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Abstract: With increasing attention being paid to environmental issues, the application of natural
fibers in fiber-reinforced composites has attracted more and more attention. Composite materials
with basalt fibers (BFs) as reinforcement have excellent properties and are widely used in many
fields. Hydrothermal aging crucially influences the durability of basalt fiber/epoxy resin composites
(BF/ERCs). In this study, BFs were used as reinforcing materials, whose surfaces were modified
with a rare earth modification solution (CeCl3). The density, mechanical performance, and chemical
properties of BF/ERCs subjected to hygrothermal aging were analyzed by the weight method, static
mechanical performance testing, scanning electron microscopy (SEM), and Fourier transform infrared
spectroscopy (FT-IR). The effects of the modification solution with different Ce concentrations on the
water absorption, tensile, bending and interlaminar shear strength (ILSS) of BF/ERCs were investi-
gated. The test results showed that the water absorption of BF/ERCs treated with a modification
solution that contained Ce 0.5 wt % as the minimum value and the retention rate of the mechanical
properties of BF/ERCs reached maximum values after hygrothermal aging.

Keywords: rare earth modification; composites; basalt fibers; hygrothermal aging

1. Introduction

Fiber-reinforced polymer composites (FRPCs) are widely used in electrical engineering,
aerospace, marine, energy applications and other fields, because of their excellent proper-
ties such as high specific strength, high specific modulus, corrosion resistance and fatigue
resistance. In the service process of composites, the surrounding environmental factors
including high/low temperature, moisture, ultraviolet light, oxidation and cyclic loading
will reduce the performance of the material. The degradation of various mechanical prop-
erties of composites limits the application of FRPCs [1–7]. In particular, the thermal/wet
conditions are the important application conditions of FRPCs in infrastructure, the food
industry, vehicles and ships, which may lead to the deterioration of the moisture absorption
and mechanical properties of FRPCs, that is, hygrothermal aging. This is considered to be a
hot spot in aging research regarding composites [8].

In the hygrothermal environment, the matrix and the interface between fibers and
the matrix are the main factors affecting the overall mechanical properties of FRPCs.
The hygrothermal environment will cause the swelling of the resin matrix, reducing the
dimensional stability, strength and stiffness of the composite, thus affecting the performance
of the composite during service and its final service life. The epoxy system may degrade
in the hygrothermal environment. In addition to the typical failure modes such as matrix
cracking, fiber breakage, debonding and delamination, the adsorbed water may also
cause early failure through various processes such as pitting, hydroxylation, hydrolysis,
plasticization and leaching. The strength of the interface between the fiber reinforcement
and the resin matrix in the composite has an important influence on the performance
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of the material after aging. The interfacial bonding performance between the fiber and
the matrix decreases, and the macroscopic mechanical properties will decrease. In the
static and fatigue failure of composites after aging, interface damage is often the main
damage mode. Therefore, it is necessary to improve the performance of a composite
after aging by improving the interfacial bonding performance of the composite, to test
whether the performance of the composite meets the design requirements by simulating
the hygrothermal environment in the laboratory and to further study the hygrothermal
aging mechanism of the composite [8–13].

In recent years, with increasing attention being paid to environmental issues, the
application of natural fibers in FRPCs has attracted more and more attention. BFs are
formed from basalt rocks using conventional equipment through the melting and drawing
process, and the preparation process does not cause environmental pollution. At the end
of service, BFs can be degraded in soil to minimize the pollution to the environment. BFs
have good mechanical properties, outstanding thermal stability, corrosion resistance, ideal
thermal insulation, sound absorption and low water absorption and low cost. They have
replaced or partially replaced other fibers in some fields as reinforcements in composites
and have broad market prospects in the fields of fire protection, environmental protection,
aerospace, the automobile and shipbuilding industry and construction [14–20].

BFs have many advantages in terms of performance, but the surfaces of BFs are chemi-
cally inert and cannot be fully integrated with the resin matrix during the preparation of
composites, resulting in low interfacial adhesion between BFs and the matrix, which limits
the industrial application of BF-reinforced composites. Therefore, it is necessary to carry
out the surface chemical or physical modification of BFs [21–23]. Through modification
treatment, not only the surface roughness of the fiber can be increased to make the fiber
surface more suitable for bonding with the resin matrix, but also, the active groups on
the fiber surface can be increased to improve the chemical activity of the fiber surface,
so as to improve the overall performance of the composite by improving the interfacial
bonding strength.

