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Abstract: Thermo-responsive diblock copolymer, poly(N-isopropylacrylamide)-block-poly(N-
vinylisobutyramide) was synthesized via switchable reversible addition–fragmentation chain trans-
fer (RAFT) polymerization and its thermal transition behavior was studied. Poly(N-vinylisobutyramide)
(PNVIBA), a structural isomer of poly(N-isopropylacrylamide) (PNIPAM) shows a thermo-response
character but with a higher lower critical solution temperature (LCST) than PNIPAM. The chain
extension of the PNVIBA block from the PNIPAM block proceeded in a controlled manner with a
switchable chain transfer reagent, methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate. In
an aqueous solution, the diblock copolymer shows a thermo-responsive behavior but with a single
LCST close to the LCST of PNVIBA, indicating that the interaction between the PNIPAM segment
and the PNVIBA segment leads to cooperative aggregation during the self-assembly induced phase
separation of the diblock copolymer in solution. Above the LCST of the PNIPAM block, the polymer
chains begin to collapse, forming small aggregates, but further aggregation stumbled due to the
PNVIBA segment of the diblock copolymer. However, as the temperature approached the LCST of
the PNVIBA block, larger aggregates composed of clusters of small aggregates formed, resulting in
an opaque solution.

Keywords: thermo-responsive polymer; lower critical solution temperature (LCST); block copolymer;
controlled radical polymerization; reversible addition–fragmentation chain transfer polymerization
(RAFT); self-assembly; polymer synthesis

1. Introduction

Thermo-responsive polymers are a class of smart polymers that undergo reversible
changes in their physical properties when exposed to temperature change. Thermo-
responsive polymer solutions are characterized by a volume phase transition triggered by
temperature, resulting in a change in the solvation state of the polymer [1,2]. When the
solution of a polymer becomes an immiscible mixture for all compositions over a certain
temperature, that temperature is referred to as the lower critical solution temperature
(LCST) [3–5]. The polymers showing LCST behavior in an aqueous solution have a moiety
capable of forming hydrogen bonds with water such as oligo(ethylene glycol)s and second
or tertiary amines including Poly(N-alkylacrylamide)s and poly(N-vinylalkylamide)s [6–8].
The driving force of the transition arises from the equilibrium between hydrophilic and
hydrophobic interaction segments in the polymer chain. One of the most well-known
examples of a thermo-responsive polymer is poly(N-isopropylacrylamide) (PNIPAM).
PNIPAM exhibits LCST behavior that is soluble in water below 32 ◦C but becomes insol-
uble and precipitates out of the solution when the temperature is raised above its LCST.
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PNIPAM is widely used because its thermo-responsive transition is less dependent on
chemical environments such as pH, and salt concentrations [9–15]. Due to the unique
characteristics exhibited by PNIPAM, PNIPAM based copolymer have a broad spectrum
of research in self-assembly and stimuliresponsive systems [16–19]. High concentrations
above 10% of PNIPAM and PNIPAM-based copolymer aqueous solutions undergo re-
versible gelation [20,21]. Because the LCST of PNIPAM is lower than the human body
temperature (~37 ◦C), the PNIPAM-based polymer system can exist as a gel state around
human body temperature [22,23].

The thermo-responsive properties of polymers can be tailored by modifying the
polymer structure and composition. Diblock copolymers can be used to modulate LCST
behavior, and one of the advantages of using diblock copolymers with LCST behavior is
the ability to fine-tune the LCST by selecting appropriate polymer blocks and their rela-
tive proportions [24,25]. The diblock copolymers consisting of PNIPAM show interesting
thermo-responsive properties with high potential for various applications, including drug
delivery, tissue engineering, nanoreactors, and wearable devices [26–29]. Among the struc-
tural isomers of poly(N-isopropylacrylamide) including poly(N-ethyl methacrylamide),
poly(N,N-ethyl methyl acrylamide), poly(N-n-propyl acrylamide), poly(N-isopropyl acry-
lamide), poly(N-vinyl isobutyramide), poly(2-n-propyl-2-oxazoline), poly(2-isopropyl-2-
oxazoline), polyleucine, and polyisoleucine, we select poly(N-vinylisobutyramide) because
the structural difference is minimal. They consist of amide groups. The only difference is
the direction of amide linkage in the side chain. However, this small difference gives rise to
the observable differences in LCST (32 ◦C and 39 ◦C, respectively), indicating the different
solvation behavior with water [30,31]. We are interested in whether this small structural
difference is large enough for sequential aggregation behavior in water.

