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Abstract: Graphene-based materials have been widely studied in the field of supercapacitors. How-
ever, their electrochemical properties and applications are still restricted by the susceptibility of
graphene-based materials to curling and agglomeration during production. This study introduces a
facile method for synthesizing reduced graphene oxide (rGO) nanosheets and activated carbon based
on olive stones (OS) with polyaniline (PAni) surface decoration for the development of supercapac-
itors. Several advanced techniques were used to examine the structural properties of the samples.
The obtained PAni@OS−rGO (1:1) electrode exhibits a high electrochemical capacity of 582.6 F·g−1

at a current density of 0.1 A·g−1, and an energy density of 26.82 Wh·kg−1; thus, it demonstrates
potential for efficacious energy storage. In addition, this electrode material exhibits remarkable
cycling stability, retaining over 90.07% capacitance loss after 3000 cycles, indicating a promising long
cycle life. Overall, this research highlights the potential of biomass-derived OS in the presence of
PAni and rGO to advance the development of high-performance supercapacitors.

Keywords: bio-waste; activated carbon; reduced graphene oxide; polyaniline; supercapacitor

1. Introduction

Energy plays a crucial and pivotal role in various aspects of life, the economy and
technology in today’s society; however, excessive consumption of fossil fuels requires a
transition to cleaner and more sustainable energy sources such as renewable energy, as well as
improvements in energy efficiency. This transition is crucial for mitigating climate change,
protecting ecosystems and promoting a more sustainable and equitable future [1–5]. However,
stable energy storage technologies are a key enabler for achieving universal access to clean
energy by addressing the intermittent nature of certain renewable sources; moreover, such
technologies help to provide a reliable and continuous energy supply. The development and
deployment of advanced energy storage solutions are critical components of the transition to
a more sustainable and resilient energy system.

Supercapacitors (SCs), also known as electrochemical capacitors, have attracted sig-
nificant interest in recent years due to their unique properties and potential applications
compared to Li-ion batteries [6–8]. The selection and design of electrode materials are
fundamental in advancing the electrochemical properties of energy storage and conversion
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devices, influencing their efficiency, durability and overall effectiveness in various appli-
cations [9–11]. Moreover, the choice of electrode materials affects parameters such as the
energy density, power density, cycle life and overall efficiency [12–15].

According to the electrode materials employed, SCs can be classified into three main
kinds: electric double-layer capacitors (EDLCs), pseudocapacitors (PCs) and asymmetric
supercapacitors (ASCs) [16,17]. EDLCs store energy through ion adsorption–desorption
at the electrode–electrolyte interface, wherein the electrode predominantly comprises
carbon-based materials, encompassing carbon quantum dots, carbon fibers, graphene and
activated carbon [18–21]. The major advantage of EDLCs is their decent cycling stability,
but their poor capacitance leads to lower energy densities (<10 Wh·kg−1) compared to
LIBs (50–1000 Wh·kg−1) [22]. Conductive polymers (PCs) store energy based on rapid and
reversible oxidation–reduction reactions, and electrode materials for PCs mainly include
noble metals (e.g., Pt, Au, etc.), transition metal compounds (e.g., TiO2, TiC, ZrO2, Nb2O5,
RuO2, etc.), alongside CPs such as polyaniline (PAni), polypyrrole (PPy) and polythiophene
(PTh) [7–9,23]. The capacitance of pseudocapacitors is generally better than EDLCs, but
their limited cycling stability poses challenges for long-term operation. ASCs consist of two
types: capacitor/capacitor and battery/capacitor (hybrid capacitor) supercapacitors, whose
greatest advantage is to utilize the potential difference between anodes and cathodes to
extend their voltage window while taking into account their high capacitance, thus further
enhancing their energy density to satisfy practical requirements.

Graphene and its derivatives have shown great promise in enhancing the performance
of SCs, especially those based on CPs. Graphene is a single layer of carbon atoms arranged
in a hexagonal lattice; it possesses exceptional electrical, mechanical and thermal properties.
When incorporated into the structure of CPs, graphene can address several challenges
associated with traditional materials used in SCs [7,20]. Likewise, the combination of CPs
and reduced graphene oxide (rGO) in electrode materials often leads to synergistic effects
that improve the overall performance of SCs [23].

Cheng et al. prepared a PAni/graphene electrode via an in situ anodic electropoly-
merization of PAni film on graphene paper with an admirable electrochemical capacitance
of 233 F·g–1 [24]. The PAni/graphene electrodes with an EDLC of graphene nanosheets
and a PSC of PAni presents a synergistic impact with good specific capacitance (Csp)
(375.2 F·g–1) for flexible film supercapacitors [25]. However, the Csp in graphene/PAni
electrodes provided by the graphene sheets is lower due to its agglomerated layer-like
structure, and is mainly dominated from the PAni films coated on the graphene sheets [26].
Therefore, it is significant to study the electrical and electrochemical characteristics of func-
tionalized graphene to prevent its reaggregation [25,26]. Moreover, a similar comparison
can be seen in Table S1 for hybrid electrodes used for in situ polymerization with PAni
and graphene.

