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Abstract: The flame-retardancy of polymeric materials has garnered great interest. Most of the
flame retardants used in copolymers are functionalized additives, which can deteriorate the intrinsic
properties of these materials. As a new type of flame retardant, functionalized metal–organic
frameworks (MOFs) can be used in surface coatings of polymers. To reduce the flammability, a
mixture of phytic acid, multi-wall carbon nanotubes, zirconium-based MOFs, and UiO-66 was coated
on a PC/ABS substrate. The structure of the UiO-66-based flame retardant was established by FT-IR,
XRD, XPS, and SEM. The flammable properties of coated PC/ABS materials were assessed by LOI,
a vertical combustion test, TGA, CCT, and Raman spectroscopy. The presence of a UiO-66-based
coating on the PC/ABS surface resulted in a good flame-retardant performance. Heat release and
smoke generation were significantly reduced. Importantly, the structure and mechanical properties of
PC/ABS were less impacted by the presence of the flame-retardant coating. Hence, this work presents
a new strategy for the development of high-performance PC/ABC materials with both excellent
flame-retardancy and good mechanical properties.

Keywords: MOFs; flame retardant polymer; PC/ABS; coating

1. Introduction

The fire risk posed by polymeric materials has received considerable attention. The
hydrocarbon skeleton and organic composition of these materials make them highly
flammable. Heat and toxic gases generated during combustion are a great threat to human
beings and the environment [1,2]. Many studies have been conducted to prevent the com-
bustion of polymer materials and thereby reduce the harmful effects of combustion [3–7].
The simplest method is to blend specific flame retardants with the polymer matrix. An
intumescent flame-retardant system is commonly used, which obstructs the transfer of heat
and oxygen by forming an expansive carbon layer on the polymer surface during thermal
degradation of the polymer matrix [8–10]. Another flame-retardant system that is used is
based on catalytic principles, wherein specific catalysts promote a reduction in volatile frag-
ments and toxic gases during the degradation of the polymer matrix. Although the use of
these flame-retardant systems and others have been effective in reducing the flammability
of polymer, there is a huge demand for flame retardants having a high efficiency.

A flame-retardant coating on the surface of a substrate represents an important method
for controlling flammability. Compared with the method of adding flame retardants, the
intrinsic properties of the polymer are not compromised in the surface coating method.
This method also has the advantage of easy processing and can be used for a variety of
materials [11]. In recent years, metal organic frameworks (MOFs), which are organic–
inorganic hybrid materials comprising metal ions and organic ligands, have been found to
have flame-retardant properties. At high temperatures, MOFs decompose to form catalytic
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species that promote oxidation and coking [12–14]. In particular, a zirconium organic
framework, UiO-66, has been found to be a promising material for use in retardant systems.
It has a high specific surface area (1000 m2/g) [15] and excellent thermal, water, and
acid stability, which is conducive to the post-synthesis modification of UiO-66. However,
applying MOFs alone cannot provide sufficient flame-retardancy.

A mixture of materials containing UiO-66 can provide excellent flame-retardancy to the
system [16]. As a green biomass material, phytic acid (PA) has a high phosphorus content.
It can readily chelate with MOFs to provide a composition with better flame-retardancy.
In addition, multi-walled carbon nanotubes (MWCNT) have a high carbon content and
excellent thermal properties [17–19]. These materials are commonly used as components
of high-efficiency green flame retardants. Polycarbonate/acrylonitrile-butadiene-styrene
copolymer (PC/ABS) materials are widely used in many products, due to their excellent
impact strength. However, the presence of a flame-retardant additive greatly influences
the mechanical properties of the blend. In an effort to obtain an excellent flame-retardant
PC/ABS material, an aqueous flame-retardant system for coating of a PC/ABS surface
was prepared using UiO-66, PA, and MWCNT. The as-prepared UiO-66@PA@MWCNT
was carefully characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray
diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron
microscopy (SEM). The effectiveness of the UiO-66 flame-retardant coating for PC/ABS was
evaluated by the limiting oxygen index (LOI), vertical combustion test, thermogravimetric
analysis (TGA), cone calorimeter test (CCT), and Raman spectroscopy.

