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Abstract: In this study, the graded hierarchical hexagonal honeycomb (GHHH) integrating gradient
design and hierarchical design was fabricated using the 3D-printing technique, and its in-plane elastic
properties were investigated theoretically, experimentally, and numerically. Theoretical solutions were
developed based on the Euler beam theory to predict the effective elastic modulus and Poisson’s ratio
of GHHH, and theoretical values were in good agreement with the experimental and numerical results.
The effect of gradient design and hierarchical design on the in-plane elastic properties of GHHH was
also analyzed and compared. Results showed that the hierarchical design has a more significant effect
on Poisson’s ratio and adjusting the internal forces of GHHH compared with the gradient design.
In addition, it was found that GHHH exhibited higher stiffness compared with regular hexagonal
honeycomb (RHH), graded hexagonal honeycomb (GHH), and vertex-based hierarchical hexagonal
honeycomb (VHHH) under the constraint of the same relative density, respectively. Specifically, the
effective elastic modulus of GHHH can be enhanced by 119.82% compared to that of RHH. This
research will help to reveal the effect of integrating hierarchical design and gradient design on the
in-plane elastic properties of honeycombs.

Keywords: graded hierarchical honeycomb; theoretical modeling; finite element analysis; additive
manufacturing techniques; in-plane elastic properties

1. Introduction

Honeycombs are of immense interest in multifunctional applications because of their
excellent specific stiffness and strength [1,2]. Consequently, in the past decades, many
studies have been carried out to explore the specific stiffness and strength of honeycombs
with different cross-sections such as square [3,4], hexagon [5], and other polygons [6].
However, the performance of these honeycombs is not always satisfactory and usually
requires improvement [7]. Therefore, the study of honeycombs with superior performance
has become a crucial topic, and many new types of honeycombs have been proposed [8].
With the development of additive manufacturing technologies, the preparation of new
honeycombs with complex geometry has become increasingly easy [9]. Among them,
gradient honeycombs and hierarchical honeycombs are gaining increasing attention due
to their flexible design [10], and gradient design and hierarchical design can effectively
improve the performance of honeycombs without increasing their weight [11].

The concept of gradient design is a widely employed strategy in the design of honey-
combs [12], and it has been proven through theoretical [13], numerical [14], and experimen-
tal [15] studies that the mechanical performance of honeycombs can be significantly affected
by gradient design. Based on a non-uniform design method mapped by density-based
topology optimization, Zou et al. [16] designed a novel non-uniform honeycomb. It was
found that the in-plane and out-of-plane specific energy absorption of the non-uniform
honeycomb is, respectively, 29.1% and 19.8% higher than those of regular hexagonal hon-
eycombs. Wu et al. [17] explored the effect of gradient arrangement on the cross-circular
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honeycomb. The results demonstrated that the dynamic response characteristics of the
cross-circular honeycomb with different impact velocities can be effectively controlled by
graded design. Based on the concept of the multi-directional graded design, Li et al. [18]
proposed the modularized honeycomb and found that the modularized honeycomb pos-
sesses higher strength and stronger energy absorption capacity compared with uniform
honeycombs. Sahu and Sreekanth [19] investigated an anisotropic gradient honeycomb
structure through cyclic compression and free vibration tests. The results demonstrated
that compared with length and thickness gradient honeycomb and uniform honeycomb,
the hybrid gradient honeycomb possessed the highest damping ability.

The concept of hierarchical design is the other strategy to improve the stiffness,
strength, toughness, and energy absorption capacity of honeycombs [20]. Two approaches
are commonly utilized to obtain hierarchical honeycombs [21]. One approach involves
replacing each vertex of a regular honeycomb with a smaller polygon [22], while the other
approach involves replacing the solid cell walls of a regular honeycomb with smaller
cellular structures [23]. According to the above two approaches, hierarchical honeycombs
can be primarily categorized as vertex-based hierarchical honeycombs and edge-based
hierarchical honeycombs. For example, by replacing every three-edge vertex of a regular
hexagonal honeycomb with a smaller hexagon, Ajdari et al. [24] proposed a vertex-based
hierarchical hexagonal honeycomb. It was found that the stiffness of hierarchical honey-
combs of first and second order are 2.0 and 3.5 times that of the regular honeycomb with the
same relative density. Hong et al. [25] explored the quasi-static and dynamic compression
of multi-level hierarchical honeycomb and single-level hierarchical honeycomb by experi-
mental methods. The results demonstrated that compared with single-level hierarchical
honeycomb, multi-level hierarchical honeycomb possesses higher collapse strength and
better energy absorption properties. By replacing each solid cell wall of a regular square
honeycomb (RSH) with different numbers of smaller square substructures, Tao et al. [26]
proposed the square hierarchical honeycomb (SHH). It was shown that the compressive
strength, specific energy absorption, and crush force efficiency of the SHH are much greater
than those of the RSH. As has been discussed above, both hierarchical design approaches
can enhance the mechanical properties of honeycombs [27]. Hence, for better mechanical
properties, the hybrid hierarchical square honeycomb (HHSH) combining the geomet-
ric features of both edge- and vertex-based hierarchy was investigated by Tao et al. [28].
The results demonstrated that compared with RSH and edge-based hierarchical square
honeycomb, the HHSH provided the most excellent crushing performance.

