel, which is beneficial
for inhibiting the formation of ice crystals and preparing conductive hydrogels with anti-
freezing and anti-dehydration properties. However, the incorporation of an organic solvent
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also presents some limitations and problems. For example, compared with the salt solution
system mentioned in the previous section, organic solvents are prone to oxidation or
decomposition, which would affect the electrical conductivity of the final hydrogel. In
addition, in application scenarios such as human motion sensing and wound dressing,
some organic solvents may reduce the biocompatibility of hydrogels, limiting their use
in humans. Therefore, the selection of organic solvents needs to be comprehensively
considered in view of different application scenarios.

2.1.3. Surface Modification

In nature, plants and animals possess the ability to store a significant amount of water
within their bodies. Moreover, they can encapsulate and immobilize water molecules
through their unique skin structures. Taking inspiration from this natural mechanism,
researchers have surface-modified conductive hydrogels by incorporating an elastomer or
hydrophobic layer as a barrier to prevent water loss and freezing [58,59]. As demonstrated
in Table 3, incorporating an elastomer or hydrophobic layer can suppress the water molecule
diffusion process, creating a diffusion barrier for the conductive hydrogel and isolating it
from the surrounding environment. This design concept can be likened to the conductive
hydrogel wearing “protective clothing” that shields it from external factors [60,61].

Table 3. Performances of anti-drying and anti-swelling conductive hydrogel by surface modification.
“-” means not investigated.

Materials Structure Composition Anti-Drying Anti-Swelling Application Ref.

WPU/[EMIM]
[TFSI]/mHNTs

Hyrdogel/acrylic elastomer
(VHB) - Nearly non-swelling Underwater

communication [58]

C18/SDS/NaCl
/MXene

Hydrogel/PDMS/Triton
X-100 - less than 2% in 30 days Underwater

communication [59]

AA/HEMA/
/MXene/AgNPs Hydrogel/Ecoflex/SiO2 - No significant change Strain

sensors [60]

Th/AM/AA/MXene Hydrogel/PDMS
5.5% change in

relative mass after
7 days

The swelling ratio less
than 7%

Human
motion monitoring [61]

AM/DMA/BA
/nanoclay Hydrogel/organic gel layer

water retention
rate of 95% after

2 days
3–9 wt% after 7 days Strain

sensors [62]

AA/HEA/MXene Hydrogel/lipogel - 3% volume expansion
in water for 200 h

Human
motion

detection
[63]

Zhang et al. [62] prepared a simple yet effective wet immersion strategy to produce
organically sealed dehydrated hydrogels with excellent water retention performance. The
authors made use of the preferential spreading on hydrophilic–oleophilic surfaces of the
liquid precursor solution and its fluidity to create a wetting-induced organic gel precursor
layer, completely sealing the hydrogel precursor. The thickness of this seal was controlled
by adjusting the viscosity of the organic gel precursor solution. Subsequently, through
a one-step interfacial polymerization process, a hydrogel sealed with an organic gel was
obtained. In summary, this method involves the wetting-induced sealing of the hydrogel
precursor with a three-dimensional hydrophobic–oleophilic organogel substrate to obtain
an anti-drying and anti-swelling organohydrogel with a core–shell structure (Figure 4a).
Compared with the addition processes, this effective design is simpler and allows for the
construction of 3D hydrogels with various shapes. Ultimately, in the above study, the final
organohydrogel possessed a weight retention rate of 95 wt% after 2 days and a swelling
ratio of 3–9 wt% after 7 days. Wang et al. [63] developed a composite hydrogel structure
by incorporating a lipid hydrogel layer with a conductive hydrogel. By polymerizing
AA, 2-hydroxyethyl acrylate (HEA), and MXene nanosheets at room temperature, double
bonds were introduced onto the hydrogel surface through the reaction between hydroxyl
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groups and acrylamide. Subsequently, a lipogel was created through in situ polymerization
initiated by using ultraviolet light, resulting in a hydrophobic layer on the surface of the
hydrogel (Figure 4b). As shown in Figure 4c,d, the final hydrogel had excellent anti-drying
(about less than 10% weight loss after 200 h in an open-air environment) and anti-swelling
properties (approximately 3% volume expansion in water after 200 h). Even after having
been immersed in water for 200 h, the composite hydrogel maintained fracture strain
(around 1350%) and tensile strength (approximately 75 kPa). The hydrophobic coating is
compatible with the modulus of human skin, allowing the gel sensor to exhibit precise
sensitivity and making it suitable for designing multifunctional wearable sensors for
underwater applications.

Polymers 2024, 16, x FOR PEER REVIEW 11 of 35 
 

 

Th/AM/AA/MXene Hydrogel/PDMS 

5.5% 

change in 

relative 

mass after 

7 days 

The swelling 

ratio less than 

7% 

Human 

motion monitor-

ing 

[61] 

AM/DMA/BA/nanocla

y 

Hydrogel/organic 

gel layer 

water re-

tention 

rate of 

95% after 

2 days 

3–9 wt% after 

7 days 

Strain 

sensors 
[62] 

AA/HEA/MXene Hydrogel/lipogel - 

3% volume 

expansion in 

water for 200 

h 

Human 

motion 

detection 

[63] 

 

Figure 4. (a) The bioinspired water retention hydrogel based on hydrophobic coating. From ref. [62], 

used with permission by John Wiley and Sons. (b) The fabrication of hydrophobic lipogel/MXene 

conductive hydrogel. (c) The anti-swelling property of hydrogel/MXene and SGC. (d) The stress–

strain curves of hydrogel/MXene and SGC after immersion of 200 h. From ref. [63], used with per-

mission by John Wiley and Sons. 