Commercial activated carbon (AC) has been examined as electrode material in SCs;
however, it is created from fossil fuels, which are not environmentally friendly, and are
expensive. An emerging strategy is to develop AC electrode materials using naturally
abundant bio-waste products. These bio-wastes comprise carbon-rich organic matter, so
they can be a perfect feedstock for the preparation of AC. Various bio-wastes, including
soyabean, coconut shell, egg shell, bamboo, dead neem leaves, banana peel and so forth,
have been intensively applied to generate highly porous AC for testing in SCs [27–29].

Significant progress has been achieved in the field of PAni and PAni@rGO materials,
and the specific capacitance and long-term cycling performance of PAni@rGO electrodes
have been greatly enhanced. However, there are still some challenges with PAni@rGO
composite electrodes, such as the high cost of rGO and the design of high-performance
rGO frameworks. In order to solve these problems, we present a strategy to develop
PAni@rGO electrodes for high-performance supercapacitors via the preparation of ternary
composite. Hence, the porous AC was prepared from olive stones (OS) through a pro-
cess known as carbonization [30,31]; it was subsequently used to cover rGO sheets via a
simple method. Then, the OS−rGO was coated with a polymer matrix using chemical
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polymerization of an Ani monomer. The electrochemical performance of the prepared
PAni@OS−rGO electrode-based SCs were tested. Their unique combination of high power
density, fast charge/discharge rates and long cycle life makes these electrodes well-suited
for applications that require rapid and reliable energy storage and release.

2. Materials and Methods
2.1. Materials and Reagents

Olives were purchased from local supermarkets in Mascara, Algeria. The following
materials were acquired: graphite powder (Superior Graphite. Co.; Chicago, IL, USA,
99.9%), aniline (Ani; Aldrich; Madrid, Spain, ≥ 99.5%), ammonium persulfate (APS; Merck;
Riga, Lithuania, ≥98%), polyvinylidene fluoride (PVDF), ammonium hydroxide (NH4OH;
Merck; Riga, Lithuania, 25%), N-methylpyrrolidone (NMP), carbon black (CB, Superior
Graphite. Co.; Chicago, IL, USA), sodium hydroxide (NaOH, Merck; Riga, Lithuania, 37%),
sulfuric acid (H2SO4, Merck; Riga, Lithuania, 90%), hydrogen peroxide (H2O2, Merck;
Riga, Lithuania, 70%), sodium nitrate (NaNO3), potassium hydroxide (KOH), potassium
permanganate (KMnO4), acetone (C3H6O, 90%), ethanol (C2H5OH, 96%), distilled water
and filter paper. A stainless steel lamina (SS; thickness of 0.2 mm) was applied as the
electrode foil.

2.2. Apparatus

The crystalline structure of the samples was measured using an X-ray diffractometer
(XRD) (CCD Apex Bruker, Madison, WI, USA). The elemental composition was investigated
with an X-ray photoelectron spectrometer (XPS) (AVG Microtech Multilab, 3000 electron,
Tokyo, Japan). A Fourier transform infrared spectrometer (FTIR; Thermal Nicolet iS 50,
Karlsruhe, Germany) was used. The UV–visible spectra were determined using a spec-
trophotometer (Hitachi U-3000, Tokyo, Japan). The Brunauer–Emmett–Teller (BET) values
of the materials were measured using a nitrogen adsorption and desorption analyzer (iQin-
strument Autosorb) and a thermogravimetric analyzer (Hitachi-STA 7200, Tokyo, Japan),
respectively. The samples were combusted in a Thermolyne TM (Barnstead, Dubuque, IA,
USA) furnace in an enclosed chamber without oxygen.

2.3. Preparation of Olive Stones (OS)

The OS were extracted from olives and were washed well with water. After washing,
the OS were subjected to carbonization in the absence of air at 500 ◦C for 1h to remove
volatile components and convert the material into carbon [32]. The activated carbon was
crushed and washed to remove impurities. After washing, the material was dried to obtain
the final activated carbon product (Scheme 1).
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2.4. Synthesis of Reduced Graphene Oxide (rGO)

The graphite oxide (GO) was synthesized using the developed Hummers method
using graphite powder (GP) [33]. A mass of 5 g of GP was added to H2SO4 (115 mL) and
NaNO3 (2.5 g) and stirred for 1h; then, KMnO4 (15 g) was slowly added and mixed at 40 ◦C
for 1h in an oil bath. To complete the process, 10 mL of H2O2 was added to the suspension.
Next, the filtered product was washed until a pH of 7.0 was reached. The washed sample
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(GO) was dried at 80 ◦C for 24 h. Then, a total of 3.7 g of GO was mixed with 60mL of KOH
(8 M) and sonicated for 2 h. Then, the samples were washed and dried for 3 h at 80 ◦C.