The studies mentioned above are mainly focused on gradient design or hierarchical
design. To obtain superior mechanical performance, by integrating hierarchical and gradi-
ent designs, a few novel honeycombs are proposed and their mechanical performance is
explored [29]. The results indicate that the strategy of integrating gradient design and hier-
archical design can further improve the mechanical performance of honeycomb compared
with gradient design and hierarchical design [30]. Inspired by the natural honeycomb
structure, a novel hierarchical diamond honeycomb with variable cell wall thickness was
designed by Tao et al. [31]. It was found that the out-of-plane shear modulus of the novel hi-
erarchical diamond honeycomb with variable cell wall thickness was related to the material
distribution. Taylar et al. [32] explored the functional grading in hierarchical honeycomb
and found that Young’s modulus is significantly impacted by the aspect ratio of the super-
structure. By varying the fractal parameter of the uniform self-similar honeycomb for each
layer, Liu et al. [33] proposed a functionally graded fractal honeycomb. It was found that,
under low impact velocity impact, the absorbed energy of graded fractal honeycomb can
be improved by up to 89% compared with that of traditional hexagonal honeycomb. In
order to obtain the more stable deformation of the honeycomb, Liu et al. [34] introduced a
structural gradient into continuous woven glass fiber-reinforced hierarchical thermoplas-
tic composite honeycomb graded structures. It was found that compared with regular
configurations, core components of staggered configurations can absorb more energy.
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As discussed above, it can be seen that graded hierarchical honeycombs integrating
gradient design and hierarchical design greatly increase the designability of the honeycomb,
and it is expected to achieve various excellent performances such as stiffness, strength,
and energy absorption while achieving a lightweight material. Therefore, it has high
academic research value and huge application prospects. However, at present, compared
with regular honeycomb, graded honeycomb, and hierarchical honeycomb, research on
graded hierarchical honeycomb is scarce. The in-plane elastic properties of honeycombs
integrating gradient and vertex-based hierarchy have not been reported. By incorporating
vertex-based hierarchy and gradient into the hexagonal honeycomb, the novel graded
hierarchical hexagonal honeycomb (GHHH) was proposed in our previous study [35].
The results illustrated that the plateau stress and specific energy absorption of GHHH
were much superior to those of regular hexagonal honeycomb, vertex-based hierarchical
hexagonal honeycomb, and graded hexagonal honeycomb. To further reveal the effect of
integrating gradient and hierarchical designs into honeycombs, the in-plane effective elastic
properties of GHHH are investigated by theoretical prediction, experimental test, and
numerical simulation. The sections of this study are arranged as follows. The geometric
configuration of GHHH is described in Section 2. The macroscopic in-plane linear elastic
properties of GHHH are studied theoretically based on Euler beam theory in Section 3.
Subsequently, in Section 4, the details of the fabrication and testing of GHHHs are presented,
and the numerical model of GHHH is validated by the experimental and theoretical results.
Next, the simulation results on effective elastic modulus and Poisson’s ratio of GHHH
are presented and compared with the theoretical results in Section 5. Finally, Section 6
concludes the main findings of this study.