2.1.4. Other Strategies 

In addition to the aforementioned methods, some researchers have combined two or 

more methodologies to create ETCHs with freezing resistance, anti-drying characteristics, 

long-term stability, and tunable mechanical properties, as shown in Table 4. For example, 

Jia et al. [64] successfully prepared a conductive hydrogel with anti-freezing and anti-dry-
ing properties by integrating amylose into a PVA/glycerol/NaCl hydrogel with the freeze–

thaw method (Figure 5a). Amylose possesses numerous hydroxyl groups that can interact 

with PVA and glycerol to enhance the toughness and moisturizing properties of hydro-

gels. In the experiments, after seven days, the hydrogel maintained a mass ratio close to 

85%. Through a synergistic effect, glycerol and NaCl reduced the freezing point (−34.18 

Figure 4. (a) The bioinspired water retention hydrogel based on hydrophobic coating. From ref. [62],
used with permission by John Wiley and Sons. (b) The fabrication of hydrophobic lipogel/MXene
conductive hydrogel. (c) The anti-swelling property of hydrogel/MXene and SGC. (d) The stress–
strain curves of hydrogel/MXene and SGC after immersion of 200 h. From ref. [63], used with
permission by John Wiley and Sons.

Surface modification not only confers anti-drying properties to conductive hydrogels
but also enhances their durability. However, this method also has some drawbacks. For
instance, the modified layers tend to be insulating, and the lack of appropriate electrical
conductivity regulation might be detrimental to conductive hydrogel applications in the
sensing field. In addition, some elastic coating layers may experience weak adhesion and
mismatching Young’s moduli at the interface with conductive hydrogels, which can lead to
delamination and detachment between the modified layer and the hydrogel. Therefore,
the stability and durability of the interface between the modified layer and the conductive
hydrogel remains a significant issue and should be carefully considered in the design stage
before modification.

2.1.4. Other Strategies

In addition to the aforementioned methods, some researchers have combined two or
more methodologies to create ETCHs with freezing resistance, anti-drying characteristics,
long-term stability, and tunable mechanical properties, as shown in Table 4. For example, Jia
et al. [64] successfully prepared a conductive hydrogel with anti-freezing and anti-drying
properties by integrating amylose into a PVA/glycerol/NaCl hydrogel with the freeze–
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thaw method (Figure 5a). Amylose possesses numerous hydroxyl groups that can interact
with PVA and glycerol to enhance the toughness and moisturizing properties of hydrogels.
In the experiments, after seven days, the hydrogel maintained a mass ratio close to 85%.
Through a synergistic effect, glycerol and NaCl reduced the freezing point (−34.18 ◦C) of
the aqueous phase within the hydrogel, allowing it to increase by up to 702% at −20 ◦C.
Wang et al. [65] proposed a high-toughness, anti-freezing, and anti-drying organohydrogel
by using sodium alginate (SA)/PAM and the organic solvent and salt solution replacement
method (Figure 5b). The SA/PAM hydrogel was first fabricated; then, it was immersed
in a LiCl/CaCl2/glycerol/water solution for water replacement in the hydrogel matrix.
Compared with the ordinary hydrogel without glycerin, the prepared organohydrogel
showed outstanding moisture retention for 30 days, great anti-freezing performance at
the temperature of −80 ◦C, and better mechanical performance (the tensile stress was
approximately 0.81 MPa). The above work proposed a novel and simple method to produce
organohydrogels with anti-freezing and anti-drying properties. Due to their enhanced
durability and stability, they show great potential for applications in electronic skin and
soft wearable devices. Yuan et al. [66] fabricated a stretchable, anti-freezing, moisturizing,
and ion-conductive multifunctional organohydrogel, named CPASM, composed of AA,
SBMA, ethylene glycol methyl ether acrylate (MEA), CS, and a binary solvent system
of DMSO/water (Figure 5c). The hydrogen bonding between the organic solvent and
water decreased the freezing point of water. In turn, the organohydrogel was able to resist
freezing even at −30 ◦C. Moreover, creating a sandwich structure with Ecoflex elastomer
on the surface of the organohydrogel resulted in good anti-drying performance, with 80%
of water being preserved at room temperature. Additionally, the zwitterion interactions
and hydrogen bonds within the organohydrogel played a crucial role in improving its
mechanical properties. Han et al. [67] developed an ETCH based on sodium carboxymethyl
cellulose (CMC), PAM, and LiCl and modified it with a sandwich structure based on
polydimethylsiloxane (PDMS) elastomer (Figure 5d). To prevent the PDMS elastomer
layers from detaching themselves from the hydrogel, the surface of the hydrogel was
precoated with silane to induce the formation of strong covalent bonding with PDMS.

The obtained hybrid hydrogel exhibited excellent anti-fatigue mechanical performance
under 70% tensile strain for 100 stretching–recovery cycles, long-term moisture retention
(more than 98% weight retention after 15 days), and a broad working temperature range
(from −20 ◦C to 60 ◦C). Flexible sensors assembled by using this multifunctional hydrogel
could receive signals and provide stable feedback in extreme environments. Wu et al. [68]
prepared intrinsically stretchable, transparent, and high-performance thin-film humidity
sensors by using PAM/PDMS/carrageenan hydrogel thin films. The thickness of the films
was adjusted to 6.06 µm; then, they were immersed in a lithium bromide (LiBr) solution,
which enhanced their anti-drying and anti-freezing properties. This high-performance,
stretchable, and transparent thin-film sensor is considered to be a high-efficiency strategy
for the future fabrication of wearable devices.

Inspired by nature, freeze-resistant components based on cold-temperature-tolerant
organisms have also been incorporated into conductive hydrogels to enhance their anti-
freezing properties. For example, Guo’s group [69] developed a modifiable anti-freezing
hydrogel by adding natural fish-derived anti-freezing proteins to the hydrogel system.
The hydrogel consisted of chemically crosslinked poly (acrylamide/sodium methacrylate)
and physically crosslinked PVA. The natural anti-freezing proteins (AFPs) inhibited the
formation of ice crystals by forming hydrogen bonds with the polymer chains. The obtained
hydrogel was found to perform well at −15 ◦C and exhibited negligible hysteresis behavior
and impressive cycling durability (500 cycles at 10% strain). This design strategy could be
the basis for the construction of anti-freezing protein-based conductive hydrogels.
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Table 4. Performances of anti-freezing and anti-drying conductive hydrogel by other strategies. “-”
means not investigated.

Materials Strategy Solvent
Composition

Anti-Freezing
Temperature

Anti-Drying
Property Application Ref.