2.5. Preparation of OS−rGO

A mass of 100 mg of rGO was added to 15 mL of distilled water and dispersed for
30 min using ultrasound to obtain a negatively charged rGO suspension (S1). Separately,
OS (2.0 g) were ultrasonically dispersed for 30 min in 20 mL of NaOH (pH 9.5) (S2). Next,
the S1 and S2 were mixed, and the sonication time was extended for 1h at 50 ◦C to complete
the electrostatic self-assembly process. Finally, the precipitate was collected, washed and
dried at 300 ◦C for 1h to obtain the OS−rGO material (Scheme 2).
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2.6. Synthesis of PAni@OS−rGO

A mass of 1.0 g of OS−rGO was added to the Ani solution in the presence of 25 mL of
HCl (1 M). The functional groups on the surface of the OS−rGO facilitate the interaction
with the Ani monomer, and aid in the dispersion of OS−rGO into the polymer matrix.
Next, the polymerization was initiated by adding an oxidizing agent (APS) to the solution.
This led to the formation of PAni chains. Simultaneously, the OS−rGO sheets became
incorporated into the growing polymer structure. Next, the sediment was filtered and
washed with ethanol and water, and dried for 6 h at 60 ◦C. The resulting PAni@OS−rGO
(1:1) was stored. Likewise, the PAni@OS−rGO (2:1) material was synthesized in the same
way, knowing that this electrode consisted of 2.0 g of Ani and 1.0 g of OS−rGO.

2.7. Electrochemical Performance

The electrochemical properties were studied using a three-electrode system (modi-
fied working electrode (WE), platinum wire counter electrode and reversible hydrogen
electrode) at a fixed potential range of −0.1 V to +1.0 V in KOH (1 M) as the electrolyte
at ambient temperature [7–9]. To prepare the WE, 70 wt% of active product, 15 wt% of
CB and 15 wt% of PVDF were mixed in C3H6O and stirred at 60 ◦C until a homogeneous
suspension was formed with a thickness of 100 µm. Subsequently, this suspension was
drop-casted onto an SS lamina and dried overnight at 60 ◦C.

The specific capacitance (Csp) of the electrode was determined with Formula (1), as follows:

Csp =
I∆t
m

(1)

The energy density (ED) and power density (PD) were determined as follows, using
Formulas (2) and (3), respectively:

ED =
1
2

Csp(∆V)2 (2)
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PD =
E
t

(3)

where Csp (F·g−1) is the specific capacitance, V (V) is the potential window, m (g) is the
active product mass, I (A·g−1) is the discharge density and t (s) is the time of discharge.

3. Results
3.1. Characterization of Samples

Figure 1 depicts the FTIR analyses of the synthesized OS, OS−rGO, PAni, PAni@OS−rGO
(1:1) and PAni@OS−rGO (2:1). The OS spectrum shows a characteristic absorption band at
752 cm−1, which corresponds to the aryl C–O or the aryl C–H groups, and a band at 907
cm−1 corresponding to the C–H deformation of cellulose. The two bands at 1125 cm−1

and 1372 cm−1 are associated with C–O–C vibration and C–H deformation, respectively.
The absorption band at 1573 cm−1 is attributed to the aromatic skeletal vibration in lignin.
The absorption peak appearing at 1983 cm−1 is assigned to the C–H asymmetric stretching
vibration of aliphatic CH3 groups [34,35]. Moreover, the formation of rGO in the OS−rGO
material is clearly observed on the basis of the band at 1623 cm−1, ascribed to the sp2 structure
of the C=C group [35]; moreover, all OS characteristic bands are shifted significantly to higher
wavenumbers due to existence of OS–rGO bonds. This result indicates the formation of rGO
sheets on the OS surface. Furthermore, the PAni shows an absorption peak at 1555 cm−1 that
is related to C=C stretching vibrations of the quinoid units. A band at 1480 cm−1 represents
the C–N stretching vibration adjacent to the quinoid form. The band at 1291 cm−1 is attributed
to C–N stretching vibration of the benzenoid units. The bands near 1082 and 880 cm−1