2. Experiments
2.1. Materials

Polycarbonate (PC, injection grade, QiMei Company, Taiwan), acrylonitrile-butadiene-
styrene copolymer (ABS, injection grade, QiMei Company, Taiwan), zirconium chloride
(ZrCl4, 98%, Shanghai Aladdin Biochemical Company, Shanghai, China), terephthalic
acid (99% TPA, Shandong Yusuo Chemical Technology Co., Ltd., Shandong, China), car-
boxylated multi-walled carbon nanotubes (95% MWCNT-COOH, Suzhou Tianke Trading
Co., Ltd., Suzhou, China), N,N-dimethylformamide (99.5% DMF, Shanghai Aladdin Bio-
chemical Company, Shanghai, China), ethanol (99% EtOH, Shanghai Aladdin Biochemical
Company, Shanghai, China), and SiO2 (99.5%, Jiangsu Tianxing New Materials Co., Ltd.,
Changshu, China) were used for the experiments.

2.2. Synthesis of UiO-66

ZrCl4 (1.98 g) and TPA (1.76 g) were weighed and dissolved in 150 mL of DMF.
After ultrasonication for 20 min, 4 mL acetic acid was added and the solution was stirred
continuously for 10 min. Thereafter, the reaction mixture was transferred to a blue bottle
and placed in a constant-temperature vacuum-drying oven at 120 ◦C. After 36 h, the bottle
was taken out and cooled to room temperature naturally. After centrifugation at 6000 r/min
for 15 min, the white precipitate was filtered and washed three times with DMF and ethanol.
Finally, the white product was dried in a vacuum oven at 85 ◦C for 36 h, and UiO-66 was
collected for further use.

2.3. Synthesis of MWCNT@UiO-66

ZrCl4 (1.98 g) and MWCNT-COOH (0.20 g) were weighed and dissolved in a blue
bottle containing 150 mL of anhydrous DMF. After dispersion by ultrasonication for 20 min,
TPA (1.76 g) and 4 mL of acetic acid was added and ultrasonicated for another 20 min.
After 36 h of reaction, the blue bottle was taken out and cooled to room temperature
naturally. After centrifugation at high speed of 6000 r/min for 15 min, the black precipitate
obtained was filtered out and further centrifuged three times each with DMF and ethanol.
The product was placed in a constant-temperature vacuum-drying oven at 85 ◦C for 36 h.
Finally, the MWCNT@UiO-66 was collected and stored.
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2.4. Synthesis of PA@MWCNT@UiO-66

MWCNT@UiO-66 (1.0 g) was weighed and dispersed in a blue bottle containing
150 mL DMF. Then, PA (10.68 mL) was added to the above MWCNT@UiO-66 suspension,
followed by ultrasonic dispersion for 20 min. Thereafter, the mixture was continuously
stirred for 24 h at room temperature using a magnetic agitator. The black precipitate
obtained was filtered and centrifugally washed with DMF and ethanol 3 times. The final
PA@MWCNT@UiO-66 product was then dried in a vacuum-drying oven at 85 ◦C for 24 h.
The synthetic route is presented in Figure 1.
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Figure 1. Route for the synthesis of PA@MWCNT@UiO-66.

2.5. Preparation of Aqueous Flame-Retardant Coatings

For comparison, different MOFs-based flame retardants were evenly dispersed in
water-based acrylic emulsion by adding an appropriate amount of water and a small
amount of SiO2 according to Table 1. SiO2 was added as a filler to improve the hardness of
coatings and reduce the viscosity. The aqueous emulsions were prepared in a centrifugal
tube, by stirring evenly at room temperature using a vortex oscillator, and then dispersed
by ultrasonication for 20 min.

Table 1. Composition of aqueous flame retardants.