PVA/AMY/NaCl
Organic solvent
and salt solvent
incorporation

Glycerol/NaCl/water −20 ◦C
85% of hydrogel

weight retention after
7 days

Human
motion
sensor

[64]

SA/PAM
Organic solvent
and salt solvent

replacement

LiCl/CaCl2/Glycerol
/water −80 ◦C 80% of hydrogel

weight retention
Electronic

skin [65]

SBMA/AA/CS
/MEA

Binary
organic/water

solvent and
elastomer

modification

DMSO/water −30 ◦C 80% of hydrogel
weight retention

Human
motion
sensor

[66]

PAM/CMC

Binary salt/water
solvent and
elastomer

modification

LiCl/water −20 ◦C
40% of hydrogel

weight retention after
15 days

Human
motion

and strain
monitor

[67]

AM/PVA/AFP Nature AFP Water −15 ◦C -
Human
motion
sensor

[69]

In this section, multiple strategies to produce ETCHs are reviewed. Through the
synergistic effects of ionic interactions, hydrogen bonding, surface modification, etc., the
resistance to freezing and dehydration of conductive hydrogels can be further enhanced.
These approaches overcome some drawbacks of the abovementioned single-method strate-
gies for preparing ETCHs, addressing the imbalance between the mechanical properties
and conductivity of hydrogels under extreme conditions and ensuring their long-term
stability and durability, which is of profound significance for the further development of
flexible conductive materials.

2.2. ETCHs with Anti-Swelling Ability

Owing to the presence of hydrophilic groups, conductive hydrogels tend to absorb
large amounts of water and experience noticeable volume expansion in aquatic environ-
ments. Excessive volume expansion negatively affects their mechanical performance,
electrical conductivity, and other functions, which significantly limits their application
scope. Therefore, developing conductive hydrogels with improved swelling resistance is
crucial to increasing their application range in underwater environments. In this section,
we report on current research developments in anti-swelling conductive hydrogels.

2.2.1. Physical Interaction Mechanism

The anti-swelling property in hydrogels can be achieved by inducing various non-
covalent physical interactions, such as hydrogen bonding, electrostatic interactions, metal
coordination, hydrophobic interactions, and π-π stacking [70,71]. For example, Dai’s
group [72] produced an anti-swelling conductive hydrogel by employing a multi-step
process, which included first adding hyper-branched AMY to PVA, then applying the
freeze–thaw method, and finally immersing the hydrogel in a NaCl solution (salting-out
process) (Figure 6a); as a result, PVA and AMY formed a dense network induced by
strong hydrogen bonding and facilitated by salting-out effects. The hydrogel exhibited
a very low swelling rate (28.5%) in aquatic environments (Figure 6b) and satisfactory
toughness (184 kJ/m3). Lü et al. [73] developed a high-toughness, anti-swelling, and
ion-conductive hydrogel comprising PVA and copolymer poly(SBMA-2-hydroxyethyl
methacrylate (HEMA)), where SBMA-HEMA was polymerized within a PVA solution
(Figure 6c). The electrostatic effect of the zwitterionic SBMA polymer facilitated the removal
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of water molecules, endowing the hydrogel with anti-swelling characteristics. After the
hydrogel had been placed in water and seawater for 30 days, its swelling ratios were 9%
and 13%, respectively. Additionally, the hydrogel retained 45% of its initial toughness after
having been immersed in seawater for one week. Li et al. [74] proposed an innovative
method to design an ETCH with anti-swelling and anti-freezing properties that involves
adding macromolecular lignin to the hydrogel network. Alkali lignin (AL) was modified
with methacryloyl chloride through an esterification reaction; the resulting compound was
made to interact with vinyl acetate and 1-vinyl-3-butylimidazolium (ionic liquid monomers
(ILs)) to form a hydrogel network. Due to the alkyl segment in ILs, the aromatic structure
of AL, and the hydrogen bonding between glycerol and water, the hydrogel possessed
anti-freezing and anti-swelling properties, which allowed it to withstand even the sub-zero
temperature of −20 ◦C while maintaining a conductivity value of 10 S/m. In addition,
the hydrogel was found to have satisfactory mechanical performance with elongation at a
break > 350% and a tensile strength value > 1.5 MPa.
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Figure 6. (a) The preparation process of anti-swelling conductive PVA/AMY hydrogel. (b) Images of
swelling property of PVA/AMY hydrogel after swelling 20 days. From ref. [72], used with permission
by Elsevier. (c) The synthesis process of PVA/Poly(SBMA-HEAA) anti-swelling conductive hydrogel.
From ref. [73], used with permission by John Wiley and Sons.

In Table 5, the anti-swelling mechanism, raw materials, properties, and applications
of anti-swelling conductive hydrogels are summarized. It can be seen that the majority
of anti-swelling conductive hydrogels have been applied in underwater motion sensing.
However, anti-swelling conductive hydrogels obtained by inducing physical interactions
might demonstrate instability due to the weak nature of such interactions. Further research
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needs to be performed in this field to achieve better stability in this type of hydrogel for
application in aquatic environments.

Table 5. Performance of anti-swelling conductive hydrogel induced by physical interactions. “-”
means not investigated.

Materials Interactions Anti-Swelling
Property Application Ref.