2. Geometric Description of Graded Hierarchical Hexagonal Honeycomb

The hexagon is the most renowned cell topology of honeycombs [31]. Figure 1a shows
a regular hexagonal honeycomb (RHH), and it has been widely reported that gradient
design and hierarchical design can significantly improve the mechanical properties of
RHH [10]. Hence, to enhance the performance of honeycombs, the vertex-based hierarchical
hexagonal honeycomb (VHHH, Figure 1b) is constructed by replacing every vertex of the
RHH, and the graded hexagonal honeycomb (GHH, Figure 1c) is developed by introducing
cell wall thickness variation into the RHH. Furthermore, based on our previous work [35],
the graded hierarchical hexagonal honeycomb (GHHH, Figure 1d) investigated in this
study can be obtained by introducing cell wall thickness variation into the VHHH. The
detailed geometric construction process of GHHH is schematized in Figure 1, and the
representative unit cells of RHH and GHHH are shown in Figure 2a,b, respectively.

The hierarchical structural parameter λ is defined to describe the geometric configura-
tion of VHHH and GHHH, which can be calculated as:

λ =
2L2

L1
(1)

where L1 is the side length of RHH and GHH, and L2 is the side length of the smaller
hexagon for VHHH and GHHH, as shown in Figure 1. The constraint of 0 ≤ λ ≤ 1 should
be met to avoid geometric overlap. To better describe the material distribution of GHHH,
the gradient parameter k is defined as:

k =
tmax − tmin

teq
(2)

where tmax and tmin are the maximum and minimum cell wall thickness of GHHH,
respectively, and teq is the equivalent cell wall thickness, which can be calculated by
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teq = (tmax + tmin)/2. As illustrated in Figure 2b, the cell wall thickness of each half side
length of GHHH can be expressed by:

t(x) = tmax − (tmax − tmin)
2x
Li

, 0 ≤ x ≤ Li
2

, i = 2, 3 (3)

where x is the distance from the origin of the local coordinate system, as shown in Figure 2c,
and the side length of L3 can be calculated by L3 = L1 − 2L2. Similarly, the gradient
parameter for GHH can be defined as:

k =
tGHH
max − tGHH

min
tRHH

(4)

where tGHH
max and tGHH

min are the maximum and minimum cell wall thickness of GHH, re-
spectively, and tRHH is the cell wall thickness of the GHH with k = 0. And the cell wall
thickness of GHH can be calculated by:

t(x) = tGHH
max −

(
tGHH
max − tGHH

min

)2x
L1

, 0 ≤ x ≤ L1

2
(5)

The relative density ρ of the honeycomb is the most important parameter to determine
its properties, and it can be defined by the ratio of the density of the honeycomb to the
density of the constituent material. For GHHH and VHHH, their relative density can be
expressed by [35]:

ρ =
teq√
3L1

(1 + λ) (6)
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It should be pointed out that the relative density of GHHH with an equivalent cell
wall thickness teq and VHHH with a cell wall thickness teq is the same. In addition, when
k = 0, GHHH degrades to VHHH. And when λ = 0, RHH and GHH can be obtained from
VHHH and GHHH, respectively. Hence, the relative density of RHH and GHH can be
calculated by:

ρ =
tRHH√

3L1
(7)

Similarly, when k = 0, GHH degrades to RHH. In addition, RHH also can be obtained
from GHHH when λ = 0 and k = 0.

3. Theory of Effective Elastic Modulus and Poisson’s Ratio

In this section, Euler beam theory is adopted to investigate the in-plane uniaxial
deformation of GHHH made of an isotropic elastic material with elastic modulus Es. Since
GHHH owns threefold symmetry, its in-plane elastic properties are isotropic and do not
depend on the direction [24,36]. Hence, the macroscopic in-plane linear elastic properties
of GHHH can be characterized by two independent elastic parameters, namely effective
elastic modulus E∗ and Poisson’s ratio υ∗ [24,36]. When a far field y-direction stress
σyy = −2F/3L1h applied to the hexagonal honeycomb with an expanding angle of 120◦,
where h is the out-of-plane depth of the hexagonal honeycomb, the theoretical model of the
hexagonal honeycomb can be equivalent to the mechanical model of its subassembly [24].
The mechanical model of the subassembly of GHHH is shown in Figure 3. It should be
pointed out that all horizontal forces presented in Figure 3 are not actual loads, they are the
dummy forces based on the assumption of Castigliano’s second theorem. Therefore, the
horizontal force P = 0 is finally adopted. When the GHHH is loaded in the y-direction, the
cell walls of GHHH not only carry bending moments but also axial and shear forces. Since
the ratio of the cell wall thickness to effective cell length is small, the shear deformation
of GHHH can be negligible relative to the bending deflection [36]. However, the cell wall
thickness of GHHH is variable. It leads to the discovery that the axial deformation of
GHHH cannot be negligible and should be considered in the analysis [36]. In addition, as
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the deformation of GHHH is very small, the beam-column and geometric non-linearity can
be disregarded. According to the equilibrium equation, one can have:

2P − P − P = 0 (8)

N1 + N2 − F = 0 (9)

N1L2(1 + 2 sin θ) + P
(

L2 +
L3

2

)
cos θ + M2 − F[L2 + (L2 + L3) sin θ]− M1 = 0 (10)

where N1 and M1 are the reaction force and bending moment at point VE1, respectively;
N2 and M2 are the reaction force and bending moment at point VE2, respectively; and θ
are the angles as presented in Figure 3. Based on Castigliano’s second theorem, the strain
energy of the unit cell of GHHH can be calculated as a sum over all the edges:

U(F, P, N1, M1) =
∫ M2(x)

2Es I
dx +

∫ N2(x)
2Es As

dx (11)

where M(x) and N(x) are the bending moment and axial force at a distance of x from the
origin of the local coordinate system; I = ht3(x)/12 is the moment of inertia of cell walls;
and As = ht(x) is the cross-sectional area of the cell wall of GHHH. Because of symmetry
boundary conditions, there is zero y displacement and zero rotation at point VE1. Therefore,
on the basis of Castigliano’s second theorem, the partial derivative of strain energy over N1
and M1 is 0. It can be expressed by:

∂U
∂M1

= 0 (12)

∂U
∂N1

= 0 (13)
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The N1, M1, N2, and M2 can be obtained by substituting Equations (8)–(12) into
Equation (13). At point VE6, the x and y displacements can be calculated by:

δx =
∂U
∂P

(14)

δy =
∂U
∂F

(15)



Polymers 2024, 16, 859 7 of 20

Hence, the effective elastic modulus of GHHH is defined as the ratio of average stress
to average strain (εy = −4δy/

√
3L1) in the y-direction, and it can be calculated by:

E∗ =
σyy

εy
=

√
3F

6δyh
(16)

Poisson’s ratio of GHHH is defined as the opposite of the ratio of average strain (εx)
in the x-direction to average strain in the y-direction, and it can be calculated by:

υ∗ = − εx

εy
=

δx√
3δy

(17)

4. Experimental and Numerical Methods
4.1. Experimental Test

Since the geometric dimensions and internal structures of GHHH integrate hierarchical
design and gradient design, the geometry of GHHH is very complex, and the GHHH is dif-
ficult to manufacture using traditional manufacturing methods. Hence, the fused deposited
modeling (FDM) method is adopted in this study to fabricate the GHHH. All the specimens
in this study were printed using a Raise 3D Pro3 printer (Nantong, China). Compared with
other additive manufacturing techniques like selective laser melting (SLM), the Raise 3D
Pro 3 printer with FDM using various filaments is versatile in terms of printability [37],
which is beneficial for the design, fabrication, and optimization of different GHHHs. The
constituent material adopted for 3D printing was PLA with desirable mechanical properties,
and the printing quality of PLA was consistent and acceptable. Hence, the PLA is widely
used in additive manufacturing techniques [38,39]. According to the requirements of the
Raise 3D Pro3 printer, before transferring the geometric model of the GHHH to the Raise
3D Pro3 printer, a CAD model of the GHHH established using SolidWorks 2023 software
should be partitioned into slices using slicing software (ideaMaker 4.3.3). To ensure the
accuracy and quality of the GHHH printed by the Raise 3D Pro3 printer, the printing
parameters were set based on the characteristics of PLA and the printer. The diameter of
the heated nozzle was 0.2 mm, and the temperature of the heated nozzle was 215 ◦C. The
infill density was 100%, while the printing speed was 50 mm/s. The single layer thickness
and bottom layer thickness were 0.2 mm and 0.3 mm, respectively. All specimens were
printed at room temperature. To ensure that the bottom layer of the GHHH could be easily
separated from the build platform after printing and firmly attached to the build platform
without warping, the build platform was kept at 55 ◦C. The printing direction was along
the out-of-plane direction of the GHHH. In the x-y plane, the printing direction was along
the cell wall of the GHHH. The preparation process of the GHHH printed by the Raise 3D
Pro3 printer is shown in Figure 4. As shown in Figure 4, Lx is the total length of GHHH
in the x direction, while Ly is the total length of GHHH in the y direction. In addition,
the geometric parameters of each GHHH specimen are tabulated in Table 1. The relative
density in Table 1 is obtained according to Equation (6).