Reversible addition–fragmentation chain transfer (RAFT) polymerization is com-
patible with a wide range of monomers, making it suitable for synthesizing various
block polymers [32,33]. However, NVIBA monomer which can be prepared from N-
vinylformamide (NVF) at mild conditions [34] is categorized as “less-activated” monomers
(LAMs) for RAFT polymerization because it has lone pair electrons adjacent to its vinyl
group compared to “more-activated” monomers (MAMs) which have double bond con-
jugated to an aromatic ring (e.g., styrene) or a carbonyl group (e.g., methylmethacrylate).
As the propagating radical of LAMs has low stability and side reactions, these monomers
behave as poor homolytic leaving groups in radical polymerization. Therefore, typical
RAFT reagents, such as thiocarbonylthio compounds, that can polymerize MAMs in a
controlled manner are not suitable for the RAFT polymerization of LAMs. The low stability
of LAM radicals can be compensated with xanthates or dithiocarbamates RAFT agents, but
they are ineffective in the controlled polymerization of MAMs [33,35,36].

Because of the radical reactivity inherent in NVIBA, the synthesis of PNVIBA and its
copolymers has predominantly relied on free radical polymerization, and most reports use
PNIVBA as a building segment in chemically crosslinked hydrogels [37–40]. The synthesis
of diblock copolymers compromising LAM and MAM blocks requires a RAFT agent of
which reactivity can be modulated for both LAMs and MAMs [41–45]. The switchable RAFT
agent, N-(4-pyridinyl)-N-methyldithiocarbamate is effective for RAFT polymerization of
LAMs. Interestingly, it becomes effective for MAMs when it is protonated with a strong
acid, allowing a direct synthesis of polyMAM-block-polyLAM with controlled molecular
weight and molecular weight distributions [35,43]. However, to the best of our knowledge,
synthesis as well as self-assembly behavior of poly(N-isopropylacrylamide)-block-poly(N-
vinylbutyramide) (PNIPAM-b-PNVIBA) has not been reported. Herein, we report the
synthesis and thermo-responsive behavior of the PNIPAM-b-PNVIBA diblock copolymer.

2. Materials and Methods
2.1. Materials

Methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate (MMPCP, Sigma-Aldrich,
Saint Louis, MO, USA, 97%), 2-cyanopropan-2-yl-N-methyl-N-(pyridin-4-yl)carbamodithioate



Polymers 2024, 16, 830 3 of 14

(CPMPC, Sigma-Aldrich, 97%), 4-dimethylaminopyridine (DMAP, Sigma-Aldrich, 99%), and
trimethylamine (anhydrous, Sigma-Aldrich, 99%) were purchased. N-isopropylacrylamide
(NIPAM, TCI, Tokyo, Japan, 98%) was recrystallized from n-hexane two times. N-
Vinylformamide (NVF, TCI, 98%), and isobutyryl chloride (TCI, 98%) were distillated with
reduced pressure to remove water and other impurities. The N-vinylisobutyramide (NVIBA)
was synthesized according to the following procedure [34]. 2,2′-Azobis(2-metylpropionitrile)
(AIBN, Junsei, Tokyo, Japan, 98%) was recrystallized from methanol before use. 1,4-Dioxane
(anhydrous, Sigma Aldrich, 99%), dimethyl sulfoxide (DMSO, anhydrous, Sigma-Aldrich,
99%), and tetrahydrofuran (THF, anhydrous, Sigma-Aldrich, 99%) were used as received.