PVA-Gp/TA-CaCl2 Hydrogen bond 89% of its original
weight after 30 days Electronic skin [70]

PVA/AMY Hydrogen bond 28.55% of swelling
ratio after 20 days Strain sensor [72]

PVA/poly(SBMA-
HEMA)

Electrostatic
interaction

9% of swelling ratio
after 30 days

Underwater
motion sensor [73]

PVA-AL/ILs/H2O-
GLY

Hydrophobic
interaction and
hydrogen bond

- Human motion
sensor [74]

2.2.2. Introduction of Hydrophobic Components Mechanism

In addition to the induction of physical interactions, adding hydrophobic components
to the hydrogel network is another method to achieve anti-swelling behavior in conductive
hydrogels. Due to the hydrophilic components within the network, in these hydrogels, wa-
ter molecules are easily exchanged and diffused, resulting in substantial volumetric expan-
sion with the absorption of significant quantities of water in aquatic environments [75–77].
Conversely, when hydrophobic components are added to the hydrogel network, the dif-
fusion of water molecules can be effectively reduced, inhibiting the excessive expansion
of the hydrogel caused by water absorption. In Table 6, the raw materials, anti-swelling
mechanism, anti-swelling property, and applications of anti-swelling conductive hydrogels
based on hydrophobic interactions are listed and summarized. Notably, Xu et al. [78] re-
ported an anti-swelling conductive hydrogel based on AA, octadecyl methacrylate (SMA),
and SBMA (Figure 7a). The electrostatic interactions between the carboxyl groups of AA
and the cations of zwitterionic SBMA, as well as the stacking of hydrophobic alkyl chains in
SMA, decreased the permeability of the hydrogel, and experiments showed a swelling rate
of 60% after 30 days. Additionally, the zwitterionic interaction within the hydrogel also fa-
cilitates the ion conductivity of the final anti-swelling conductive hydrogel. Dong et al. [79]
developed a novel strategy for enhancing the anti-swelling property of hydrogels based on
electrostatic interactions and hydrophobic interactions and produced a swelling-resistant
and high-toughness supramolecular conductive hydrogel based on an ionic surfactant,
cetyltrimethylammonium bromide (CTAB); a hydrophobic compound, lauryl methacrylate
(LMA), with a long alkane chain; and hydrophilic AA. As shown in Figure 7b, the synergy
of the electrostatic and hydrophobic interactions between CTAB and the P(AA-co-LMA)
copolymer provides the hydrogel with excellent swelling resistance. The target conductive
hydrogel exhibited little change in the swelling rate (~4%) after it had soaked in deionized
water for 15 days. Furthermore, the P(AA-co-LMA)CTAB hydrogel also exhibited excel-
lent superior tensile strength (≈1.6 MPa) and high stretchability (>900%). Ran et al. [80]
proposed a novel strategy for obtaining an anti-swelling conductive hydrogel for underwa-
ter soft, flexible bioelectronics, which they prepared by using hydrophilic/hydrophobic
monomers, as shown in Figure 7c. Firstly, AA, 2-ethylhexyl acrylate (EHA), and DMSO
were employed to construct the initial network structure. Then, tannic acid (TA) and a
small amount of carboxylic multi-walled carbon nanotubes (MWCNTs-COOH) were added
to the hydrogel network to improve the conductivity and adhesion of the target product.
The designed hydrogel demonstrated remarkable stretchability (1000%) and a low swelling
ratio (~40%) in aquatic environments.
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Table 6. Performance of anti-swelling conductive hydrogel induced by incorporation of hydropho-
bic components.

Materials Mechanism Swelling Ratio Application Ref.

t-BuA/DMAA/IL/
[BMIm]TFSI

Hydrophobic
/hydrophilic struc-

ture

The swelling ratio
held 3.8% after

10 days

Underwater
motion sensors [75]

Liquid
metal/PVA/P(AAm-

co-SMA)

Hydrophobic
network, ionic
coordination,
and hydrogen

bonds

Swelling ratio less
than 20% after a week Wound dressing [76]

AA/SMA/SBMA
Hydrophobic
and hydrogen

bond

1% volume swelling
ratio after 30 days

Human motion
sensor [78]

AA/LMA/CTAB

Electrostatic
interactions and

hydrophobic
associations

Around 4% of
swelling ratio after

15 days

Underwater
motion sensor [79]

AA/EHA/TA
/MWCNT

Hydrophobic
/hydrophilic struc-

ture

Swelling ratio less
than 40% Bioelectronics [80]

AA/MEA/graphene
/DMSO

Hydrophobic
/hydrophilic struc-

ture

Non-swelling
behavior for 500 h

Underwater
motion sensors [81]
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low swelling conductive hydrogel. From ref. [79], used with permission by American Chemical
Society. (c) The preparation process of AA/EHA/TA/MWCNT anti-swelling conductive hydrogel.
From ref. [80], used with permission by John Wiley and Sons.

By adding hydrophobic monomers to the hydrogel matrix, the hydrophilicity of the hy-
drogel can be effectively reduced, thereby inhibiting excessive expansion underwater while
maintaining good mechanical properties. However, hydrophobic monomers might not be
soluble in aqueous solvents or be compatible with hydrophilic components. Therefore, a
surfactant is usually added to the system to promote their dissolution and reactions. In
addition, hydrophobic components are usually not conductive and might have a negative
effect on the conductivity of the final ETCHs.

2.2.3. Multiple Crosslinking Mechanism

The molecular chains within the internal hydrogel network are influenced by the de-
gree of crosslinking density. To achieve an anti-swelling hydrogel in line with the swelling
equilibrium mechanism, it is effective in inhibiting the extension of the molecular chains
by increasing the crosslinking density. However, doing so in a physically or chemically
single-crosslinked conductive hydrogel may lead to defects such as fragile mechanical
properties and undesirable electrical conductivity. As illustrated in Table 7, studies have
shown that the mechanical properties of conductive hydrogels can be improved by in-
ducing chemical and physical multiple crosslinking while maintaining good anti-swelling
performance [82–85]. For example, Wang et al. [86] prepared a double-network composite
conductive hydrogel with anti-swelling characteristics, as displayed in Figure 8a,b. First,
chitosan/polyacryloyl-2-aminoethane sulfonic acid (CS/PACG) was synthesized by using
UV-light-initiated polymerization. Second, the rigid/flexible dual network was obtained by
adding CS/PAG to the FeCl3 solution for soaking, inducing hydrogen bonding and ionic
interactions between Fe3+ and CS. The resulting hydrogel exhibited a minimum swelling
ratio of 5.8% and an enhanced compressive modulus of 6.28 MPa after exposure to water
for 30 days. Additionally, the swelling behavior of the hydrogel could be tuned by using
different metal ion soaking solutions due to the diversity of metal coordination interactions,
providing a new method for obtaining high-strength and high-toughness anti-swelling
conductive hydrogels. Xie’s group [87] provided a method for the development of a new
generation of multifunctional, anti-swelling conductive hydrogels, named H(P+T), based
on modified carboxymethyl chitosan (CMCS) and tannic acid (TA), as shown in Figure 8c.
The H(P+T) hydrogel was obtained by generating photo-polymerization-induced covalent
bonding, the dynamic covalent bonding of boronic acid ester bonds, and hydrogen bonding.
As a result, the final multi-crosslinked conductive hydrogel showed good anti-swelling
performance with a swelling ratio of 32.4% after 30 h. It was observed that the H(P+T)
hydrogel revealed a porous morphology and the smallest pore size compared with other
hydrogels. Wang et al. [88] developed a high-strength and high-toughness anti-swelling hy-
drogel composed of polyethylene glycol diacrylate (PEGDA), quaternized chitosan (QCS),
and TA, as presented in Figure 8d. First, a swelling hydrogel was prepared with PEGDA
and QCS through free-radical polymerization and Michael addition. Then, the lyophilized
hydrogel was immersed in TA solution for effective conjugation to obtain the final anti-
swelling conductive hydrogel. According to the report, the hydrogel patch exhibited a
low swelling ratio of 20.9% after five days, maintaining adhesiveness in both dry and wet
environments, and making it suitable for applications requiring adhesive anti-swelling
conductive hydrogels.
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Table 7. Performance of anti-swelling conductive hydrogels induced by multiple crosslinking
mechanisms.