represent the C–H in-plane and out-of-plane deformational vibrations of PAni, respectively.
Considering the Pani@OS−rGO composites, the bands near at 917, 1155, 1384, 1635 and
1988 cm−1 correspond to the OS−rGO, while those at 825, 1242, 1307, 1491 and 1586 cm−1

correspond to the Pani matrix. It is worth mentioning that the absorption band located at
1307 cm−1 in the composites is due to C–N stretching vibration of the benzenoid units. The
band close to 3239 cm−1 is attributed to N–H symmetric stretching vibration.
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Typical XRD spectra for activated carbon were observed for the studied OS (see
Figure 2). The strong diffraction peak near at 2θ = 24.82◦ was assigned to the (002) reflection
of a turbostratic carbon structure, whereas the peak at 2θ = 43.71◦ was attributed to the (001)
plane [23]. Importantly, the (002) band of the OS−rGO is logically symmetric in profile,
and corresponds to the stacking of the graphite structure basal plane. Thereby, the (002)
plane located at 2θ = 25.55◦ indicates the presence of an ordered and disordered activated
carbon structure in the OS−rGO composite [24,25]. The XRD pattern of the PAni was in
accordance with the reported literature. The PAni shows diffraction peaks at 2θ values of
15.55◦, 20.47◦, and 24.29◦, which correspond to (001), (020) and (200) planes, respectively [9].
Moreover, the XRD pattern of the PAni@OS−rGO composites shows the combined peaks
of the OS−rGO composite and PAni. The peak at the (002) plane matches with the reported
values for OS−rGO composite, while the peaks at the (001), (020) and (200) planes match
with those of PAni.
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The nanoparticle diameter of the prepared material was calculated using the following
Scherrer equation:

D =
k.λ

βcosθ
(4)

where k = 0.9 is the Scherrer constant and β is the value at FWHM (∆2θ is in radian). The
average crystallite sizes measured with the Scherrer formula were found to be 198 nm and
219 nm for the PAni@OS−rGO (1:1) and PAni@OS−rGO (2:1), respectively.

XPS analysis was employed to characterize the elemental change in the synthesized
samples. Figure 3 shows the survey scan for the OS−rGO, PAni@OS−rGO (1:1) and
PAni@OS−rGO (2:1). The survey scan characteristics show the existence of O and C, as
well as the presence of N in the two PAni@OS−rGO samples.
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Figure 4 shows the C1s spectra for the OS−rGO, which deconvolute into three Gaus-
sian peaks with binding energies of 284.49 eV (C–C/C=C), 285.95 eV (C–O) and 287.28 eV
(C=O) [16]. Moreover, the C1s spectra for the PAni@OS−rGO (1:1) composite deconvolute
into four Gaussian peaks at 284.38 eV, 285.26 eV, 286.12 eV and 287.33 eV, corresponding
to the (C–C/C=C), (C–N), (C–O) and (C=O/C–N+) bonds, respectively. At the same time,
the PAni@OS−rGO (2:1) also show C1s peaks at 284.34 eV (C–C/C=C), 285.21 eV (C–N),
286.05 eV (C–O) and 287.26 eV (C=O/C–N+).
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Figure 5 shows the high-resolution N1s spectra for the two PAni@OS−rGO composites,
where they can be divided into three components. In PAni@OS−rGO (1:1) the peaks
illustrated at 399.33 eV, 400.69 eV and 402.23 eV arise due to the existence of (–N=), (–NH–)
and (–N+), respectively. The XPS spectra can be divided into three characteristic peaks,
each at 398.95 eV (–N=), 400.37 eV (–NH–) and 401.39 eV (–N+). These characteristic peaks
prove the existence of a PAni matrix on the OS−rGO surface.
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TGA was applied to analyze the thermal stability of the samples, as shown in Figure 6a.
The two PAni@OS−rGO composites showed high stability compared to pure PAni. The
OS sample is thermally stable carbon that loses very little mass on heating. Moreover, the
initial weight loss from the OS is due to the loss of water, beyond which it remains stable up
to 550 °C. The PAni itself decomposed at a temperature of 120 °C, and a sharp weight loss
was observed at 180–450 ◦C. This could be due to the evaporation of volatile solvents and
adsorbed water molecules on the surface of the prepared samples. There is a continuous
decrease in weight throughout the temperature range, with a sharp decrease at 460 ◦C
indicating the decomposition of the polymer chain. On the other hand, the TG thermogram
for both PAni@OS−rGO samples shows a three-step weight loss. The first degradation
step takes place up to 110 ◦C due to the elimination of H2O molecules and moisture. The
second degradation step takes place in between 210 ◦C and 480 ◦C, which is mainly owing
to the loss of dopant molecules. And third degradation step occurs from 500 to 900 ◦C,
and is attributed to thermal degradation of the polymeric backbone. Furthermore, the
TG curve of OS−rGO shows a much enhanced thermal stability with the least thermal
degradation. Additionally, the TG thermogram of the two PAni@OS−rGO nanocomposites
shows a similar thermal degradation mechanism as the OS, with increased thermal stability.
This confirms the impact of OS−rGO materials on the PAni matrix, and the dependency of
thermal stability on the concentration of OS−rGO composite.
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Figure 6. (a) TGA curves and (b) nitrogen adsorption isotherms of materials.