2.2. Characterizing Methods
1H nuclear magnetic resonance (NMR) spectroscopy was taken on Bruker Fourier

Transfer AVHD400 spectrometer (Bruker, Billerica, MA, USA). Chemical shifts are ex-
pressed in parts per million (ppm) using DMSO-d6, and D2O solvent protons as references.
High-temperature 1H nuclear magnetic resonance experiment was conducted at 100 ◦C
with Bruker Fourier Transfer AVHD400 spectrometer. Gel permeation chromatography
(GPC) was performed in N,N-dimethylformamide (DMF) eluent at 45 ◦C with a flow rate
of 1 mL/min on Agilent 1260 Infinity system (Santa Clara, CA, USA). The instrument was
equipped with a 1260 refractive index detector. The molecular weight of the polymers
was calculated relative to linear poly(styrene) standards (Agilent Polystyrene Medium
EasiVials, Agilent, Santa Clara, CA, USA, Mw by Light scattering: 208,300, 28,100, 3610,
452). DLS measurement was conducted using NanoBrook Omni (Brookhaven Instruments
Corp., Holtsville, NY, USA) at a wavelength of 658 nm. The scattering angle used for the
measurements was 90 degrees. For the DLS measurements, the temperature range was
25 to 55 ◦C, and the measurements were conducted at 1 ◦C intervals. Each measurement
was equilibrated for 60 s and measured for 120 s, and the measurement cycle was repeated
3 times. The CONTIN approximation was used to convert the diffusion coefficient into the
hydrodynamic diameter (Dh). For the DLS measurements, the polymer solution concentra-
tion was 0.5 mg/mL. Zeta potential measurement was performed on Malvern Zetasizer
nano ZS at a wavelength of 632 nm with Malvern DTS1070 disposable folded capillary
cell. For the zeta potential measurement, the temperature range was 25 to 55 ◦C, and
each measurement was conducted at 1 ◦C intervals. Each measurement was equilibrated
for 60 s. The polymer solution concentration was 0.5 mg/mL. UV-vis spectroscopy was
carried out on Shimadzu UV-2600 equipped with a temperature controller system. The scan
wavelength was set at 550 nm. The polymer solution sample was equilibrated at 25 ◦C for
300 s before the measurement and ramped at a rate of 0.1 ◦C/min. For UV-vis studies, cloud
point (CP) is defined as a temperature when the transmittance becomes 0.5 [46,47]. And the
‘temperature of transmittance change’ is defined as the temperature at 99% transmittance.
For all UV-vis studies, the polymer solution concentration was 0.5 mg/mL. A scanning
electron microscopy (SEM) study was performed on a FEI Magellan 400 (FEI, Hillsboro,
OR, USA). SEM sample was prepared by spin coating of 0.5 mg/mL aqueous polymer
solution on Si wafer. Thermogravimetric analysis (TGA) was performed on a Netzsch TG
209 F1 Libra high resolution TGA (Netzsch, Selb, Germany). The TGA measurements were
conducted at a heating rate of 10 ◦C/min under nitrogen conditions, and the measure-
ment temperature range was 100 to 600 ◦C. Differential scanning calorimetry (DSC) was
performed by TA instruments DSC25 differential scanning calorimeter (TA instruments,
New Castle, DE, USA). The glass transition temperature (Tg) values of the polymers were
obtained with a DSC instrument at a heating rate of 10 ◦C/min under N2 conditions, and
the measurement temperature range was −10 to 250 ◦C. The DSC measurement data were
obtained during the second heating cycle.

2.3. Polymer Synthesis

Synthesis of PNIPAM128 macro-RAFT agent. In a dry Schlenk flask, NIPAM (1.6974 g,
15 mmol), MMPCP (0.02704 g, 0.1 mmol), AIBN (3.3 mg, 0.02 mmol), and TsOH(monohydrate)
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(20.9 mg, 0.11 mmol) were placed and dissolved in 1,4-dioxane (4 mL). The flask was sealed,
and then the solution was degassed by repeated freeze, pump, and thaw cycles at least three
times. Then, the reaction flask was filled with nitrogen gas. Polymerization was started by
placing the flask in an oil bath at 60 ◦C for 4 h. The polymerization was stopped by diluting
and cooling the solution in an ice-water bath. The polymer was isolated by precipitation
into diethyl ether and isolated by filtration. The product was dried in vacuo overnight.
Mn: 1.44 × 104 g/mol, PDI: 1.19, 1H NMR (400 MHz, CDCl3) δ 8.73, 7.41, 7.26–6.52, 3.87,
2.04, 1.78–1.20, 1.10.