Table 1. The detailed parameters of the GHHH specimens.

Specimen Lx (mm) Ly (mm) L1 (mm) h (mm) teq (mm) λ k ¯
ρ

Case 1 141.32 132.78 12 30 0.8 2/3 0.5 0.1283
Case 2 141.04 132.54 12 30 0.8 2/3 0.25 0.1283
Case 3 136.64 128.73 12 30 0.8 0.3 0.25 0.1001
Case 4 136.99 129.03 12 30 0.8 0.3 1 0.1001
Case 5 142.99 134.22 12 30 0.8 0.8 1 0.1386
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To obtain the mechanical properties of the solid cell walls of GHHH, three tensile dog-
bone specimens were also printed, and quasi-static tensile tests were performed on them
based on the ASTM D638-22 standard [40]. The tensile velocity was kept at 0.5 mm/min.
A digital image correlation technique (DIC) was adopted in this study to measure the
strain of dog-bone specimens. The geometric dimensions of dog-bone specimens and the
experimental setup are shown in Figure 5. According to the test results, stress–strain curves
of PLA are plotted in Figure 5c, and the basic mechanical properties of PLA were obtained
as follows: density ρs = 1200 kg/m3, Young’s modulus Es = 2100 MPa, and Poisson’s ratio
υ = 0.35.
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The experimental setup of the in-plane quasi-static compression test on the GHHH is
shown in Figure 6. It can be found from Figure 6 that GHHH was sandwiched between
the top platen and bottom platen. In-plane compressive tests of GHHH specimens were
conducted using a hydraulic universal testing machine with a load cell of 2000 kN. The top
platen was stationary, while the bottom platen was moved upwards with a constant velocity
of 0.5 mm/min along the y-direction to load the honeycomb specimen. The effective elastic
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modulus of GHHH was obtained from the slope of the stress–strain curve at the early stage
of the experiment (the strain of GHHH should be less than 1.5%) [24].
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4.2. Finite Element Modeling

In order to study the elastic properties of GHHH, the in-plane loading process of
GHHH was simulated using the finite element software ABAQUS/Standard 6.14-4. As
illustrated in Figure 7, GHHH was placed between two analytical rigid plates. The ends
of GHHH were connected to the stationary bottom rigid plate by tie constraint. The
stationary bottom rigid plate was fully fixed and all directions of the top plate were
constrained except for the y direction. A constant displacement was loaded onto the
top plate along the y direction. To simulate the possible contact, the surface-to-surface
contact model was adopted between the GHHH and two plates, and the general contact
was set between the surfaces of GHHH. For simplicity, the two types of contacts were
frictionless [21]. Since the elastic deformation of out-of-plane is sufficiently small, the out-
of-plane deformation effects are ignored and GHHH is meshed using the CPS4R element.
CPS4R is the 4-node bilinear plane stress quadrilateral element and possesses reduced
integration with hourglass control, which can better simulate the in-plane loading process
of GHHH and has high computational efficiency [41]. In addition, to ensure the numerical
results are accurate, a mesh sensitivity analysis was conducted for the finite element model
as well. The constituent material of GHHH is PLA, and its mechanical properties are given
in Section 4.1. To avoid boundary effects, the strain was calculated within the representative
cell of GHHH (blue ellipse in Figure 7). Poisson’s ratio of GHHH can be calculated by
the opposite of the ratio of the average strain of the representative cell of GHHH in the
x-direction to the average strain in the y-direction.

In order to determine the best mesh size and eliminate mesh sensitivity, a mesh
convergence analysis with different mesh sizes of 0.01 mm, 0.02 mm, 0.04 mm, and 0.08 mm
was conducted for the GHHH with k = 0.3, λ = 0.3, and ρ = 0.01. The result demonstrates
that the mesh size of 0.02 mm produced the best convergence as shown in Table 2. The
differences in effective elastic modulus between mesh sizes 0.02 mm and 0.01 mm were
less than 4.30%. Hence, a mesh size of 0.02 mm was adopted in this study.
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Table 2. Comparison of effective elastic modulus between finite element models with different
element sizes.