Sample
Solid

Content
(wt%)

Water-Based
Acrylic

Adhesive (g)
UiO-66 (g) MWCNT

@UiO-66 (g)

PA@MWCNT
@UiO-66

(g)
SiO2 (g) H2O (g)

WA 41.9 2 0 0 0 0 0.34
WAU 41.9 2 1 0 0 0.2 2

WAUM 41.9 2 0 1 0 0.2 2
WAUPM 41.9 2 0 0 1 0.2 2

2.6. Preparation of Flame Resistant PC/ABS

The dried PC/ABS particles were transferred to a polytetrafluoroethylene (PTFE)
mold in a plate vulcanization machine, with the temperature set at 240 ◦C. After heating
for 6 min, hot pressing at 18 MPa for 4 min, and cold pressing at room temperature for
2 min, the PC/ABS films were cut into three types of specimens having dimensions of
125 mm × 13 mm × 3 mm, 150 mm × 4 mm × 10 mm, and 100 mm × 100 mm × 3 mm.
Some control specimens were reserved for the vertical combustion test, oxygen index test,
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and cone calorimetry test, whereas the other specimens were sprayed with the aqueous
flame retardants, and were placed in a 60 ◦C electric blast-drying oven for 4 h. The steps
for spraying and drying were repeated until the coating thickness reached the standard
specification (±10%), as shown in Table 2. The thickness of the coating was determined by
measuring the spline thickness before and after coating, using a Vernier caliper.

Table 2. Thickness of flame-retardant coating on PC/ABS.

Sample * WAU WAUM WAUPM Coating Thickness (µm)

Untreated × × × 0
WAU-3

√
× × 750

WAUM-3 ×
√

× 750
WAUPM-1 × ×

√
250

WAUPM-2 × ×
√

500
WAUPM-3 × ×

√
750

* × represents not using this sample for coating and
√

represents using this sample for coating.

2.7. Characterizations

Fourier transform infrared spectra (FT-IR) were acquired on a Nicolet 6700 infrared
spectrometer in reflectance mode. The spectral range was 4000–500 cm−1 at a resolution of
4 cm−1. The powdered samples were generally measured by the KBr pellet method.

An AXIS Ultra XPS instrument (Shimadzu Company of Japan, Kyoto, Japan) was
used for testing the chemical states of elements. Its cathode was made of a lanthanum–
aluminum–molybdenum alloy, and the analysis was conducted with a power input of
400 W. The background was a non-rotating background compensation type, and the peak
function was the Lorentz–Gaussian function. The powder to be tested was adhered to
the tin foil with viscose, folded and pressed, then unfolded and cut into specimen of
5 mm × 4 mm. Chemical states, such as C1s, Zr3d, P2p, and O1s, were determined by
scanning the surface of the sample.

The morphologies and elemental distributions of the samples were studied by scan-
ning electron microscopy (NGB4-DXS-10AC, Nanjing Grand Technology Co., Ltd., Nanjing,
China). The section of the block sample to be observed was made brittle in liquid nitrogen,
and the powder sample and block sample were spray coated with gold for 75 s, after which
they were attached to the sample table with conductive adhesive for observation.

TGA and DTG analyses of the samples were conducted using a TGA 55 instrument in
a nitrogen atmosphere at a 50 mL/min flow rate. Except when specified, the heating rate
was 10 ◦C/min, and the temperature range was from room temperature to 800 ◦C.

An X-ray diffractometer (SmartLab, Boston, MA, USA) was used to characterize
the material phases in order to analyze their internal structure and morphology. The
wavelength was 1.5406 A and the scanning speed was 10◦/min in the scanning range
of 5–70◦.

Vertical combustion tests were performed on uncoated and coated samples according
to the GB/T2408-2008 combustion test standard [20]. Each sample was tested thrice
and the average value of three readings was used to determine its corresponding flame-
retardant level.

The limiting oxygen index (LOI) was expressed according to the percentage of oxygen
in the volume. A JF-3 oxygen index instrument was used for the LOI test. The specimen
dimensions were 150 mm × 4 mm × 10 mm, according to the standard GB/T2406.2-2009
test [21].

The British FTT cone calorimeter was used for the cone calorimetry test (CCT), ac-
cording to the ISO5660-1 and ASTM D7309 test standard [22]. The irradiation power was
50 kW/m2, sample dimensions were 100 mm × 100 mm × 3 mm, and three parallel tests
were carried out for each sample.