Synthesis of PNIPAM258 macro-RAFT agent. In a dry Schlenk flask, NIPAM (2.829 g,
25 mmol), MMPCP (0.02704 g, 0.1 mmol), AIBN (3.28 mg, 0.02 mmol), and TsOH(monohydrate)
(20.9 mg, 0.11 mmol) were placed and dissolved in 1,4-dioxane (4 mL). The flask was sealed,
and then the solution was degassed by repeated freeze, pump, and thaw cycles at least
three times. Then, the reaction flask was filled with nitrogen gas. Polymerization was
started by placing the flask in an oil bath at 60 ◦C for 4 h. The polymerization was stopped
by diluting and cooling the solution in an ice-water bath. The polymer was isolated by
precipitation into diethyl ether and isolated by filtration. The product was dried in vacuo
overnight. Mn: 2.95 × 104 g/mol, PDI: 1.16, 1H NMR (400 MHz, DMSO-d6) δ 8.72, 7.52,
7.28–6.48, 3.88, 2.03, 1.68, 1.60–1.19, 1.10

Synthesis of PNIPAM128-b-PNVIBA93 diblock copolymer. In a dry Schlenk flask, a
solution of NVIBA (0.566 g, 5 mmol), PNIPAM128 macro-RAFT agent (0.296 g, 0.02 mmol),
AIBN (0.82 mg, 0.005 mmol), and anhydrous DMSO (1.5 mL) was prepared. The flask was
sealed, and then the solution was degassed by repeated freeze, pump, and thaw cycles
at least three times. Then, the reaction flask was filled with nitrogen gas. Polymerization
was started by placing the flask in an oil bath at 70 ◦C for 16 h. The polymerization was
stopped by diluting the solution and cooling in a water bath. The polymer was isolated by
precipitation into diethyl ether and isolated by filtration. The product was dried in vacuo
overnight. Mn: 2.53 × 104 g/mol. PDI: 1.29, 1H NMR (400 MHz, DMSO-d6, 100 ◦C) δ 7.54,
7.48–6.49, 3.88, 3.69, 2.34, 2.03, 1.79–1.19, 1.10, 1.04.

PNIPAM258-b-PNVIBA67 diblock copolymer. In a dry Schlenk flask, a solution of
NVIBA (0.8487 g, 7.5 mmol), PNIPAM258 macro-RAFT agent (0.885 g, 0.03 mmol), AIBN
(1.23 mg, 0.0075 mmol), and anhydrous DMSO (2 mL) was prepared. The flask was sealed,
and then the solution was degassed by repeated freeze, pump, and thaw cycles at least three
times. Then, the reaction flask was filled with nitrogen gas. Polymerization was started
by placing the flask in an oil bath at 70 ◦C for 16 h. The polymerization was stopped by
diluting the solution and cooling in a water bath. The polymer was isolated by precipitation
into diethyl ether and isolated by filtration. The product was dried in vacuo overnight.
Mn: 3.71 × 104 g/mol, PDI: 1.25, 1H NMR (400 MHz, DMSO-d6, 100 ◦C) δ 7.54, 7.40–6.39,
3.87, 3.68, 2.34, 2.03, 1.78–1.19, 1.09, 1.04

3. Results and Discussion
3.1. Synthesis of PNIPAM-b-PNVIBA Diblock Copolymers

To synthesize poly(N-isopropylacrylamide)-block-poly(N-vinylisobutyramide) (PNIPAM-
b-PNVIBA) diblock copolymer, N-vinylisobutyramide (NVIBA) monomer was prepared by
reacting N-vinylformaldehyde with isobutyryl chloride and NaOH treatment according to
the reported procedure [34]. 1H-NMR analysis of the reaction product supported the suc-
cessful synthesis of NVIBA (Figure S1). Due to the reactivity difference between NVIBA and
N-isopropylacrylamide (NIPAM) monomers, the PNIPAM block consisting of more activated
monomer NIPAM was prepared prior to the PNVIBA block. RAFT polymerization of NIPAM
with switchable RAFT agent methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate (MM-
PCP) in an acidic condition produced well-controlled PNIPAM macro-RAFT agent. The
protonated switchable RAFT agent MMPCP was effective in controlled RAFT polymeriza-
tion of NIPAM monomers. The synthesis of PNIPAM-b-PNVIBA was carried out after the
neutralization of the PNIPAM macro-RAFT agent with DMAP followed by chain extension
with NVIBA (Scheme 1).
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Scheme 1. (a) Synthesis of NVIBA monomer from NVF [34]. (b) Synthesis of PNIPAM Macro-RAFT
agent using a switchable RAFT agent in acidic conditions. (c) Synthesis of PNIPAM-b-PNVIBA
diblock copolymer.

