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Abstract: Polymer single-screw extrusion is a major industrial processing technique used to obtain
plastic products. To assure high outputs, tight dimensional tolerances, and excellent product perfor-
mance, extruder screws may show different design characteristics. Barrier screws, which contain
a second flight in the compression zone, have become quite popular as they promote and stabilize
polymer melting. Therefore, it is important to design efficient extruder screws and decide whether a
conventional screw will perform the job efficiently, or a barrier screw should be considered instead.
This work uses multi-objective evolutionary algorithms to design conventional and barrier screws
(Maillefer screws will be studied) with optimized geometry. The processing of two polymers, low-
density polyethylene and polypropylene, is analyzed. A methodology based on the use of artificial
intelligence (AI) techniques, namely, data mining, decision making, and evolutionary algorithms, is
presented and utilized to obtain results with practical significance, based on relevant performance
measures (objectives) used in the optimization. For the various case studies selected, Maillefer screws
were generally advantageous for processing LDPE, while for PP, the use of both types of screws
would be feasible.

Keywords: polymer extrusion; barrier screws; multi-objective optimization; data mining; decision
making; number of objectives reduction

1. Introduction

Plasticating single-screw extruders are widely used in the industry for the manufacture
of an extensive array of plastic products such as pipes, tubing, profiles, film and sheet,
electrical wire, filaments, and yarns. In simple terms, an extruder consists essentially of
an Archimedes-type screw rotating at a constant frequency inside a hollow heated barrel,
which also contains a lateral aperture at one end for feeding the polymer. A shaping die
is connected to the opposite end of the barrel. As the screw rotates, the solid polymer
depositing on the screw channel inlet is dragged forward, progressively melts, and is forced
to flow through the die. As new and more complex polymer systems began to be used
(e.g., polymer blends, highly filled polymers, nanocomposites, biodegradable compounds),
and more challenging requirements were established (higher outputs, tighter dimensional
tolerances, better product consistency), the geometry of extrusion screws evolved con-
siderably. Early screws had a short length-to-diameter ratio (L/D) and contained three
geometric zones with different channel depths, commonly denoted as feed, compression,
and metering, which are associated with the solids conveying, melting, and melt conveying
stages, respectively. However, this simple design evidenced limitations in terms of melting
efficiency, dynamic stability, and mixing ability, which progressively led to longer screws,
the eventual use of grooved barrels, the insertion of mixing zones in the metering zone,
and the development of barrier screws [1,2].
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Barrier screws contain a second flight in the compression zone. In this way, they
segregate the solid bed from the melt pool during melting, thus improving process stability,
and increasing the contact area between the solid bed and the hot metallic channel, thus
generating a higher melting rate. It has also been reported that these screws achieve better
temperature homogeneity but consume higher specific energy due to the additional stresses
developing in the barrier gap [3]. Charles Maillefer [4] patented the first barrier screw
(MBS) in 1959. It contains a second flight in the compression zone with a distinct helix
angle, connecting the active and passive sides of the main flight. Since then, many other
barrier designs have been developed (see, for example, [5–11]), with many finding practical
industrial application in extrusion and/or injection moulding equipment. Rauwendaal [1,2]
assessed comparatively various barrier designs, assuming as major performance criteria
the evenness of the feed-barrier and barrier-metering geometric transitions, the necessary
melting length, the melt conveying capacity, and the manufacturing cost. The author con-
cluded that the MBS is particularly adequate, albeit its relatively limited melting efficiency.
The importance of the feed-barrier transition on flow stability was well illustrated by Park
and Lyu [12] through the calculation of streamlines and velocity vectors in this region.

Several studies have demonstrated that the performance of barrier screws is rather
sensitive to their design features and to the operating conditions selected [11–15]. It is
generally presumed that the start of the barrier matches the inception of melting, and that
the melting rate is identical to the rate of change of the cross-channel areas for solids and
melt in the down-channel direction. However, in practice, a melt film between the barrel
and the solid bed must develop upstream of the barrier to avoid plugging. Some designs
of the feed-barrier transition are more capable of effectively separating the solid bed from
the melt pool. If the barrier gap is too small, the molten film will accumulate as a melt
pool in the solids channel, rather than crossing it and depositing in the melt channel. If the
barrier is too wide (i.e., if the second flight is too thick), excessive shear heating at high
screw speeds may develop.