The structure, morphology, and graphitization degree of the carbon layer were char-
acterized by FT-IR, SEM, and Raman spectroscopy. The Raman spectra of the residual
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carbon residue after combustion by CCT were acquired using an excitation wavelength
of 514.5 nm. Based on the above results, the mode of action of flame-retardant materials
was clarified.

3. Results and Discussion
3.1. Structural Analysis of Flame-Retardant UiO-66@PA@MWCNT

First, the zirconium organic framework, UiO-66, was synthesized using ZrCl4 and
TPA. The obtained UiO-66 was then functionalized with MWCNT and PA to obtain MOFs,
labeled as UiO-66@PA@MWCNT. The structure was carefully characterized by FT-IR,
XRD, XPS, and TG-DTG during the process. FT-IR spectroscopy was used to determine
the molecular structure of UiO-66@PA@MWCNT. In Figure 2a, strong absorption peaks
appeared at 1560 cm−1 and 1395 cm−1 in the FT-IR spectrum of UiO-66. They corresponded
to the O-C-O asymmetrical and symmetrical stretching vibrations of TPA, which served
as ligands for MOFs. The absorption peaks at 1507 cm−1 corresponded to the C=C of the
benzene ring, while the peak at 669 cm−1 was consistent with the asymmetric stretching
vibrations of Zr-(OC). In MWCNT-COOH, the peak for C=O stretching vibrations appeared
at 1720 cm−1. The small peak at 1655 cm−1 was due to the O-H bending vibrations.
This confirmed that the carboxyl group was successfully grafted onto MWCNT-COOH,
suggesting a good compatibility with PA and UiO-66. The FT-IR spectrum of PA also
showed some typical peaks of phosphate groups, including P=O (1130 cm−1), p-O-C
(1060 cm−1), and P-O (1012 cm−1). The high phosphorus content can provide a synergistic
flame-retardant effect in UiO-66@PA@MWCNT. After MWCNT-COOH, PA, and UiO-66
were reacted, several absorption peaks of PA shifted to higher wave numbers in UiO-
66@PA@MWCNT. These results indicated that there was a complex formed between the
P-O bond and metal zirconium from UiO-66, verifying the successful synthesis of UiO-
66@PA@MWCNT. The XRD patterns in Figure 2b show that the diffraction peaks of UiO-66
were basically consistent with that of the standard profile. After modification with PA and
MWCNT, the peak pattern of UiO-66 remained almost unchanged. This indicated that
the crystal structure of UiO-66 remained intact during the preparation of functionalized
UiO-66.
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XPS was used to detect the elements and bonding nature in UiO-66@PA@MWCNT.
Firstly, the overall spectrum in Figure 3a showed that the obtained powders were rich in C,
O, Zr, and P. Secondly, the energy spectrum of C1s is presented in Figure 3b. After deconvo-
lution of the peaks, it was found that the peaks at 284.1 eV and 284.6 eV corresponded to the
neutral bond and sp2-hexagonal network structure of UiO-66@PA@MWCNT, respectively.
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The peak at 286.4 eV was due to the carbon atom of the C-O bond from UiO-66 and the
C-P bond from PA. The peak for C=O at 288.5 eV was consistent with the carboxyl group
of the ligand. Thirdly, the energy spectrum of O1s in Figure 3c can be deconvoluted into
four peaks. Among them, the peak at 530.1 eV corresponded to the P-O bond of PO4

3− and
HPO4

2− of PA, while the peak at 531.2 eV was consistent with the Zr-O bond. The peaks at
532.1 eV and 533.3 eV corresponded to C-O-C and P-O-C and C-OH and P-OH, respectively.
Fourthly, Figure 3d also shows that the Zr3d spectrum consisted of two peaks, which were
further deconvoluted into four peaks. The peaks at 185.1 eV and 185.9 eV corresponded
to Zr3d3/2, while the peaks at 182.7 eV and 183.5 eV corresponded to Zr3d5/2. Finally,
the P2p spectrum in Figure 3e was composed of three peaks at 133.1 eV (P=O), 133.9 eV
(P-OH), and 134.8 eV (P-O-ZR and HPO4