Materials Mechanism Swelling Ratio Application Ref.

AA-MEA-
Fe/CS

C-C covalent bond
and hydrogen bond

Around 16%
after 7 days Human motion sensor [83]

PAA-CS-
Al3+-MXene

C-C covalent bond,
hydrogen bond, and

electrostatic
interactions

Swelling ratio of
3.8% after 7 days Human motion sensor [84]

CS/PACG
C-C covalent bond,

hydrogen bond, and
ionic interactions

Swelling ratio of
20% after 20 h Wearable sensor [86]

CMCS/SA/TA

C-C covalent bond,
dynamic covalent

bonds, and
hydrogen bond

Swelling ratio of
32.4% for 30 h Wound dressing [87]

PEGDA/TA
C-C covalent bond,
borate ester bond,

and Schiff base bond

Swelling ratio of
20.9% after

5 days
Wound dressing [88]
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Figure 8. (a) The preparation process of CS/PACG anti-swelling conductive hydrogel. (b) Swelling
ratio curve of CS/PACG hydrogel under different soaking solutions. From ref. [86], used with
permission by John Wiley and Sons. (c) The preparation process of multifunctional anti-swelling
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conductive hydrogel. From ref. [87], used with permission by Elsevier. (d) The preparation process
of strong and tough anti-swelling conductive hydrogel. From ref. [88], used with permission by
American Chemical Society.

Physical and chemical multiple-crosslinking improves the crosslinking density and
swelling resistance of conductive hydrogels, resulting in these materials maintaining stable
structure and function in aquatic environments. However, in complex environments,
such as acid, alkali, and salt solutions, the swelling resistance and long-term stability of
conductive hydrogels remain to be studied. In addition, conductive hydrogels obtained
by applying the multiple-crosslinking method might demonstrate tunable mechanical
strength, as the latter can indeed be modulated by adjusting the crosslinking density;
this facilitates their application in human motion or activity detection. In conclusion, the
development of multiple-crosslinking methodologies has had a significant impact on the
research on ETCHs.

3. Applications of ETCHs

Anti-freezing, anti-swelling, and anti-drying hydrogels can withstand various en-
vironmental conditions, so they have demonstrated great potential in human motion
sensing, bioelectrodes, soft actuators and robots, and wound dressings. In this regard,
here, we focus on the potential applications of these conductive hydrogels based on their
unique characteristics.

3.1. Strain Sensing and Human Motion Detection

A flexible conductive sensing material can detect an external stimulus and convert
it into an electrical signal for output. A traditional flexible sensing material composed of
rigid conductive materials and flexible substrates might present the disadvantages of a
complicated preparation process, insufficient elongation, and poor biocompatibility, hin-
dering human–machine interactions, health monitoring, and motion detection. Recently, it
has been found that these shortcomings can be overcome by employing ETCHs as novel
sensing materials [89–91]. For example, Wang’s group [92] developed an organohydrogel
with anti-dehydration, anti-freezing, and anti-oxidant properties composed of PVA and
grape seed extract (GSP), as well as a binary solvent of water and DMSO. The obtained
conductive organohydrogel did not freeze at sub-zero temperatures, not even at −23 ◦C.
After storage at room temperature for 12 days, the organohydrogel retained 76.33% of its
mass and exhibited an electrical conductivity value of 0.78 mS/cm. Therefore, in the above
study, the authors demonstrated that the prepared long-lasting, environmentally resistant
organohydrogel could be used as a sensor for detecting and identifying human activities
at low temperatures and under UV light. Yang et al. [93] designed a double-network
organohydrogel, named PCH-Li-G, composed of hyaluronic acid (HA), PAA-co-PAM, LiCl,
and glycerol/water for strain/stress, humidity, and human activity sensing. The hydrogel
exhibited advanced freezing resistance, with an anti-freezing temperature of −30 ◦C, and
anti-drying performance under arid and heat conditions. The assembled PCH-Li-G hydro-
gel could accurately detect finger, wrist, throat, pulse, and breathing activity (Figure 9a–f).
Furthermore, since humidity near the nose changes during exhalation, the sensor could
distinguish among different types of human breathing. The PCH-Li3-G sensor is capable of
showing a sensitive response to changes in temperature, humidity, and other factors, indi-
cating that it maintains high sensitivity in different environments. Wei et al. [75] presented
a new design for wearable sensors in underwater environments: a hydrophobic, anti-
swelling ion-conductive hydrogel sensor. The sensor was prepared through heat-initiated
radical polymerization, with the hydrophobic tert-butyl group acting as a barrier against
water molecule penetration. Stimuli-responsive, conductive, and anti-swelling properties
make the assembled sensor suitable for human motion signal monitoring (Figure 9g) and
underwater communication (Figure 9h–j). Even under 400% strain, it still demonstrated a
satisfactory gauge factor of 1.06. Additionally, it exhibited fast response time during stretch-
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ing (37 ms) and recovery processes (98 ms). This work offered a new design conception for
wearable sensors in underwater environments. Cao et al. [94] proposed a simple idea for
constructing a conductive hydrogel for human–machine interaction. They first obtained
a high-strength hydrogel by using a simple freeze–thaw process based on MXene, PVA
solution, and cellulose scaffold from wood. The hydrogel was then immersed in glycerol to
partially replace the water in the hydrogel matrix to achieve anti-freezing and anti-drying
properties. The final organohydrogel could be used as an underwater intelligent sensing
system for human motion detection, information communication, and target identification.
Inspired by the human neuron system, Fei et al. [95] prepared a self-powered organohydro-
gel with anti-drying properties using gelatin, metal–organic frameworks (MOFs) modified
with ionic liquids, and the binary solvent of water and glycerol. This organohydrogel could
be used to monitor human motion, pressure, and humidity.
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Figure 9. (a,b) Resistance variation of PCH-Li-G organohydrogel applied to joint flexure. (c) Wrist
signal monitoring of PCH-Li-G organohydrogel. (d) Monitoring different movements of throat
by PCH-Li-G organohydrogel. (e) Detecting the wrist pulse beats by PCH-Li-G organohydrogel.
(f) Recording different types of breathing by PCH-Li-G organohydrogel. From ref. [93], used with
permission by John Wiley and Sons. (g) The resistance variation of hydrophobic ionic conductive
hydrogel recording different bending angles of a finger. (h) Schematic diagram of underwater
communication mechanism by Morse code. (i,j) Sending the message “SOS” and “Take a 3-min stop”
by the anti-swelling conductive hydrogel. From ref. [75], used with permission by Royal Society
of Chemistry.