Element Size (mm) Effective Elastic Modulus (10−4 MPa) Error (%)

0.01 45.18 -
0.02 43.28 −4.21
0.04 5.21 −87.95
0.08 0.14 −97.36

4.3. Validation of Finite Element Modeling Method

To validate the accuracy of the finite element modeling method proposed in Section 4.2,
the finite element analysis on the GHHH was conducted and compared with the experimen-
tal test and theoretical analysis. Figure 8 presents the effective elastic modulus obtained
from experiment, simulation, and theory. It can be found that the effective elastic modu-
lus of the finite element model agrees well with that of the experimental and theoretical
results. Therefore, the finite element model can well predict the in-plane elastic properties
of GHHH.
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5. Results and Discussion
5.1. Effective Elastic Modulus

Figure 9 presents the effective elastic modulus of GHHH versus k when λ = 0.3,
0.5, and 0.7. Here, the relative density ρ is fixed to 0.01 for comparison, and the gradient
parameter k ranges from 0.3 to 1.8 with an interval of 0.3. It can be seen from Figure 9
that with the increase in k, the effective elastic modulus of GHHH increases at first and
then decreases. Theoretically, the bending deformation of each cell wall of honeycombs is
related to its moment of inertia [42], and the maximum bending occurs at the vertices of
the honeycombs when subjected to uniaxial loading [43]. With the increase in k, the cell
wall thickness at the vertex tmax increases. Therefore, the moment of inertia at the vertex
increases, and the bending deformation of GHHH decreases, resulting in the increase in the
effective elastic modulus of GHHH. However, as k further increases, the cell wall thickness
tmin in the middle of the cell wall of GHHH decreases sharply. It leads to the moment
of inertia in the middle of the cell wall decreasing and the middle area of the cell wall
becoming increasingly frail. Hence, the ability of GHHH to resist deformation is weakened
and the effective elastic modulus of GHHH decreases.
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Figure 9. The effective elastic modulus of GHHH versus k when λ = 0.3, 0.5, and 0.7.

In addition, it can also be found from Figure 9 that the decreases in effective elastic
modulus of GHHH due to k become more pronounced with the increase in λ. According
to Section 2, by substituting Equation (2) into Equation (6), tmin can be calculated as
tmin =

√
3(2 − k)L1ρ/(2 + 2λ). When k, L1, and ρ remain unchanged, the tmin decreases

with the increase in λ, further resulting in a weakening of the ability of GHHH to resist
deformation. As a result, compared with the effective elastic modulus of GHHH with
λ = 0.3, according to the theoretical analysis, the effective elastic modulus of GHHH
with λ = 0.5 and λ = 0.7 is smaller when k = 1.8. Furthermore, the variation in the
effective elastic modulus of GHHH (ρ = 0.01) with the hierarchical structural parameter λ
is shown in Figure 10. The hierarchical structural parameter λ varies from 0.1 to 0.9 with
an interval of 0.1. One can observe that the effective elastic modulus of GHHH initially
increases and subsequently decreases with the increase in λ. It is well known that the
bending deformation of the cell wall of a honeycomb is related to its effective length [42].
With the increase in λ, the effective length of the cell wall of GHHH subjected to bending
moments becomes longer. Materials between point VE2 and point VE3 (Figure 3) do not
bear bending moments and the length between point VE2 and point VE3 decreases. Hence,
with increase in λ, there are more materials to resist bending deformation and thus the
effective elastic modulus of GHHH increases. However, with a further increase in λ, since
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tmin =
√

3(2 − k)L1ρ/(2 + 2λ), the cell wall thickness tmin in the middle of the cell wall of
GHHH gradually decreases. The moment of inertia I = ht3

min/12 [24] in the middle of the
cell wall of GHHH decreases and the middle area of the cell wall becomes increasingly frail.
Therefore, the ability of GHHH to resist deformation is weakened and the effective elastic
modulus of GHHH decreases.
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Furthermore, the effect of relative density on the effective elastic modulus of GHHH
is also explored. Figure 11 presents the effective elastic modulus of GHHH versus ρ when
k = 0.9 and λ = 0.6. The relative density ρ varies from 0.01 to 0.05 with an interval of 0.01.
It can be seen from Figure 11 that effective elastic modulus increases with the increase in
relative density. It can be attributed to the increase in moment of inertia caused by the
increase in relative density.
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5.2. Poisson’s Ratio