2−). Additionally, TGA and DTG curves (see
Supporting Information Figure S1) showed that the carbon residue percentage at 800 ◦C of
UiO-66@PA@MWCNT was 61.3 wt%, which was much higher than that of pure UiO-66. It
implied that PA and MWCNT promoted carbon formation in UiO-66@PA@MWCNT. The
SEM image of UiO-66 showed a dispersed and smooth octahedral nanocrystal structure (see
Supporting Information Figure S2). The reason is that the carboxyl groups on the surface of
MWCNT provided sites for the growth of UiO-66, which reduced the stacking of carbon
tubes during the in situ growth of UiO-66 along the carbon tubes. The steric hindrance of
the carbon tube limited the crystal size of UiO-66, and the grain refinement guaranteed the
uniformity of film coating on the substrate by water-based flame-retardant coatings. Hence,
these results confirmed the synthesis of functionalized MOFs UiO-66@PA@MWCNT.
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3.2. Structure Analysis of Flame Resistant PC/ABS Coating

To improve surface adhesivity, UiO-66@PA@MWCNT was dispersed in a water-based
acrylic emulsion. The MOFs-based acrylic emulsion was characterized carefully before
use. For characterization, films of the MOFs-based acrylic resin were prepared by drying
the emulsion in the oven at 85 ◦C. Figure 4 presents the FT-IR spectra, XRD patterns, and
TG-DTG curves of the films. In the FT-IR spectra, the peaks at 1170 cm−1, 1450 cm−1,
1730 cm−1, and 2926 cm−1 for the WAUPM sample were attributed to C-O-C stretching
vibrations, -OH bending vibrations, C=O stretching vibrations, and methylene stretching vi-
brations of the acrylic resin, respectively. Additionally, the vibrations for P=O (1160 cm−1),
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P-O-C (1126 cm−1), P-O (1065 cm−1), Si-O-Si (1092 cm−1), and O-C-O symmetric vibra-
tions (1405 cm−1) and asymmetric vibrations (1560 cm−1) of the terylene ligand were also
observed for the WAUPM sample. Comparison with the FT-IR spectra of raw materials,
viz. WA, PA@MWCNT@UiO-66, and SiO2, showed no deviation of peaks for the WAUPM
sample. This implied that the flame retardant did not react with the acrylic resin, which
was added as an adhesive.
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Furthermore, the XRD spectra showed diffraction peaks consistent with those of
UiO-66 for the samples WAM, WAUM, and WAUPM [23]. This indicated that the crystal
structure of UiO-66 did not change after functionalization. The TGA curve of WA indicated
a good thermal stability, since the weight remained constant until around 443.1 ◦C. After
the addition of UiO-66 or MWCNT@UiO-66, the initial degradation temperature decreased,
and a secondary weight loss stage occurred at 550 ◦C, due to the collapse of the framework
structure. WAU and WAUM showed more than 30.9 wt% carbon residue below 800 ◦C.
After further modification with PA, the thermal stability decreased in the initial stage,
but the residual carbon rate increased to 38.8 wt% below 800 ◦C for WAUPM. This result
indicated that PA further promoted the char formation process during pyrolysis and also
provided a rich carbon source to flame retardants.

Different from the additive flame retardants, the PC/ABS flame retardants with dif-
ferent coating thicknesses were prepared by spraying the MOFs-based acrylic emulsions
on the surface of PC/ABS. The steps of spraying and drying were repeated until the coat-
ing thickness reached the required standard (±10%). The micro-structures of the coated
PC/ABS substrates were studied by SEM. As shown in Figure 5, the untreated PC/ABS
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showed a slightly but uniformly fluctuating surface, while the PC/ABS coated with a
MOFs-based flame retardant showed many granular structures on the substrate, presumed
to be UiO-66 crystals. It was also found that the substrate became smoother when the
thickness of the flame-retardant coating was increased. As seen from Figure 5c,d, the
PC/ABS substrates were coated completely above a 750 µm thickness. There were less
prominent granular structures on the WAUM-3 surface. WAUPM-3 showed a choppy
surface morphology, but with fewer bright MOFs and smoother surfaces. In the magnified
SEM images, smaller SiO2 nano-particles and larger MOFs were observed, as shown in
Figure 5e. Compared with WAUM-3, WAUPM-3 showed an improved surface smoothness.
It implied that PA improved the compatibility of MWCNT@UiO-66 with acrylic resin. It
also improved the wrapping and maximized the interfacial bonding between the adhesive
layer and the PC/ABS substrate. Thus, PA@MWCNT@UiO-66 can be expected to provide
a good flame-retardancy to PC/ABS.
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3.3. Performances of Flame Retardant