There are many methods to modify the fiber surface, such as coupling agent mod-
ification, plasma modification, oxidation modification, coating modification, acid–base
etching modification and so on. Fu H. J. et al. [24] modified the surface of BFs by a coupling
agent and analyzed the mechanical properties of the modified composites. The results
showed that compared with the composites before modification, the interfacial bonding
properties of the composites modified by the coupling agent were greatly improved, and
the ILSS measured by a mechanical test was about 24% higher than that before modification.
Liu T. et al. [25] used the coupling agent KH-550 to improve the mechanical properties of
BF-reinforced nylon 66 composites. M. T. Kim et al. [22] found that the surface roughness of
BFs modified by low-temperature oxygen plasma was increased and the interface proper-
ties between the fiber and the resin matrix were improved, which thus improved the ability
of the composite to resist external loads. The fracture toughness of the modified composite
increased by 16% compared with that before modification. Cheng et al. [26–28] investigated
the effect of surface treatment on the interfacial bonding properties between F-12 aramid
fiber, carbon fiber and the matrix. They found that rare earth modification solution treat-
ment can increase the concentration of active functional groups on the fiber surface through
a chemical coordination reaction. Therefore, the interfacial bonding performance between
the fiber and the matrix is improved significantly. The tensile property of the composites
can be improved obviously. At the same time, the tensile strength of a single fiber is almost
not affected after the treatment with rare-earth-modified solution. Treating BFs with the
rare earth modification solution is an attractive method because it has the advantages of
high efficiency, low cost, a simple process, no pollution to the environment and no damage
to fibers. However, there are few studies on the rare earth modification of BFs and the
hydrothermal aging properties of BF/ERCs treated with rare earth modification solution.

In this paper, BFs were used as reinforcing material, whose surfaces were treated with
the rare earth modification solution. Then, by simulating a hot and humid environment in
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the laboratory, the properties of BF/ERCs not treated and treated with the modification
solution were analyzed by the weight method, a static mechanical performance test, SEM
and FT-IR analysis before and after hygrothermal aging. The effects of the modification
solution with different Ce concentrations on the tensile, bending and ILSS properties of
BF/ERCs were investigated. On the above foundation, the hygrothermal aging mechanism
of composites and the modification mechanism of rare earth elements were discussed.

2. Materials and Methods
2.1. Materials

In the experiment, BF cloth was purchased from Shanxi Baseote Technology Co., Ltd.
(Taiyuan, China) with the performance parameters shown in Table 1. The epoxy resin
(LY564) and the aliphatic amine curing agent (22964) were provided by Huntsman Co., Ltd.
(Salt Lake City, UT, USA). The other chemical reagents used in the experiment are shown
in Table 2.

Table 1. Performance parameters of BF cloth.

Diameter
(µm)

Density
(g/cm3)

Line Density
(g/km)

Water Content
(%)

Tensile Strength
(MPa)

Elastic Modulus
(GPa)

Breaking Elongation
(%)

5.9 2.7 223 0.1 1835 7.5 2.75

Table 2. Chemical reagents in the experiment.

Chemical Reagent Molecular Formula Purity Producer

Anhydrous ethanol C2H6O Analytically pure Tianjin Tianda Chemical Reagent Factory,
Tianjin, China

Citric acid C6H8O7 Analytically pure Tianjin Tianli Chemical Reagent Co., Ltd.,
Tianjin, China

Urea CO(NH2)2 Analytically pure Tianjin Zhiyuan Chemical Reagent Co.,
Ltd., Tianjin, China

Cerium chloride CeCl3·6H2O 99.99% Jining Zhongkai New Type Material Co.,
Ltd., Tianjin, China

2.2. Sample Preparation

The components of the BF modification solution, cerium chloride, anhydrous ethanol,
citric acid and urea, were uniformly mixed at a certain ratio. With the four cerium addition
levels of 0.1 wt %, 0.3 wt %, 0.5 wt % and 0.7 wt %, four kinds of cerium modification
solutions were prepared.