Figure 12 shows Poisson’s ratio of GHHH with different k when ρ = 0.01. It can
be seen that with the increase in the gradient parameter k, Poisson’s ratio of GHHH
slowly decreases. Obviously, the theoretical prediction is in good agreement with the
numerical simulation when the gradient parameter k and hierarchical structural parameter
λ are small. However, with the increases in the gradient parameter k and hierarchical
structural parameter λ, the error between theoretical and numerical Poisson’s ratio of
GHHH is relatively large. This can be explained as the cell walls of GHHH are simplified
to Euler beams. As we all know, the Euler beam theory applies the plane assumption
and assumes that Euler beams are composed of many longitudinal fibers. Hence, the
ratio of cell wall thickness to side length should be sufficiently small to satisfy the above
assumptions [44,45]. Sun et al. [44] suggested that the ratio should be less than 0.25. In
a different study, Ding et al. [45] stated that the ratio should be less than 0.2. However,
the honeycombs studied in the two papers both have a uniform cell wall thickness. For
honeycombs with uniform cell wall thickness, the shear stresses on adjacent cross-sections
of the uniform cell wall are identical, resulting in the same degree of warping, and the
displacements caused by warping are the same. Therefore, the length of longitudinal fibers
of the cell wall of the honeycomb with a uniform cell wall thickness does not change due
to cross-sectional warping, and no additional tensile stress is induced. In other words,
cross-sectional warping does not alter the tensile stress according to the plane assumption.
However, as the cell wall thickness of GHHH is variable, the adjacent cross-sections of
GHHH are different. As a result, the shear stresses on adjacent cross-sections are different,
leading to varying degrees of warping. Consequently, the length of the longitudinal fibers
of cell wall of GHHH undergoes changes, thereby causing additional tensile stresses. This
is precisely the factor overlooked by the plane assumption. Hence, for GHHH, the ratio
of cell wall thickness to side length should be smaller compared with that of honeycomb
with uniform cell wall thickness. Meanwhile, it should be pointed out that the difference
between the shear stresses on adjacent cross-sections will become larger with the increase
in k, resulting in an increase in error.
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Figure 13 presents the effect of the hierarchical structural parameter λ on Poisson’s
ratio of GHHH with k = 0.3 and k = 0.9. The relative density ρ is set to 0.01. As can be
found from Figure 13, as λ increases, Poisson’s ratio first decreases and then increases.
Specifically, GHHH with smaller λ has a Poisson’s ratio close to 1.0. With the increase in λ, a
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more uniform stress distribution and smaller strain may be achieved, leading to a reduction
in Poisson’s ratio. With the further increase in λ, according to Section 5.1, the ability of
GHHH to resist deformation weakens. This leads to GHHH having larger deformation,
resulting in a higher Poisson’s ratio. The variation in Poisson’s ratio of GHHH with the
same relative density ρ is presented in Figure 14. Note that the k is fixed to 0.9 and λ is fixed
to 0.6. As shown in Figure 14, a good consistency is still achieved between the theoretical
prediction and numerical simulation. It can be seen from Figure 14 that with the increase
in relative density, Poisson’s ratio slightly decreases and remains almost unchanged. This
means that the relative density has little effect on Poisson’s ratio of the GHHH.
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5.3. Effect of Integrating Hierarchical and Gradient Designs

Ajdari et al. [24] and Chuang et al. [42] showed that the effective elastic modulus
of hexagonal honeycomb is significantly influenced by hierarchical design and gradient
design, respectively. As shown in Section 2, GHHH explored in this study integrates the
geometry of both hierarchical design and gradient design. Therefore, GHHH may own
outstanding elastic performance. In this section, the effect of integrating hierarchical design
and gradient design on the elastic performance of hexagonal honeycombs is investigated
through the comparison of the elastic mechanical properties of RHH, VHHH, GHH, and
GHHH. In this section, the relative density of all honeycombs is fixed to 0.01.