Samples with different thicknesses of coating (250 µm, 500 µm, and 750 µm) were
dried to test the flame-retardant performance, and the results are presented in Figure 6a
and Supplement Material Table S2. As the coating thickness increased, the LOI values of
WAUPM-1, -2, and -3 samples gradually increased (22.9%, 24.8%, and 27.5%). WAUPM-3
achieved the UL-94 V-0 grade, while WAUM-3 with the same thickness achieved a V-1
grade. The decrease in flame-retardancy was due to the absence of phosphorus source
from PA. The flame-retardancy of the WAU-3 sample was poor and it failed to pass the
V-2 grade. This was because this coating easily fell off during the vertical combustion test,
reflecting weak adhesion, which was consistent with SEM analysis. Overall, WAUPM-3
achieved ideal flame-retardancy through the coordination of phosphate–zirconium–carbon
flame-retardant elements. As shown in Table S2, the total of the two combustion times
(t1 + t2) was about 12.5 s, and the presence of PA was reduced (t1 + t2) by 26.2 s in the
sample WAUPM-3. Therefore, PA played a significant role in flame-retardancy in the
combustion process of PC/ABS.
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In addition, the fire growth index (FGI) was introduced to evaluate the impact of the
functionalized MOF coating system on the fire safety performance of PC/ABS. The smaller
the value, the less time was required for the material to reach the intense burning state,
and the lower the fire risk. As shown in Figure 6b, the FGI value of the untreated PC/ABS
was 1.75, while it dropped to 1.07 after coating with MWCNT@UiO-6. The FGI was only
0.38 after the introduction of PA. Therefore, the fire safety performance of PC/ABS was
significantly improved by coating with PA@MWCNT@UiO-66.

Smoke suppression performance is an important factor for the evaluation of the fire
resistance of materials. CCT was used to simulate the real fire environment and evaluate
the combustion behavior of materials in terms of heat, smoke, CO2 release, etc. Figure 7
presents the heat release rate (HPR), total heat release (THR), smoke production rate (SPR),
total smoke production (TSR), and curves for CO2 and O2 content of the samples. Figure 7a
showed that the HRR value of the WAUM-3 sample was 153.7 kW/m2, which decreased by
26.2% compared with the untreated sample. Figure 7b showed that the TRR value decreased
by 26.9% compared with the untreated sample, which implied that the MWCNT@UiO-66
coating could effectively inhibit the heat release of PC/ABS. After the introduction of PA,
the HRR and TRR values decreased by 57.5% and 33.6%, respectively, compared with
the untreated sample (Figure 7a,b). This result indicated that PA could further inhibit
the heat release of PC/ABS. In addition, as the thickness of the PA@MWCNT@UiO-66
coating increased from 250 µm to 750 µm, the peak smoke production rate decreased
significantly and smoke release had a delayed effect. WAUM-3 and WAUPM-3 emitted
similar amounts of smoke (11.44 m2 and 12.03 m2), but the WUPM-1, -2, and -3 samples
extended the smoke release time and increased the escape time. This implied that MOFs
played an important role, due to their high specific surface area and highly ordered porous
structure. In the early stage of pyrolysis, the organic flammable volatiles released by
PC/ABS passed through a complicated path. PA, as a phosphate, easily decomposes in a
degraded polymer matrix to generate phosphoric acid. Phosphoric acid promotes surface
cation crosslinking and carbonization, acting as an insulation barrier in the carbonization
layer on the polymer surface to suppress thermal feedback from the combustion zone and
act as a flame retardant [24]. Therefore, the coating with MOFs resulted in delayed smoke
release. As the combustion intensified, PA produced meta-phosphate, polyphosphate,
and other compounds, which could undergo dehydration with the hydroxyl group from
PC/ABS pyrolysis and promote the formation of a carbon layer. Thus, the cross-linking of
PC/ABS with the pyrolysis products of PA@MWCNT@UiO-66 promoted the carbonization
process and improved the flame-retardancy. Figure 7e,f showed the changes in CO2 and
O2 contents during the cone calorimetry test. Compared with the untreated sample, the
consumption of O2 and generation of CO2 were reduced and delayed significantly in
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WAUM-3. Particularly, the time was delayed by more than two times upon the addition
of PA in the case of WAUPM. As the coating thickness increased from 250 µm to 750 µm,
the overall O2 consumption and CO2 generation of the material continued to decrease.
This result further showed that the thermal oxygen stability of flame-retardant materials
increased after the coating of an MOFs-based flame retardant onto PC/ABS materials. It
also indicated that the MOFs-based flame-retardant system reduced the reactivity with
oxygen by inhibiting the contact between the matrix and O2. Thus, the MOFs-based
flame-retardant coating inhibited the violent combustion of PC/ABS.
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3.4. Mode of Action of Flame Retardant