Figure 6b shows the nitrogen gas adsorption/desorption isotherms plots of the ma-
terials. Type IV hysteresis loop isotherms are exhibited, which proves the presence of
mesoporous materials [35]. The surface area (SBET) of the materials was evaluated using
BET, while the pore size and the pore volume were determined using BJH analyses. It is
worth mentioning that the relationship between pore texture and electrochemical prop-
erties is a critical aspect in the design and performance of energy storage devices such as
supercapacitors. The pore structure of electrode materials directly influences their electro-
chemical behavior, including their capacitance, energy density, power density and cycling
stability. According to the BET study, the OS−rGO composite possesses a higher SBET
of 827.5 m2·g−1 than its corresponding OS (758.2 m2·g−1), which demonstrates excellent
agreement with the results obtained by Jaouadi et al. [24]. This indicates that OS was
integrated into the surfaces of the rGO and supported expansion of the arrangement of
sheets, thereby increasing the SBET of the OS−rGO composite. However, the SBET values for
both the PAni@OS−rGO (1:1) (711.5 m2·g−1) and PAni@OS−rGO (2:1) (635.9 m2·g−1) were
significantly reduced due to the formation of a PAni matrix (41.8 m2·g−1) on the OS−rGO
surface. This can be explained by the formation of PAni into the OS−rGO surface, as the
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pore volumes for both the PAni@OS−rGO (1:1) (0.59 cm3·g−1) and PAni@OS−rGO (2:1)
(0.51 cm3·g−1) are relatively high, whereas the OS−rGO and PAni have pore volumes of
0.62 cm3·g−1 and 0.16 cm3·g−1, respectively. Generally, the SBET of the composites increases
with their porosity [36,37].

3.2. Optical Absorption Study

Figure 7a depicts the absorption spectra of the synthesized samples. The absorbance
peak at 271 nm is due to the π-π∗ transition of C–C aromatic bonds in the OS, which
shifted to 275 nm in the OS−rGO composite. Moreover, the PAni showed its characteristic
absorbance peak at 329 nm, which is related to π-π∗ band transition; the second peak
at 589 nm is caused by polaron electronic transition. When the PAni matrix is added to
the OS−rGO, it produces PAni@OS−rGO materials that have lower absorption spectra.
The polaron OS−rGO incorporation organizes the electronic energy when the OS−rGO
interacts with the quinonoid units into the PAni. Hence, the band of PAni@OS−rGO
samples shifts to the highest energy value when compared to the PAni sample.
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The optical bandgap energy (Eg) for the materials was determined using the following
Tauc plot method (Equation (5)):

(ahν)n = B
(
hν − Eg

)
(5)

where hν is the bandgap energy, a is the absorption coefficient and Eg is the energy of the
photon. As illustrated in Figure 6b, graphs of (ahν)2 vs. hν for samples are plotted.

The estimated Eg values for the OS, OS−rGO, PAni, PAni@OS−rGO (1:1) and
PAni@OS−rGO (2:1) were found to be 3.07, 3.03, 3.37, 3.12 and 3.16 eV, respectively
(Figure 7b). When the PAni matrix was added to the OS−rGO, its Eg increased due
to a decrease in orbital overlap, since shorter bond distances usually correlate with a larger
Eg and better orbital overlap [38].