The BF cloth was cut into 260 mm × 30 mm segments and then cleaned by ultrasonic
cleaning for 20 min to remove the impurities on the fiber surface. After being dried
in a drying oven, the BF cloths were, respectively, immersed in four kinds of cerium
modification solution at room temperature for 2 h. Then, the treated BF cloths were dried
in a drying oven at 85 ◦C for 1 h, and the modified BF cloths were obtained.

The prepared BF cloths were immersed in epoxy resin/the curing agent at a volume
ratio of 4:1. With the hand lay-up method, the BFs/ERCs were fabricated after being cured
at 120 ◦C for 15 min and being cured at 140 ◦C for 2 h, respectively.

2.3. Experiment and Test

The hygrothermal aging of the samples was carried out in a distilled water bath at
95 ◦C. The initial weight of each sample was measured before hygrothermal aging. During
the aging process, samples were taken out of the water bath every 2 h. The surface moisture
was wiped with absorbent paper and the sample weight was measured, and then, they were
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quickly put back into the water bath again for further hygrothermal aging. The average
weight of five samples was calculated. The water absorption w is defined as follows:

w =
Mt − M0

M0
× 100% (1)

where Mt is the weight of the sample at time t; M0 is the initial weight of the sample.
After hygrothermal aging for 24 h, the change in chemical structure was analyzed

by FT-IR spectroscopy (Perkin Elmer 100) for samples not treated and treated with the
modification solution containing different concentrations of Ce.

Before and after hygrothermal aging, the tensile strength, bending strength and ILSS
of samples not treated and treated with the modification solution containing different
concentrations of Ce were determined by the universal material testing machine WOW-50
and complied strictly with the corresponding standard [29–31]. The test results were the
average values of five samples for every test.

The tensile fracture surface morphology of samples after hygrothermal aging was
observed by a scanning electron microscope (SEM) JSM-6480 (Japan Electron Optics Lab-
oratory Co., Ltd., Tokyo, Japan). Data were collected at the accelerating voltage of 20 kV.
Prior to the characterization of SEM, the samples were sputter-coated with a thin layer of
gold in vacuum to improve the electrical conductivity.

3. Results and Analyses
3.1. Water Absorption Characteristics of BF/ERCs

The water absorption curves of BF/ERCs not treated and treated with the cerium-salt-
modified solution are shown in Figure 1. The water absorption of BF/ERCs increased as
the immersion time increased. The absorption process can be divided into two stages. In
the first stage, the water absorption of BF/ERCs not treated and treated with the cerium-
salt-modified solution increased almost linearly with the immersing time, which was in the
stage of rapid water absorption. In the second stage, the water absorption increased slowly
and tended to be stable.
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Figure 1. Water absorption curves of BF/ERCs. 
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Figure 1. Water absorption curves of BF/ERCs.

Moisture in the exterior can enter the interior of a composite material through three
ways: (1) the capillary action between the interface of the fiber and the resin matrix;
(2) diffusion through the resin matrix; (3) entry through various defects in the composite
material, such as tiny cracks and holes in the interface layer. In the first stage, water
molecules invade the surface of the composite sample and occupy the free volume in the
tiny pores inside the material. With the increase in hygrothermal aging time, the water
absorption of the composites increases. In the second stage, water molecules begin to
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enter the interior of the composite sample. The polymer chain of the epoxy resin matrix
is slowly rearranged due to the penetration of water molecules, resulting in free volume
among polymer molecules and further moisture absorption. However, the relaxation rate
of polymer molecules is significantly smaller than the diffusion rate of water molecules, so
the moisture absorption increases slowly.

It can be seen that the water absorption of BF/ERCs treated with the cerium-salt-
modified solution decreased with the Ce concentration increasing from 0.1 wt % to 0.5 wt %,
and all water absorption levels were lower than those of untreated BF/ERCs. When the
modification solution contained Ce 0.5 wt %, the water absorption of BF/ERCs was lowest,
and the water absorption was 0.633% after hygrothermal aging for 24 h.