In order to understand the mode of action of MOFs-based flame-retardant coatings,
the carbon residues were carefully characterized by FT-IR spectroscopy, SEM, and Raman
spectroscopy. Figure 8 presents the FT-IR spectra of carbon slags after the cone calorimetry
test. WAUM-3 showed weak absorption peaks at 806 cm−1 and 752 cm−1, ascribed to
the out-of-plane deformation vibrations of the benzene ring =C-H, and para-substituted
and mono-substituted benzene ring, respectively. The peaks at 1622 cm−1 and 471 cm−1

corresponded to the aromatic structure and Zr-O stretching vibrations, respectively. This
result indicated that zirconia was produced after the combustion of WAUM-3 and that
the aromatic structures of UiO-66 promoted the formation of carbon layers. Furthermore,
the WAUPM coated samples showed P-O-C stretching vibrations at 980 cm−1 and peaks
at 1187 cm−1 and 1092 cm−1 for P=O absorption and Si-O-Si absorption, respectively.
This suggested that PA was decomposed during the combustion process to phosphoric
acid, meta-phosphate, and other compounds. These compounds were esterified with the
pyrolysis products of PC/ABS containing hydroxyl groups. Moreover, the presence of nano
silica and carbon nanotubes promoted the formation of dense and continuous coke layers.
Hence, as the coating thickness increased, the intensities of both P-O-C and Zr-O peaks in
the carbon slag increased, as shown in Figure 8 for WAUPM-1, WAUPM-2, and WAUPM-3.
Zirconia produced by the decomposition of zirconium organic framework also served as
an efficient thermal barrier when mixed with the carbon layer. Thus, the product improved
the thermal stability and thermal shielding property of the carbon layer.
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The residual amounts and the macro- and micro-morphologies of the carbon layers
after polymer combustion also reflected the carbonization process. The morphology of the
carbon slag in the condensation stage was investigated carefully. From a macro perspective,
Figure 9a–d showed that the untreated PC/ABS generated the least amount of carbon,
because most of the elements were released into the atmosphere in the form of smoke
during combustion. In contrast, the amounts of carbon residues were much higher for
WAUM-3 and WAUPM-3. The expanded size of carbon increased as the coating thickness
increased for WAUPM-1, WAUPM-2, and WAUPM-3. The morphology of the carbon
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layer was further studied by SEM. The untreated PC/ABS showed many pores and the
carbon layer was relatively loose (Figure 9f). The quality of the carbon layer improved
in WAUM-3, but still showed a porous structure with traces of incomplete combustion
(Figure 9f). However, the carbon layer of WAUPM-3 showed a smoother surface (Figure 9j).
This implied that the carbon layer acted as a physical barrier against heat and inhibited
the transfer of oxygen and materials between the condensed and gas phases. Thus, the
MOFs-based flame-retardant coating effectively inhibited the thermal degradation of the
underlying PC/ABS.
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Raman spectroscopy was employed to further characterize the degree of graphitization.
Figure 10 presents the Raman spectra of samples. Peak D and peak G at about 1350 cm−1