This work focuses on the design of barrier screws. Given the complexity of the task,
purely empirical methods seem to have limited potential. On the other hand, the direct use
of numerical modeling routines may turn out to be costly and inefficient, as they rely on the
capability of the user to gradually input geometries and/or operating conditions that are
more appropriate. Additionally, to the authors’ knowledge, no specific design approaches
for this type of screws have been proposed, i.e., where the modeling equations are employed
in a prearranged sequence. The authors recently published an extensive review on the
optimization of extrusion and other processing techniques [16,17]. These methodologies
have been successfully used to design conventional single-screw and co-rotating twin-screw
extruders. Consequently, screw design is approached here as a multi-optimization problem,
whereby a process modeling package is used judiciously by an optimization algorithm in
order to define a Pareto optimal solution. Moreover, a decision-making methodology based
on artificial intelligence (AI) techniques is applied to select the best screw.

The paper is organized as follows: Section 2 gives details concerning the modeling of
the extrusion process. In Section 3, the methodology used for the optimization is presented
in detail, while Section 4 introduces the problem to be solved. The results are presented
and discussed in Section 5 and, finally, the conclusions are stated in Section 6.

2. Modeling of Plasticizing in Barrier Screws

Several authors modeled melting in barrier screws, often with the aim of creating
a tool capable of comparing the performance of various screw types and/or geometries.
Ingen Housz and Meijer [9] modified the original Tadmor’s melting model for conventional
screws, which stipulates that at any channel cross-section along the melting zone, the solid
pellets are compacted and form a continuous bed separated from the inner barrel wall
by a thin melt film, which, in turn, feeds a melt pool developing near the active flight of
the screw [10]. Considering a similar physical melting model, Amellal and Elbirli [11]
numerically solved the various momentum and energy equations coupled to mass balances
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linking the solid bed, the melt film near to the inner barrel wall, and the melt conveying
zones, assuming a non-Newtonian non-isothermal approach and non-uniform solids ve-
locity. Later, the existence of a melt film surrounding the solid bed was also taken into
consideration [18]. Han et al. [19,20] extended this analysis by considering the presence of
six functional regions at each channel cross-section, namely, solid bed, melt conveying, and
four melt films, including at the barrier gap, near the inner barrel surface, near the screw
root, and near the screw flights.

Concerning barrier screws for plasticating injection-molding, Kopplmayr et al. [21]
took in the co-existence of five different regions, including the melt pool in the solids
channel, the melt pool in the melt channel, the melt film between the solids and inner barrel
wall, the leakage flow in the gap between the main flight and inner barrel wall, and the melt
flow in the barrier gap. A numerical approach based on finite-difference approximation
schemes was developed, but little detail was given on the model implementation. With the
aim of comparing the performance of various screw profiles, Park and Lyu [12] calculated
the pressure, temperature, velocity, and streamlines in barrier screws, assuming non-
Newtonian non-isothermal flow and using the Polyflow® commercial software. However,
only the presence of melt was taken into consideration, even if the authors recognized—and
observed experimentally—that the melt and solids coexist in the solids channel. Huang
and Tseng [22] predicted fiber breakage in conventional and barrier screws in injection
molding, but again, the melting model adopted was not presented in sufficient detail to
understand the underlying physical assumptions.

In general, the above studies assumed that (i) the start of the barrier flight matches the
onset of melting, and (ii) the melting rate matches the down-channel rate of change of the
cross-channel areas for solids or melt. As discussed in the previous section, experimental
evidence has shown the opposite. Therefore, changes either in the operating conditions or
in the screw geometry should jeopardize the validity of these assumptions. Consequently,
the authors proposed a melting model where the onset and rate of melting were decoupled
from the start and position of the barrier [14], which is adopted in the present work. Based
on the melting analysis developed by Lindt and Elbirli [23] and Elbirli et al. [24] for a
conventional screw, the model takes into account the flow and heat transfer in seven
regions of a general barrier screw cross-section, as schematized in Figure 1.
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Figure 1. Melting mechanism in the cross-section of a barrier screw. A—solid bed; C, D, E—melt films
surrounding the solid bed; B, G—melt pools in the solids channel and melt channel, respectively;
F—melt film crossing the barrier gap. Vb is the barrel sliding velocity, WB and WG are the widths of
melt pools B and G, respectively, WS is the width of the solid bed, H is channel depth, HS is the depth
of the solid bed, and δ denotes the thickness of a melt film (reproduced with permission from [14]).
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The solids and melt channels are assumed as rectangular and stationary, and the barrel
slides at velocity Vb (with components in the transverse, Vbx, and down-channel, Vbz,
directions). Region A represents the solid bed, regions C, D, and E identify the melt films
surrounding A, regions B and G designate the melt pools in the solids and melt channel,
respectively, while F locates the melt film crossing the barrier gap. The melt leakage over
the main flight tip is neglected. The flow in the melt films is assumed as one-dimensional,
while the flow in the melt pool is taken as two-dimensional. The progress of melting is
modeled along sequential down-channel z increments. The mathematical description of
each region involves different forms of the momentum and energy equations, together with
the relevant boundary conditions, as well as force, heat, and mass balances (see details
in [14]).