The above reports demonstrated that flexible sensors based on ETCHs possess excel-
lent environmental adaptability, making them suitable for sensing applications in a wide
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temperature range, as well as arid and aqueous conditions. However, using salts or organic
solvents might introduce toxic components into the hydrogel matrix, causing undesirable
biocompatibility. Therefore, it is crucial to choose biocompatible anti-drying, anti-freezing,
and anti-swelling chemicals for developing human motion detection sensors.

3.2. Bioelectrodes

Bioelectrodes can measure electrical signals in living organisms, including those from
the heart (electrocardiogram (ECG) signals), the brain (electroencephalogram (EEG) signals),
and muscles (electromyogram (EMG) signals), which play a significant role in human
health monitoring, diagnostics, and therapeutics. Bioelectrodes are designed to have good
electrical conductivity and biocompatibility to ensure accurate signal detection without
causing harm to the biological tissue. ETCHs designed as bioelectrodes have been widely
reported in recent years on account of their merits [96–98]. Inspired by the human skin
structure, Mao et al. [99] prepared a biocompatible hydrogel consisting of serum proteins
and glycerol. The strong hydrogen bond between the amino acids of the proteins and the
hydroxyl groups of glycerol/water provides the hydrogel with anti-freezing and water-
retention properties. As shown in Figure 10a–c, the hydrogel was used to detect human
brain physiological signals, and the corresponding EEGs were recorded in sleep, relaxation,
and calculation states. It can be seen that the signal strength and frequency changed with
the brain signals in different states. By using fast Fourier transform (FFT) to analyze these
brain signals, the authors revealed that higher frequencies were recorded during cognitive
processing tasks, while lower frequencies were observed during periods of relaxation and
sleep. Interestingly, as shown in Figure 10d, the hydrogel also accurately monitored ECG
signals and showed P-QRS-T peaks. Compared with commercial electrodes, the signal-to-
noise ratio of the prepared hydrogel decreased to a lesser extent after one week of utilization,
indicating the long-term durability of this hydrogel in EEG monitoring. In addition, there
was no significant difference in the EMG signal waveforms at the temperatures of 0 ◦C
and 20 ◦C for the reported hydrogel, which also confirmed its desirable environmental
stability. In another work, Zhang et al. [100] designed an anti-swelling conductive hydrogel
using poly (Cu-arylacetylide) and PNIPAM. The accumulation of Cu-arylacetylide within
the network enhanced the anti-swelling property of the final hydrogel. Additionally, poly
(Cu-arylacetylide) also provided the hydrogel with satisfactory conductivity and anti-
bacterial performance. These advantages make this hydrogel a promising material for
recording various bioelectrical signals. As shown in Figure 10e, the hydrogel was used
as an adhesive bioelectrode to record the epicardial ECGs of rat hearts. According to
the epicardial ECG signal diagram in Figure 10f,g, the poly (Cu-arylacetylide) hydrogel
electrode showed stable epicardial ECGs without obvious undulation or high-amplitude
noise. Moreover, no arrhythmia signals were detected by the hydrogel electrode, indicating
its excellent compatibility and adhesion when used in active tissues. Taking all the results
of the above work together, the designed hydrogel represents a significant advancement in
novel implantable bioelectrodes engineered using ETCHs.
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Figure 10. Physiological signals recording based on bioelectrodes. (a) Schematic diagram of the
process of electronic skin attached to different parts of the human body for recording physiological
signals. (b) Recording of EEG signals under different states. (c) Frequency spectrum of EEG signals
processed by FFT. (d) Comparison of ECG signals acquired by the B-skin and commercial gel electrode.
From ref. [99], used with permission by John Wiley and Sons. (e) Schematic illustrations of recording
epicardial ECG of rats. (f) The epicardial ECG signals recorded by hydrogel electrodes. (g) The partial
enlargement pictures of epicardial ECG signals. From ref. [100], used with permission by John Wiley
and Sons.
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Similar to human motion detection applications, in practical applications of bioelec-
trodes, ETCHs exhibit promising characteristics, such as high sensitivity, good mechanical
performance, and environmental tolerance. These characteristics allow ETCHs not only to
withstand the stress induced by human body movement and response to minor electrical
stimulus signals but also to record electrical signals even in cold, aquatic, and other extreme
environments. However, there are some limitations of ETCHs that still need to be addressed.
For instance, fluctuations and movement relative to the skin surface (especially the occur-
rence of sweaty skin) may cause ETCHs to detach themselves from the skin and fall off.
Therefore, it is essential to design ETCHs with enhanced adhesive performance. Moreover,
the biocompatibility of ETCHs is also a crucial factor for bioelectronics applications because
they interact with the skin directly.