and 1600 cm−1 corresponded to the peaks of amorphous carbon and graphitized carbon,
respectively. The higher the degree of graphitization, the better the effect of heat insulation
and oxygen isolation. As shown in Figure 10, as the thickness of the coating increased in
WAUPM-1, WAUPM-2, and WAUPM-3, the ID/IG value decreased. Finally, the carbon
residue of WAUPM-3 had the lowest ID/IG value. Compared with untreated PC/ABS and
WAUM-3, the ID/IG value was also much smaller for WAUPM-3. These results indicated
that WAUPM-3 had the highest degree of graphitization after carbon combustion, which
displayed a good barrier effect and effectively inhibited the thermal degradation of the
underlying PC/ABS. This observation was consistent with the SEM results.

Finally, based on the above analysis, the possible mode of action of the flame-retardant
WAUPM-3 is described in Figure 11. When an external heat source or flame was applied,
the MOFs-based coating acted as a thermal barrier due to the better thermal stability of
PA@MWCNT@UiO-66. This prevented the flame from coming into direct contact with the
PC/ABS substrate. In the second stage, when PC/ABS combustion was caused by cracking
of the coating due to thermal expansion, the porous structure of MOFs delayed the partial
release of smoke. This was because the porous structure of MOFs played a role of catalytic
carbonization, forming dense coke that covered the surface of the material. This layer acted
as an insulation barrier to inhibit heat transfer from the combustion zone and decrease
the rate of formation of volatile fuel fragments. Moreover, MWCNT played another role
of promoting the construction of a carbon cross-linking network. In general, the coatings
comprised of a phosphorus-carbon-zirconium flame-retardant system endowed PC/ABS
with excellent flame-retardancy.
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4. Conclusions

A new kind of MOFs-based flame retardant was prepared by loading phytic acid (PA)
and multi-walled carbon nanotubes (MWCNT) onto UiO-66 by a solvothermal method. It
was further applied as a flame-retardant surface coating onto PC/ABS. The results showed
that PA improved the compatibility between UiO-66 and the acrylic resin and also helped
to maximize the interfacial bonding between the adhesive layer and PC/ABS substrate
and improve the wrapping property. When the thickness of the coating was 750 µm, the
thermal barrier effect was significant and the LOI value of the material was 27.5%. The
cone calorimetry test showed that the heat release and smoke release of the material had
significant hysteresis and inhibition effects. Raman spectral analysis showed that a high-
quality carbon layer was constructed during the combustion process, which effectively
shielded the heat and oxygen transfer to the internal matrix. The phosphorus, carbon,
and zirconium elements of PA, MWCNT, and UiO-66 contained in the coating showed
flame-retardancy in the condensed phase. The hexagonal structure and thermal stability of
MWCNT promoted the formation of a cross-linked network in the carbon layer. UiO-66
was involved in char formation and the tunnel effect during the early and middle stages of
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pyrolysis to provide the flame-retardant effect. In addition, the flame-retardant coating did
not affect the mechanical properties of PC/ABS as in the case of physical filling, and the
brushing was easy to repeat.
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https://www.mdpi.com/article/10.3390/polym16020275/s1, Figure S1: TGA (a) and DTG (b)
curves of UiO-66@PA@MWCNT, UiO-66 and MWCNT-COOH; Figure S2: SEM images of (a) UiO-
66; (b) MWCNT-COOH; (c) UiO-66@PA@MWCNT, and elemental distribution (d1–d4) of UiO-
66@PA@MWCNT; Table S1: TGA data of samples for WAUPM, WAUM, WAU and WA; Table S2:
Results of flame retardant coated PC/ABS for LOI and vertical burning test; Table S3: Results of
flame retardant coated PC/ABS for Cone Calorimetry Test.
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