The molecular weight of PNIPAM macro-RAFT agent was determined by end group
analysis as shown in Figure 1a. The end group analysis was performed by comparing
1H NMR integration values of the corresponding peaks; the proton peaks of the pyridine
ring end group (a, δ = 8.7 ppm) and 1H peak of the isopropyl proton of NIPAM repeating
unit (2, δ = 3.9 ppm). The number average degree of polymerization (DP) is 128, and the
molecular weight of the PNIPAM macro-RAFT agent is 14,800 g/mol. Also, PNIPAM-
b-PNIVBA diblock copolymer was analyzed by 1H NMR spectroscopy. To obtain the
number average DP of PNVIBA block, block ratio analysis between PNIPAM and NVIBA
blocks was conducted by comparing the integration values of the corresponding peaks.
However, due to the structural similarity of PNVIBA to PNIPAM, most of the PNVIBA
peaks overlapped with the PNIPAM peaks. To avoid this problem, we performed a high-
temperature 1H NMR study (Figure 1b). When the temperature was elevated to 100 ◦C, the
isopropyl proton of NVIBA units and vinyl backbone proton adjacent to acrylic carbon of
NIPAM units were resolved, enabling the analysis of the block ratio. The number average
DP of PNVIBA block is 93, and the number average molecular weight of the PNIPAM-
b-PNVIBA diblock copolymer is 25,300 g/mol. The molecular weight distribution was
characterized by gel permeation chromatography (GPC) with DMF eluent. The molecular
weight distribution of the PNIPAM-b-PNVIBA diblock copolymer becomes broader than
that of the PNIPAM macro-RAFT agent (D = 1.19), but it still maintains an unimodal
distribution with a polydispersity index of less than 1.3 (Figure 2, and Table 1). For other
polymers, the same analysis process was conducted (See Supplementary Information for
the details). Thermal analyses of the PNIPAM macro-RAFT agent and PNIPAM-b-PNVIBA
diblock copolymers were carried out to observe the thermal stability of the PNIPAM macro-
RAFT agent and the miscibility of the two blocks, PNIPAM and PNVIBA blocks, of the
diblock copolymers. The decomposition of PNIPAM macro-RAFT agent began at over
250 ◦C and reached the 5% weight loss around 300 ◦C, while the diblock copolymer showed
that the 5 weight % loss occurred around 325 ◦C (Figure S4). DSC curves of PNIPAM-
b-PNVIBA diblock copolymers shown in Figure S7 revealed the single glass transition
temperature, indicating that PNIPAM and PNVIBA blocks are miscible.
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Figure 1. (a) 1H NMR spectrum of PNIPAM128 macro-RAFT agent (400 MHz, DMSO-d6, 100 ◦C).
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PNVIBA93 (400 MHz, DMSO-d6, 100 ◦C). Integration ratio of 1H of peak 4: 1H of peak 7 = 128: 93.
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Figure 2. DMF GPC traces of PNIPAM128 macro-RAFT agent and PNIPAM128-b-PNVIBA93, (PS
standards, flow rate: 1 mL/min).

Table 1. Characterization of PNIPAM macro-RAFT agent and PNIPAM-b-PNVIBA copolymers.

Entry Polymers Mn, Theo
a Mn, NMR

b Mn, GPC
c

PDI b
(g/mol)

1 PNIPAM128 13,500 14,800 26,600 1.19
2 PNIPAM258 26,800 29,500 36,900 1.16
3 PNIPAM128-b-PNVIBA93 - 25,300 37,000 1.29
4 PNIPAM258-b-PNVIBA67 - 37,100 48,300 1.25

a Calculated from yield, suppose all the RAFT agent was reacted. b Calculated by comparison between integration
of 1H peak on NIPAM units, and 1H peak on NVIBA units from 1H NMR. c Determined by DMF GPC using
polystyrene standards (RI detector, PL gel columns).