3.3. Electrochemical Studies

The CV graph for the OS−rGO is close to a rectangle (see Figure 8a), suggesting that
OS−rGO has the features of an EDLC with high reversibility [35]. The CV curve for the
PAni@OS−rGO (2:1) material has a broad anodic peak near 0.49 V. However, on the reverse
scan, two cathodic peak potentials at 0.58 V and 0.33 V correspond to the mutual transition
between the pernigraniline–emeraldine and the emeraldine–leucoemeraldine bases of PAni.
Compared to the OS−rGO and PAni@OS−rGO (2:1), the CV curve for the PAni@OS−rGO
(1:1) has a higher current density peak, indicating that this electrode has a higher specific
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capacitance than the PAni@OS−rGO (2:1), and successfully overcomes the disadvantages
of the OS−rGO’s low specific capacitance. The PAni@OS−rGO (1:1) electrode has two
cathodic peaks at approximately 0.29 and 0.52 V. On the contrary, the cathodic curve
displays three peaks centered at 0.71 V, 0.43 V and 0.07 V, due to the transition between the
oxidized/reduced forms of PAni in this hybrid material. Additionally, the PAni@OS−rGO
(1:1) displayed a maximum CV area, suggesting an excellent capacitive behavior and the
highest charge storage capability [39]. This characteristic was confirmed by comparison
with the constant current charge and discharge (GCD) graphs exhibited in Figure 8b.
Measured from the GCD graphs for electrodes at 0.1 A·g−1, the PAni@OS−rGO (1:1) shows
the highest specific capacitance of 582.6 F·g−1, which is better than the PAni@OS−rGO
(2:1) (453.3 F·g−1) and the OS−rGO (524.8 F·g−1). Furthermore, the GCD curves for these
materials were triangular in form, and no significant voltage drop (IR) was remarked,
further confirming the good charge storage characteristics of these electrodes. In addition,
Figure 8c shows that the shape of the CVs for the PAni@OS−rGO (1:1) electrode is almost
rectangular at various scan rates, which is typical of capacitive behavior due to reduced ion
mobility and high internal resistance. Moreover, the current density progressively increases
with the increasing scan rate, suggesting that it has excellent electrochemical responsiveness.
On the other hand, the CV curves in Figure 8d related to the PAni@OS−rGO (2:1) present an
oxidation peak near 0.49 V, with two reduction peaks at 0.58 V and 0.33 V in the windows
ranging from −0.1 V to +1.0 V at scan speeds between 10 mV·s−1 and 100 mV·s−1. These
suggest that redox pseudo-capacitances were the predominant capacitance form. Even
at 100 mV·s−1, the redox characteristic is preserved with only a slight move, proving
a high capacity.
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In other words, the (1:1) ratio shows that the loading of PAni on the OS−rGO is
moderate, resulting in a well-dispersed distribution of polymer on the OS−rGO surface.
Furthermore, the conductive nature of rGO may dominate the electrical conductivity of the
composite due to the moderate loading of PAni. This impacts the overall electrochemical
conductivity of the material. In addition, the combination of PAni and OS−rGO in a
balanced ratio leads to synergistic effects, where the strengths of both materials contribute
to enhanced electrochemical performance, resulting in improved capacitance and charge
storage capabilities. Otherwise, the (2:1) ratio means that there is a higher loading of PAni
on the OS−rGO. This increased loading may affect the distribution of the polymer on the
OS−rGO surface. While a higher PAni loading may offer additional redox-active sites,
there is a risk of diminishing its synergistic effects with the OS−rGO. Achieving a balanced
ratio is crucial for maximizing the benefits of both components.

A comparison of the GCD for the PAni@OS−rGO (1:1) and PAni@OS−rGO (2:1) elec-
trodes at different current densities is shown in Figure 9a,b, respectively. The GCD of
these electrodes depict a quasi-triangular shape of the galvanostatic GCD, which are not
completely straight lines, implying that a Faradaic reaction often occurred, and confirm-
ing the pseudo-capacitive behavior in the electrodes over the range of current densities.
Furthermore, Figure 9c also represents the relationship between energy density and power
density, which is a non-linear relationship that becomes stable at higher current densi-
ties. The energy density and power density of the PAni@OS−rGO (1:1) were found to
be 26.82 Wh·Kg−1 and 882 W·kg−1, respectively, which is better than the values for the
PAni@OS−rGO (2:1) (20.55 Wh·Kg−1 and 522 W·kg−1, respectively). The higher energy
density can be attributed to the interconnected network of the PAni@OS−rGO, particularly
for the PAni@OS−rGO (1:1) electrode (26.82 Wh·Kg−1), due to the conducting highway
illustrated in the Faradaic characteristic and charge transport. Also, the specific capacitance
retention was found to be 90.07% and 71.02% for 3000 consecutive cycles at 0.5 A·g−1 for
the PAni@OS−rGO (1:1) and PAni@OS−rGO (2:1) electrodes, respectively (Figure 9d). The
electrodes in this research are comparable to those in other previous reports [7,13,40–49]; these
results suggest the superiority of PAni@OS−rGO materials over those of other rGO-based
electrodes (see Table 1).

Table 1. Electrochemical performances of various electrode materials.