3.3. Soft Actuator and Robotics

Fast technological development has led to a growing interest in intelligent soft ac-
tuators and robots that can respond to external stimuli and change their shapes/deform
accordingly. Conductive hydrogels can also be employed as soft actuators and robots for
tasks such as grasping delicate objects or interacting with humans because of their great
stimuli-responsive characteristics and flexibility [101,102]. For example, Liu’s group [103]
introduced a new organohydrogel prototype for motion sensing in soft bionic robots. They
prepared an anti-freezing and anti-drying ionic organohydrogel composed of alginate
and PAA, based on glycerol and NaCl solution replacement. The obtained organohydro-
gel displayed a satisfactory electrical conductivity value of 1.96 × 10−5 S/m at −70 ◦C,
demonstrating its suitability for applications in soft robotics under sub-zero conditions.
The organohydrogel was applied to the limbs of a soft robot to detect the robot’s move-
ments in snow environments at −5.5 ◦C. Liu et al. [104] prepared a stretchable, robust, and
anti-freezing conductive hydrogel by incorporating Fe3O4/tannic acid (TA) nanoparticles
and conductive polyaniline into a phenol-carbamate/polyethylene glycol (PEG) network
through in situ polymerization; then, the nanocomposite hydrogel was further soaked
in glycerol/CaCl2 solution. The obtained hydrogel exhibited good mechanical perfor-
mance (0.83 MPa tensile strength), conductivity (0.36 mS/cm), and anti-freezing properties
(−20 ◦C). Thanks to these advantages, the ETCH was used as a bulb switch for a magnetic
responsive actuator. As shown in Figure 11a, the hydrogel actuator was prepared to control
the “ON/OFF” state of a bulb by virtue of its magnetic responsiveness; specifically, the hy-
drogel, under the influence of a magnetic field created by a magnet, could close the circuit,
lighting up the bulb. After removing the magnet, the hydrogel recovered its original state,
and the bulb was simultaneously turned off. Majidi et al. [105] developed an anti-drying,
self-healing conductive organohydrogel using PVA, sodium borate, silver flakes, liquid
metal gallium, and an organic solvent (ethylene glycol). To showcase the potential of this
composite organohydrogel in soft robot applications, the researchers recorded the speed of
a crawling soft robot before subjecting it to damage and during reconnection (Figure 11b).

Traditional rigid actuators and robots are limited to operating in regularly shaped
free space due to their shape constraints. In contrast, soft actuators and robots based on
ETCHs have the ability to undergo various deformations and exhibit better shape-changing
abilities. This advantage allows them to perform tasks in irregularly shaped or limited
space in extreme environments, which rigid actuators and robots are unable to accomplish.
Additionally, soft actuators and robots based on ETCHs possess properties similar to those
of biological tissues or organs and can be even used as substitutes for certain organs.
Although extensive work has been devoted to validating the feasibility of soft actuators and
robots based on ETCHs, their actuating accuracy, response period, and ability to distinguish
and determine external stimulus signals are to be further investigated and improved, as it
is still challenging to practically apply soft actuators and robots in everyday life.
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3.4. Wound Dressings

The primary obstacles to wound healing encompass infection, oxidation, and inflam-
mation. Conductive hydrogels are widely used in tissue engineering as wound dressings
to support cell growth and tissue regeneration, as they can be designed to have vari-
ous biological functions (e.g., anti-microbial function, anti-oxidation, anti-inflammation,
wound condition monitoring, etc.), promoting wound healing. As the exposure of the
wound-hydrogel system to cold, dry, and/or aqueous environments might have a negative
impact on skin tissue repair, network structure, and the performance of the hydrogel [106],
ETCHs with biological functions have been elaborately engineered to protect the wound
from extreme environments and simultaneously promote wound healing [21,107,108]. For
example, Ma et al. [109] reported an anti-freezing and anti-fouling conductive hydrogel
consisting of SA, zwitterionic DMAPS monomer, and glycerol/water. First, the conductive
hydrogel was prepared through the polymerization of DMAPS in SA solution and then
placed into a glycerol/water solvent for replacement to manufacture the final hydrogel,
named H-G60.

The performance of the hydrogel in wound healing was further evaluated, and the
results are displayed in Figure 12a–c. It can be observed that the best performance in
wound closure and subsequent healing was that of the hydrogel group after 14 days
of treatment, with an ultimate wound-healing area of 97%. Wei et al. [110] designed a
multifunctional anti-swelling conductive hydrogel for wound dressing by using Ti3C2
MXene and AA and a one-pot method. The engineered hydrogel was investigated for
suitability for infected wound healing, as displayed in Figure 12d,e. The infected wounds
tended to heal after 14 days of treatment, demonstrating the smallest wound area and the
fastest wound healing in the hydrogel group. In addition, histological examination revealed
that high collagen content could be found in the hydrogel group, further illustrating the
wound-healing-promoting capacity of the prepared hydrogel.
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Figure 12. (a) The images of wound healing on 0, 3, 7, and 14 days. (b) The wound area at
different times. (c) The statistics of wound healing areas at different times. From ref. [109], used
with permission by American Chemical Society. (d) The shape of the wounds in each group from
0 to 14 days. (e) The wound area at different periods. From ref. [110], used with permission by John
Wiley and Sons.

Compared with regular hydrogel dressings, ETCH-based wound dressings can protect
wounds in cold, dry, or aquatic environments, promoting wound healing. Additionally,
these advantages can prolong the durability of ETCH-based wound dressings. However,
few animal wound models have been studied in extreme environments. The wound-healing
process should be researched in extreme environments to evaluate the wound-healing
efficiency of ETCH-based wound dressings. Moreover, other biological functions, such as
anti-bacterial, anti-inflammatory, anti-oxidant, and hemostasis functions, and angiogenesis-
promoting properties, should be included in ETCH design to accelerate wound healing.