3.2. Thermo-Responsive Properties

Thermo-responsive behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylbutyramide)
(PNIPAM-b-PNVIBA) was investigated by observing the transmittance change of the aque-
ous solution of the PNIPAM-b-PNVIBA diblock copolymer with UV/vis spectrophotometer.
The lower critical solution temperature (LCST) of the PNIPAM homopolymer (PNIPAM
macro-RAFT agent) and diblock copolymer, PNIPAM128-b-PNVIBA93 were measured.
Figure 3 shows the temperature-dependent transmittance change of 0.5 mg/mL polymer
aqueous solution with temperatures ranging from 25 ◦C to 55 ◦C. PNIPAM128 macro-RAFT
agent shows that transmittance change begins at 32.6 ◦C, and reaches the CP at 35.2 ◦C. This
LCST is a little higher than the previously reported LCST of PNIPAM (32 ◦C) [48,49] presum-
ably because of the end groups (methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propyl
group) [50].

PNIPAM128-b-PNVIBA93 diblock copolymer aqueous solution shows that transmit-
tance change starts at 35.4 ◦C and reaches the cloud point at 36.9 ◦C, revealing a higher
thermal transition temperature than the PNIPAM homopolymer (PNIPAM128 macro-RAFT
agent) but a lower LCST than PNVIBA of 39 ◦C in water. The relatively more hydrophilic
PNVIBA block interacts more strongly with water than the PNIPAM at the temperature
over LCST of PNIPAM. Compared to the PNIPAM homopolymer, overall interaction be-
tween water and diblock copolymer increases due to the covalently connected two blocks,
PNIPAM and PNVIBA, resulting in delayed aggregation of the PNIPAM block. However,
the thermal transition of the PNVIBA block was promoted by the aggregation of the PNI-
PAM block above the LCST. Also, in a moderate change in pH, PNIPAM-b-PNVIBA diblock
copolymer does not show a significant change in CP. The temperature-dependent change
of transmittance of PNIPAM128-b-PNVIBA93 diblock copolymer solution was monitored by
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UV-visible spectrophotometer at various pHs (See Supplementary Information, Figure S6).
At acidic conditions, the cloud point slightly decreased, while the cloud point shifted to a
higher temperature under basic conditions. However, the cloud point change under the
weak acid/base condition employed in this study was quite small (less than ±1 ◦C).
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Figure 3. Temperature-dependent change of transmittance to determine LCST of polymers. Black line
indicates PNIPAM128 macro-RAFT agent solution and red line indicates PNIPAM128-b-PNIVBA93

diblock copolymer solution. Visual test of PNIPAM128 macro-RAFT agent solution (left), and
PNIPAM128-b-PNIVBA93 diblock copolymer solution (right) at 35 ◦C is also presented. Heating
rate: 0.1 ◦C/min. Could point (CP) is the temperature when transmittance becomes 0.5, and the
temperature of transmittance change is defined as the temperature of 99% transmittance.

DLS experiment was conducted to check the change of hydrodynamic diameter (Dh)
of PNIPAM homopolymer and PNIPAM-b-PNVIBA diblock copolymer nanoparticles ac-
cording to the temperature elevation (Figure 4). At room temperature, neither the polymer
solutions exhibit any distinct assembled structures. While the PNIPAM hompolymer
(PNIPAM128 macro-RAFT agent) solution shows a rapid increase in the Dh above LCST of
the PNIPAM (35.2 ◦C), the PNIPAM-b-PNVIBA diblock copolymer solution shows a little
and slow increase in Dh until the temperature reaches around 37 ◦C. However, above the
CP of diblock copolymer (36.9 ◦C), the PNIPAM-b-PNVIBA diblock copolymer particle
shows a dramatic size increase up to the LCST of PNIVIBA (39 ◦C). Then, the large particles
shrink at a temperature higher than the LCST of PNVIBA. At this temperature, the diblock
copolymer completely loses solubility in water, and the residual water molecules in the
loose aggregate of PNIPAM-b-PNVIBA diblock are dehydrated, resulting in more densely
packed aggregates [51–53]. Although PNIPAM128-b-PNIVBA93 has a longer chain length
than PNIPAM128 homopolymer, it shows smaller Dh than PNIPAM at higher temperatures
than LCSTs, showing the unique thermo-responsive behaviors of PNIPAM-b-PNVIBA
diblock copolymer. The zeta potential measurement of the PNIPAM-b-PNVIBA diblock
copolymer shows a good agreement with the nanoparticle formation tendency observed
through DLS, indicating that they are well dispersed in water media (Figure S7).
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Figure 4. Hydrodynamic diameter changes of PNIPAM128 macro-RAFT agent (black squares) and
PNIPAM128-b-PNVIBA93 (red circles) in aqueous media induced by temperature elevation (concen-
tration: 0.5 mg/mL, temperature elevation rate: 0.5 ◦C/min).