When the Ce content exceeded 0.5 wt %, the water absorption of BF/ERCs increased
with the increase in Ce content. The water absorption of BF/ERCs increased to the highest
level, 1.038%, when the Ce concentrations increased to 0.7 wt %.

3.2. FT-IR Spectra of BF/ERCs after Hygrothermal Aging

The chemical structure of BF/ERCs not treated and treated with the cerium-salt-
modified solution after hygrothermal aging was analyzed by FT-IR spectroscopy, as shown
in Figure 2. It can be seen that the infrared spectra of the BF/ERCs not treated and treated
with different concentrations of cerium-salt-modified solution were basically similar after
hygrothermal aging, but the intensity of the absorption peak changed. This indicates
that no new substance was produced in the composite after hygrothermal aging. The
characteristic peaks of -OH at 3430 cm−1 and 1249 cm−1, -CH3 at 2920 cm−1 and C-O
at 1182 cm−1 occurred. The absorption peaks of the epoxy resin benzene ring skeleton
were at about 1608 cm−1 and 1510 cm−1. The characteristic peak at 828 cm−1 is related to
Si-H, which only occurred on the infrared spectrum of BF/ERCs modified with the cerium
salt solution.
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By comparison, it could be found that the intensity of the absorption peak of the active
group of BF/ERCs modified with the cerium salt solution was higher than that of the
untreated BF/ERCs on the infrared spectrum after hygrothermal aging. This indicates
that more active groups were brought to the surface of BFs by rare earth elements, so that
the interfacial bonding strength of the composites increased. According to the number



Polymers 2024, 16, 819 6 of 10

and shape of the characteristic peaks in Figure 2, it can be concluded that when the Ce
concentration in the modified solution reached 0.5 wt %, there were the most active groups
of the composite material.

3.3. Mechanical Properties of BF/ERCs

Tensile, bending and ILSS tests were performed for BF/ERCs before and after hy-
grothermal aging. The experimental data are shown in Figure 3. Compared with untreated
BF/ERCs, the mechanical properties such as the tensile strength, bending strength and
ILSS of BF/ERCs treated with the cerium salt modification solution were all improved.
With the increase in Ce content from 0.1 wt % to 0.5 wt %, the mechanical properties of
BF/ERCs before and after hygrothermal aging increased to the maximum value. When the
Ce content exceeded 0.5 wt %, the mechanical properties of BF/ERCs decreased with the
increase in Ce content.
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Before hygrothermal aging, when the Ce content was 0.5 wt %, the tensile strength,
bending strength and ILSS of BF/ERCs reached the maximum values, which were 460.99 MPa,
1084.13 MPa and 90.34 MPa, respectively. They were 43.4%, 39.5% and 336.2% higher than
those of unmodified BF/ERCs.

After hygrothermal aging at 95 ◦C for 24 h, the mechanical properties of BF/ERCs not
treated and treated with cerium-salt-modified solution all decreased, and a histogram of the
retention rate of mechanical properties is shown in Figure 4. It can be seen that the retention
rate of the mechanical properties of BF/ERCs treated with the cerium salt modification
solution was improved. With the increase in Ce content from 0.1 wt % to 0.5 wt %, the
retention rate of the mechanical properties of BF/ERCs increased to the peak value, and
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the retention rates of tensile strength, bending strength and ILSS were 83.51%, 80.25% and
80.48%, respectively. When the Ce content was more than 0.5 wt %, the retention rate of
mechanical properties of BF/ERCs decreased with the increase in Ce content.
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3.4. Fracture Surfaces Morphology of BF/ERCs after Hygrothermal Aging

Figure 5 shows the tensile fracture morphology of BF/ERCs not treated and treated
with cerium-salt-modified solution after hygrothermal aging. As shown in Figure 5a,
smooth fibers and grooves could be seen on the fracture surfaces of untreated BF/ERCs,
and little resin was adhered on the surface of fibers. Some fibers were broken and pulled
out from the matrix. It was shown that the bad interfacial adhesion of untreated BF/ERCs
led to the great ingress of water. The water absorption rate accelerated. The damage
of BF/ERCs under the external load mostly occurred at the interface between the fiber
and the resin matrix, so the mechanical properties of BF/ERCs after hygrothermal aging
decreased obviously.