As shown in Figure 15, the comparison of effective elastic modulus and Poisson’s ratio
between GHHH and its degraded honeycomb (i.e., RHH, VHHH, and GHH) is plotted.
Here, the hierarchical structural parameter λ of VHHH and GHHH is set as 0.6, while the
gradient parameter k of GHH and GHHH is fixed to 0.9. It can be seen from Figure 15a that
the effective elastic modulus of VHHH, GHH, and GHHH are improved by up to 71.69%,
33.51%, and 119.82% compared with that of RHH, respectively. This demonstrates that the
GHHH integrating hierarchical design and gradient design can significantly improve the
effective elastic modulus compared to the GHH with gradient design and VHHH with
hierarchical design if the relative density is fixed. In addition, the deformation modes of
unit cells with the same stress of RHH, VHHH, GHH, and GHHH are shown in Figure 16.
As illustrated in Figure 16, strains of all honeycombs in the y-direction are concentrated
at the vertex, which is consistent with theoretical analysis. GHHH not only increases the
vertex count by replacing each vertex of RHH with a smaller hexagon but also assigns more
material near the vertices by introducing cell wall thickness variation. Hence, compared
with RHH, VHHH, and GHH, GHHH possesses more material subjected to resistance
to bending moment, and the strains of GHHH in the y-direction are smaller. Therefore,
GHHH has the highest effective elastic modulus. As shown in Figure 15b, Poisson’s ratios
of RHH and GHH are almost the same and both are close to 1.0. This indicates that the
gradient design has little effect on Poisson’s ratio of RHH. When hierarchical design is
introduced into RHH and GHH, respectively, Poisson’s ratio has significantly decreased.
Hence, the hierarchical design has a more significant effect on Poisson’s ratio compared
with the gradient design. In addition, Poisson’s ratio of GHHH is 10.57% lower than that
of VHHH. This means that gradient design can further tailor Poisson’s ratio of honeycomb
on the basis of hierarchical design.
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Figure 15. Comparison of (a) effective elastic modulus and (b) Poisson’s ratio between different
honeycomb configurations.
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To further explore the effect of gradient design and hierarchical design on the in-
plane elastic properties of GHHH, Figures 17 and 18 present the effect of k and λ on the
ratio of force N1 to F and ratio of the bending moment M1 to F at point VE1 (Figure 3)
of GHHH, respectively, where N1 and M1 can be obtained from Section 3. As shown in
Figure 17, N1/F and M1/F slightly increase with the increase in k. And it can be seen from
Figure 18 that with the increase in λ, N1/F rapidly decreases while M1/F experiences a
substantial increase. Specifically, N1/F of GHHH with k = 0.9 and λ = 0.1 is 4.26 times
of that of GHHH with k = 0.9 and λ = 0.9, while M1/F of GHHH with k = 0.9 and
λ = 0.9 is 19.62 times of that of GHHH with k = 0.9 and λ = 0.1. Hence, one can conclude
that gradient design has little effect on the distribution of internal forces in GHHH while
hierarchical design can change the internal force distribution of GHHH to improve the
elastic performance of GHHH.
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Figure 17. The (a) N1/F and (b) M1/F versus k when λ = 0.3, 0.5, and 0.7.
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6. Conclusions

In this study, the in-plane elastic properties of the graded hierarchical hexagonal
honeycomb (GHHH) integrating gradient design and hierarchical design were investigated
through theoretical analysis, experiment, and numerical simulation. Based on the analysis,
the main conclusions are drawn as follows:

(1) Theoretical models to predict the effective elastic modulus and Poisson’s ratio of
GHHH were developed based on Euler beam theory, and theoretical results were in
good agreement with experimental and numerical results.

(2) The gradient parameter k and hierarchical structural parameter λ have an important
effect on the effective elastic modulus and Poisson’s ratio of GHHH. In addition,
Poisson’s ratio is less sensitive to the relative density.

(3) The effect of gradient design and hierarchical design on the in-plane elastic properties
of GHHH has been analyzed and compared. Compared to gradient design, hierar-
chical design shows a more pronounced effect on Poisson’s ratio and adjusting the
internal forces of GHHH.

(4) The effective elastic modulus of GHHH is higher than that of RHH, VHHH, and GHH
when the relative density is fixed. The effective elastic modulus of GHHH can be up
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to 2.2 times that of RHH. However, Poisson’s ratio of GHHH is lower than that of
RHH, VHHH, and GHH.

To sum up, the GHHH explored in this study exhibits excellent stiffness. The strategy
of integrating gradient design and hierarchical design in honeycomb provides new possi-
bilities for a more flexible design of honeycomb materials to meet complex actual needs.
However, the proposed work focused only on the in-plane elastic properties of GHHH.
The crashworthiness performance of GHHH under the in-plane impact will be explored in
future studies, and the elastic response under the out-of-plane is currently under study.
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