Variable temperature 1H NMR studies were performed in D2O solvent over a range
from 25 to 55 ◦C for both PNIPAM128-b-PNIVBA93 diblock copolymer and PNIPAM128
homopolymer solution. (Figure 5) The signals of characteristic peaks, specifically the
backbone 1H peak of PNIPAM at 2.0 ppm (indicated by the blue arrow) and isopropyl
1H peak PNVIBA at 2.1 ppm (indicated by the red arrow), were selected to observe the
temperature drive transition. Initially, we expected that the PNIPAM peak would shrink
faster than the PNVIBA peak because the LCST of PNIPAM is lower than that of the
PNVIBA. However, the two peaks gradually collapse, and finally, both peaks are completely
undetectable above 40 ◦C, which is a higher temperature than the LCST of PNVIBA. This
result suggests that the thermal transition of PNIPAM and PNIVBA segment occurs in
a cooperative manner rather than independently. This thermo-responsive character is
expected from the result of strong interactions between PNIPAM and PNVIBA chains.
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To confirm the self-assembled structure of the PNIPAM-b-PNVIBA diblock copolymer,
scanning electron microscopy (SEM) analysis was carried out (Figure 6). The samples
were prepared at 35 ◦C and 50 ◦C, which exceeds the LCST of PNIPAM and PNVIBA,
respectively. At 35 ◦C, PNIPAM128-b-PNVIBA93 diblock copolymer is expected to form
small spherical particles (<100 nm), but at 50 ◦C, the diblock copolymer particles collapse
and form a larger cluster by aggregation. These SEM images are in good agreement with
the DLS analysis, showing a mean diameter of 85.2 nm at 35 ◦C and 171.4 nm at 50 ◦C.
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Figure 6. (a–c) SEM image of PNIPAM128-b-PNVIBA93 diblock copolymer sample prepared from the
35 ◦C aqueous solution spin coated on Si wafer. (d–f) SEM image of PNIPAM128-b-PNVIBA93 diblock
copolymer sample prepared from the 50 ◦C aqueous solution spin coated on Si wafer. (g,h) DLS
analysis of the PNIPAM128-b-PNVIBA93 diblock copolymer (aqueous solution, 0.5 mg/mL) at 35 ◦C
and 50 ◦C, respectively.

Based on the UV-visible, DLS, variable temperature NMR, and SEM analysis results,
we propose the following step-wise sequential LCST behavior of PNIPAM-b-PNVIBA
di-block copolymers as illustrated in Scheme 2. It seems that the interaction between the
PNIPAM and PNVIBA segments leads to a cooperative aggregation, and the polymer
chains begin to collapse and form small aggregates, but further aggregation is stumbled
by the PNVIBA segments. However, larger aggregates composed of clusters of small
aggregates are formed as the temperature approaches the LCST of the PNVIBA chains.
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4. Conclusions

Thermo-responsive diblock copolymer was synthesized via “Switchable” RAFT poly-
merization, a protocol for the controlled radical polymerization of monomers with different
reactivities. Chain extension of the PNVIBA block from the PNIPAM macro-RAFT agent
produced PNIPAM-b-PNVIBA diblock copolymers in a controlled manner. PNIPAM-b-
PNVIBA diblock copolymer shows thermo-responsive behavior distinct from PNIPAM.
A single LCST close to the LCST of PNVIBA was observed with the aqueous solution of
the diblock copolymer, indicating that the interaction between the PNIPAM and PNVIBA
segments of the block copolymer leads to cooperative aggregation during the self-assembly
induced phase separation in the solution. Above the LCST of the PNIPAM block, the
polymer chains began to collapse, forming small aggregates, but further aggregation stum-
bled due to the PNVIBA segments. However, larger aggregates composed of clusters
of small aggregates formed when the solution temperature approached the LCST of the
PNVIBA block. The thermo-responsive properties of PNIPAM-b-PNVIBA diblock copoly-
mers may find various applications in drug delivery, tissue engineering, nanoreactors, and
thermo-responsive sensors.
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