4. Conclusions and Outlook

In the past decade, conductive hydrogels have been extensively investigated due to
their unique electrical conductivity, flexibility, viscoelasticity, biocompatibility, and stimuli-
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responsive properties. However, they are limited in their use in cold, dry, and/or aquatic
environments due to their high water content and swelling physicochemical characteristics.
To address these issues, researchers have developed ETCHs by using a variety of method-
ologies, such as the incorporation of salt solvents, the addition of organic solvents, surface
modification with elastomer/hydrophobic layers, and regulation of the crosslinking mech-
anism within the hydrogel network. In this review, we summarized these strategies for
preparing ETCHs with resistance to freezing, dehydration, and swelling. Further, ETCHs
applied in the fields of flexible sensors, bioelectrodes, soft actuators and robots, and wound
dressings were categorized and discussed. Although some progress in these fields has been
made by employing ETCHs, there are still some limitations that need to be addressed for
further applications, as listed below.

First, currently, the preparation process for the majority of ETCHs is complex and
costly. A possible reason for this is that salt/organic solvent replacement and surface
modification are more complicated than the corresponding processes in conventional
conductive hydrogels. In addition, some conductive nanofillers are expensive and difficult
to synthesize. Therefore, the methods for preparing ETCHs need to follow the principles
of simplicity, unrestricted reaction conditions, and low cost. For example, shortening the
reaction time, optimizing the cumbersome steps in the synthesis process, and selecting
high-performance but low-cost raw materials could be investigated.

Second, the functionality stability of ETCHs in extreme environments remains an
important challenge. Although some strategies can lower the freezing point of water to
prevent ice crystal formation within the hydrogel network, the water molecules on the
surface of the hydrogel inevitably freeze even at lower temperatures (such as −100 ◦C),
which is detrimental to the hydrogel’s functionality. Moreover, the addition of organic
solvents might affect the conductivity of the target ETCHs. Finally, the functionalization of
hydrogels might not optimize all functional aspects. Therefore, it is crucial to balance the
various properties according to the relevant application scenario. For instance, in polar or
desert sensing, the design formula of ETCHs should meet extreme temperature and anti-
dehydration requirements, respectively, and in underwater exploration, the anti-swelling
characteristics of conductive hydrogels need to be taken into consideration. Therefore, the
functionalities of ETCHs can be better regulated when their design is guided by specific
application scenarios.

Third, few research studies have investigated the difference between other flexible,
environmentally tolerant conductive materials or commercial products and ETCHs in
the aforementioned fields. Their performance and properties should be analyzed and
compared in those applications, thereby promoting the commercial production of ETCHs.

Fourth, there is little research on the utilization of ETCHs as carriers in vivo. The
potential immune response of lives to ETCHs needs to be considered to ensure their safety
and effectiveness. The modified hydrogels applied in vivo might trigger various types of
immune responses. The design and application of modified ETCHs should be optimized to
improve their biocompatibility.

In conclusion, it is expected that more novel design ideas and strategies will be de-
signed and investigated to prepare high-strength and high-toughness hydrogels with
functionalities designed for specific conditions, considering both the desired functions and
the requirements of specific environments (cold, dry, and solution environments). Addi-
tionally, ETCHs could play a significant role in the development of wireless transmission
technology combined with mobile terminals; existing wired transmission methods greatly
limit the transmission distance of signals, but the practical application of such hydrogels
underwater might improve long-distance real-time data transmission and analysis. Finally,
it is anticipated that self-powering technology based on ETCHs will be developed to reduce
reliance on external energy sources. Numerous studies have shown that ETCHs are among
the best materials for fabricating flexible sensors, bioelectrodes, soft actuators and robots,
and wound dressings. It is believed that the abovementioned limitations will be addressed
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and overcome, allowing ETCHs to be utilized in various extreme environments in the
near future.
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Abbreviations

ETCHs Environmentally tolerant conductive hydrogels
SBMA 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate
HEMA 2-hydroxyethyl methacrylate
PVA Polyvinyl alcohol
AA Acrylic acid
PAM Polyacrylamide
CS Chitosan
CGO Chitosan-modified graphene oxide
CNC Cellulose nanocrystal
GA Arabic gum
ECH Epichlorohydrin
SA Sodium alginate
CNF Cellulose nanofibers
DMSO Dimethyl sulfoxide
TA Tannic acid
EG Ethylene glycol
SNF Silk nanofibers
CN Carbon nitride nanosheets
PDDA Poly(diallyldimethylammonium chloride)
PA Phytic acid
LSNs Lignin sulfonate nanorods
MMT Montmorillonite
G Graphene
HEA 2-hydroxyethyl acrylate
Th Trehalose
SDS Sodium dodecylsulfate
C18 Stearylmethacrylate
BA Butyl acrylate
DMA N, N-dimethylacrylamide
AFP Antifreeze proteins
AMY Amylopectin
CMC Carboxymethyl cellulose
VHB acrylic elastomer
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MEA Ethylene glycol methyl ether acrylate
Gp β-Glycerophosphate sodium
CTAB Cetyltrimethylammonium bromide
VBIBr 1-butyl-3-vinylimidazolium bromide
[BMIm]TFSI bis(trifluoromethanesulfonyl) imide
PEG Poly(ethylene glycol)
AL Alkali lignin
ILs 1-vinyl-3-butylimidazolium
MaPVA Methacrylated polyvinyl alcohol
CMCS Carboxymethyl chitosan
VBIPS 3-(1-(4-vinylbenzyl)-1H-benzo-[d]imidazole-3-ium-3-yl) propane-1-sulfonate
MOF Metal–organic framework
NIR Near infrared
ECG Electrocardiogram signal
EEG Electroencephalogram signal
EMG Electromyogram signal
DMAPS [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)
DMAA N,N-dimethylacrylamide
FFT Fourier transform
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