Electrode Materials Specific
Capacitance (F·g–1)

Energy Density
(Wh·kg–1)

Power Density
(W·kg–1) Reference

PEDOT@WO3–GO 478.3 54.2 971 [7]
Graphene/Fe2O3 378.7 64.09 800.01 [13]
CWCC-rGO@PVA 288 36 3600 [40]

rGO/PANI/urchin-like mesoporous TiO2 464 34 3720 [41]
rGO/Poly(1,5 dihydroxynaphthalene)/TiO2 556 // // [42]

Ti3C2TX@PANI-rGO 617.84 33 503.42 [43]
PANI–rGO–MWNTs 498 // // [44]

rGO-CNT-PANI 741 92.4 6300 [45]
α-MnO2/PANI/rGO 661 11 1250 [46]
N-doped rGO/PANI 510 24.7 329.5 [47]

rGO/MoS2/PANI 160 22.3 5080 [48]
rGO/UCNTs/PANI 53 7.4 189 [49]
Fe3Mo3C/Mo2C-800 202.3 39.9 1800 [50]

SrCo0.9Fe0.1O3-δ 1035.9 26.2 800 [51]
PPy700@SFO@CC 421 16.9 984 [52]

Cu2MoS4 152.6 16.8 800 [53]
PAni@OS–rGO (1:1) 582.6 26.82 882 This study
PAni@OS–rGO (2:1) 453.3 20.55 522 This study



Polymers 2024, 16, 421 12 of 16

Polymers 2024, 16, x FOR PEER REVIEW 12 of 17 
 

 

storage capabilities. Otherwise, the (2:1) ratio means that there is a higher loading of PAni 
on the OS−rGO. This increased loading may affect the distribution of the polymer on the 
OS−rGO surface. While a higher PAni loading may offer additional redox-active sites, 
there is a risk of diminishing its synergistic effects with the OS−rGO. Achieving a balanced 
ratio is crucial for maximizing the benefits of both components. 

A comparison of the GCD for the PAni@OS−rGO (1:1) and PAni@OS−rGO (2:1) elec-
trodes at different current densities is shown in Figure 9a,b, respectively. The GCD of 
these electrodes depict a quasi-triangular shape of the galvanostatic GCD, which are not 
completely straight lines, implying that a Faradaic reaction often occurred, and confirm-
ing the pseudo-capacitive behavior in the electrodes over the range of current densities. 
Furthermore, Figure 9c also represents the relationship between energy density and 
power density, which is a non-linear relationship that becomes stable at higher current 
densities. The energy density and power density of the PAni@OS−rGO (1:1) were found 
to be 26.82 Wh·Kg−1 and 882 W·kg−1, respectively, which is better than the values for the 
PAni@OS−rGO (2:1) (20.55 Wh·Kg−1 and 522 W·kg−1, respectively). The higher energy den-
sity can be attributed to the interconnected network of the PAni@OS−rGO, particularly for 
the PAni@OS−rGO (1:1) electrode (26.82 Wh·Kg−1), due to the conducting highway illus-
trated in the Faradaic characteristic and charge transport. Also, the specific capacitance 
retention was found to be 90.07% and 71.02% for 3000 consecutive cycles at 0.5 A·g−1 for 
the PAni@OS−rGO (1:1) and PAni@OS−rGO (2:1) electrodes, respectively (Figure 9d). The 
electrodes in this research are comparable to those in other previous reports [7,13,40–49]; 
these results suggest the superiority of PAni@OS−rGO materials over those of other rGO-
based electrodes (see Table 1). 

 
 

(a) (b) 

Polymers 2024, 16, x FOR PEER REVIEW 13 of 17 
 

 

  
(c) (d) 

Figure 9. (a) GCD of PAni@OS−rGO (1:1); (b) GCD of PAni@OS−rGO (2:1) at scan rate of 10 mV·s−1 
and different current densities; (c) Ragone plots for electrodes at various current densities; and (d) 
rate performance test for 3000 consecutive cycles at 0.5 A·g−1. 

Table 1. Electrochemical performances of various electrode materials. 

Electrode Materials Specific Capacitance 
(F·g–1) 

Energy Density 
(Wh·kg–1) 

Power Density 
(W·kg–1) 

Reference 

PEDOT@WO3–GO 478.3 54.2 971 [7] 
Graphene/Fe2O3 378.7 64.09 800.01 [13] 

CWCC-rGO@PVA 288 36 3600 [40] 
rGO/PANI/urchin-like mesoporous TiO2 464 34 3720 [41] 

rGO/Poly(1,5 dihydroxynaphthalene)/TiO2 556 // // [42] 
Ti3C2TX@PANI-rGO 617.84 33 503.42 [43] 
PANI–rGO–MWNTs 498 // // [44] 

rGO-CNT-PANI 741 92.4 6300 [45] 
α-MnO2/PANI/rGO 661 11 1250 [46] 