Figure 5b,c show that the residual resin matrix on the fracture surface increased with an
increasing Ce concentration. This indicated that the interfacial adhesion between the fiber
and the resin matrix was improved and the water absorption of BF/ERCs was controlled
effectively, which reduced the erosion of water into BF/ERCs. After hygrothermal aging,
the interface between the fiber and the resin matrix could bear a greater external load, the
anti-aging performance of BF/ERCs was improved. The mechanical properties test results
showed that the retention rate of the mechanical properties of BF/ERCs increased.
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with modification solution containing Ce 0.7 wt %.

When the Ce concentration was 0.5 wt %, there was more resin on the surface of
fibers, and no fibers were broken or pulled out from the matrix, as shown in Figure 5d.
The interfacial adhesion between the fiber and the resin matrix was best, and the water
absorption of composites was worst. After hygrothermal aging, the retention rate of the
mechanical properties of BF/ERCs was at its maximum value.

When the Ce concentration was up to 0.7 wt %, the resin gathered into blocks on
the fiber surfaces, as shown in Figure 5e. The nonuniform microstructure at the interface
caused the bad interfacial adhesion between the fiber and the resin matrix and delamination
between fibers. The stress that the interface could transfer was reduced. After hygrothermal
aging, the moisture absorption rate of BF/ERCs increased, and the retention rate of the
mechanical properties decreased.

3.5. Hygrothermal Aging Properties of BF/ERCs

In the hygrothermal environment, water is mainly absorbed by the resin matrix, and
BFs are basically non-hygroscopic, resulting in the difference in volume expansion between
BFs and the resin matrix, which causes cracking and debonding at the interface. In addition,
the entry of water produces osmotic pressure inside the composite, which causes cracks
inside the resin matrix. The generation of defects such as cracks and pores makes the entry
of water molecules easier. If the hygrothermal aging time is too long, the resin matrix can
be hydrolyzed, resulting in the fracture and decrosslinking of the polymer chain. These
aggravate the damage of the interface between fibers and the resin matrix, thus reducing
the mechanical properties of the composite [32]. The faster the water absorption rate, the
greater the decrease in the mechanical properties of BF/ERCs.

For BF/ERCs treated with the cerium salt modification solution, rare earth elements
can make more oxygen-containing active functional groups attach to the surface of BFs.
In addition, rare earth elements are used as an intermediate medium to coordinate and
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bond with the active groups on the surface of BFs and the organic groups in the epoxy
resin and form a stable chemical bond connection, which can strengthen the interfacial
bonding strength between BFs and the resin matrix. The mechanical properties of BF/ERCs
are improved. During the process of hygrothermal aging, good interfacial bonding per-
formance and few defects at the interface can hinder the diffusion of water molecules,
control the water absorption rate effectively and reduce the destruction of the interface.
After hygrothermal aging, the retention rate of the mechanical properties of BF/ERCs is
high. The anti-aging performance of BF/ERCs treated with the appropriate concentration
of cerium salt modification solution can be improved.

4. Conclusions

In this study, the effects of the Ce concentration in a rare earth modification solution
on the water absorption and the mechanical properties of BF/ERCs were discussed after
hygrothermal aging.

The Ce element affected the water absorption of BF/ERCs treated with the rare earth
modification solution. When the modification solution contained a Ce concentration of
0.5 wt %, the water absorption of BF/ERCs was lowest and 24 h water absorption was
0.633%. The tensile strength, bending strength and ILSS of BF/ERCs treated with the
modification solution containing a Ce concentration of 0.5 wt % reached the maximum
value before and after hygrothermal aging. The retention rate of the mechanical properties
of BF/ERCs treated with the rare earth modification solution containing Ce 0.5 wt % were
up to the peak values. The retention rates of the tensile strength, bending strength and ILSS
of composites all exceeded 80% after hygrothermal aging. Therefore, the hydrothermal
aging resistance of BF/ERCs treated with the rare earth modification solution can be
improved. The suitable Ce content is 0.5 wt %.
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