N-doped rGO/PANI 510 24.7 329.5 [47] 
rGO/MoS2/PANI 160 22.3 5080 [48] 

rGO/UCNTs/PANI 53 7.4 189 [49] 
Fe3Mo3C/Mo2C-800 202.3 39.9 1800 [50] 

SrCo0.9Fe0.1O3-δ 1035.9 26.2 800 [51] 
PPy700@SFO@CC 421 16.9 984 [52] 

Cu2MoS4 152.6 16.8 800 [53] 
PAni@OS–rGO (1:1) 582.6 26.82 882 This study 
PAni@OS–rGO (2:1) 453.3 20.55 522 This study 

The specific capacitance values of the two electrodes gradually increase from 0.1 A·g−1 
to 7.0 A·g−1 (Figure 10a), exhibiting good rate performance, which is assigned to their 
unique interbonded structures and rationalistic hierarchal porous structures. At 0.1 A·g−1, 
the yielded specific capacitances are 582.6 F·g−1 and 453.3 F·g−1, and the corresponding ca-
pacitance retentions are 53.64% and 64.37%, obtained at 7.0 A·g−1 for PAni@OS−rGO (1:1) 
and PAni@OS−rGO (2:1), respectively. 

Figure 9. (a) GCD of PAni@OS−rGO (1:1); (b) GCD of PAni@OS−rGO (2:1) at scan rate of 10 mV·s−1

and different current densities; (c) Ragone plots for electrodes at various current densities; and
(d) rate performance test for 3000 consecutive cycles at 0.5 A·g−1.

The specific capacitance values of the two electrodes gradually increase from 0.1 A·g−1

to 7.0 A·g−1 (Figure 10a), exhibiting good rate performance, which is assigned to their
unique interbonded structures and rationalistic hierarchal porous structures. At 0.1 A·g−1,
the yielded specific capacitances are 582.6 F·g−1 and 453.3 F·g−1, and the corresponding
capacitance retentions are 53.64% and 64.37%, obtained at 7.0 A·g−1 for PAni@OS−rGO
(1:1) and PAni@OS−rGO (2:1), respectively.

In addition, electrochemical impedance spectroscopy (EIS) analysis permits us to
comprehend charge transfer and its kinetics. Therefore, it is necessary to subject the
synthesized electrodes to EIS study. A typical EIS is characterized by a low-frequency
region and a high-frequency region. A high-frequency region describes a semicircle and
indicates the charge transfer resistance (Rct). In principle, it indicates the resistance to
the charge to attain the OS−rGO through the PAni matrix. As the current passes, the
PAni matrix suffers from the resistance of the solution and Rct. Generally, both Rs and Rct
must be as low as possible, since ion mobility determines the electrochemical performance.
As exhibited in Figure 10b, the PAni@OS−rGO (1:1) presents a low Rs and Rct of 4.92 Ω
and 1.9 Ω, respectively, in comparison with values for the PAni@OS−rGO (2:1) (5.77 Ω
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and 3.2 Ω, respectively). These lower values can be attributed to the interconnected PAni
matrix-decorated OS−rGO sheets. Moreover, the Rct of the PAni@OS−rGO (1:1) electrode
was reduced compared with the PAni@OS−rGO (2:1), indicating that the participation
of PAni with OS−rGO at a 1:1 ratio can accelerate electron exchange on the material
surface. Furthermore, the values of equivalent series resistance (ESR) recorded from the
semicircle at the high-frequency region are 24.8 Ω and 20.7 Ω for the PAni@OS−rGO (1:1)
and PAni@OS−rGO (2:1) electrodes, respectively.
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4. Conclusions

In summary, novel PAni@OS−rGO electrodes were designed and assembled via
OS−rGO preparation and subsequent in situ polymerization of aniline (PAni to OS−rGO
ratios of (1:1) and (2:1)). XRD, FTIR, UV–vis and XPS analyses showed that the PAni matrix
is distributed around the OS−rGO sheets. TGA and BET analyses showed that the synthe-
sized electrodes have a higher SBET and stability. The obtained electrodes exhibit excellent
electrochemical performance in energy storage. Based on the structure and performance
study, the integration of OS−rGO can not only increase the electrode conductivity, but
it also ameliorates PAni cycling stability. The specific capacitance of the PAni@OS−rGO
(1:1) reached 582.6 F·g−1 at 0.1 A·g−1, while the specific capacitance was still 312.5 F·g−1

at 7.0 A·g−1 with an excellent retention of 53.64%. Excellent cycling stability with a ca-
pacity retention of 90.07% after 3000 cycles further proves that the material is a promising
electrode for SCs. The low cost, mass production potential and the easy fabrication of the
PAni@OS-rGO material are instrumental to the expected synthesis of a prototype of this
supercapacitor for battery and other energy storage device applications.
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