This melting model was inserted into a global plasticating package that describes
the flow and heat transfer along the extruder from the hopper to the die exit by articu-
lately linking the individual process stages developing along the screw through suitable
boundary conditions [14]. In the down-channel direction, the stages are the following:
(i) gravity conveying of pellets in the hopper; (ii) drag solids conveying induced by friction
forces in the first screw turns; (iii) creation and growth of a thin film of melted material
separating the solid bed from the surrounding screw wall(s)—this is usually known as
the delay zone; (iv) melting in the barrier zone according to the mechanism discussed
above; (v) melt conveying; and (vi) melt pressure flow through the die. The location and
extent of these stages depend on the local thermo-mechanical conditions, i.e., they are
not made a priori coincident with the position of specific geometrical screw features. The
plasticating sequence is modeled along successive down-channel and die increments. If the
calculated pressure at the die exit is higher than a predefined small value, the calculations
are repeated.

Figure 2 illustrates the computational predictions of major process parameters for a
Maillefer-type barrier screw (total length L/D = 30, length of the compression (barrier)
zone of 5 L/D, compression ratio of 2.5). Figure 2A depicts the axial profiles of the solid
bed width (ratio of solids width, X, to solids channel width, Wsprofile), the average melt
temperature, Tmelt, and the viscous dissipation (ratio of Tmelt to the local set temperature,
Tb). The beginning of melting does not coincide with the start of the barrier, and the
melting rate, X/W, is distinct from the rate of variation of the channel width, Wsprofile.
In the final melting stages (i.e., approximately at L/D = 13), the physical presence of the
barrier controls the melting, which will have consequences on the mass output. Figure 2B
depicts the axial melt pressure and cumulative mechanical power consumption profiles,
demonstrating how the high shear rates developing at the barrier gap originate high shear
stresses, and correspondingly, high melt pressures and power consumption [14]. These
predictions were globally validated experimentally [25].
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Figure 2. Computational predictions for a Maillefer-type barrier; (A) axial profiles of the solid bed
width (ratio of solids width, X, to solids channel width, Wsprofile), average melt temperature, Tmelt,
and viscous dissipation (ratio of Tmelt to the local set temperature, Tb); (B) axial melt pressure and
cumulative mechanical power consumption profile (reproduced with permission from [14]).

3. Optimization Methodology
3.1. Multi-Objective Optimization

The design of extrusion-barrier screws approached as an optimization problem is multi-
objective, meaning that there is the need to satisfy simultaneously several performance
measures (objectives), which are often conflicting and can have different importance to
the process. A multi-objective optimization problem can be defined mathematically as
follows [26,27]:

maximise fm(xi) i = 1, . . . , N; m = 1, . . . , M
subject to gj(xi) = 0 j = 1, . . . , J

hk(xi) ≥ 0 k = 1, . . . , K
(1)

where M is the number of objectives.
The various objectives can be dealt with in three ways, as follows: a priori, a posteriori,

or iteratively. In the first case, the decision maker (DM) initially defines the relative
importance of the objectives and the performance of the solutions can be obtained through
the use of aggregation functions, e.g., weighted sum, weighted product, or weighted
Tchebycheff metric [28]. The optimum can be found using a traditional single-objective
methodology. In the second alternative, the various objectives are optimized simultaneously
in order to obtain a set of solutions denoted as the Pareto set. Therefore, two different spaces
exist, that of the decision variables and the domain of the objectives. The optimization
aims to find the solutions where all objective functions are optimized. The Pareto set
is the set of non-dominated solutions, which are the solutions that are incomparable to
each other, as it is not possible to state that one is better than another for all objectives
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simultaneously [26,27]. Figure 3 illustrates this concept using a problem with two objectives
to maximize. The comparison between solutions A and B shows that A is better in both
objectives and, thus, A dominates B. The same happens when comparing solutions B and
C. In this case, C dominates A, which means that all solutions belonging to the dark grey
square dominate solution A. However, when comparing any solution within the light grey
squares (solutions D and E versus solution A), it is not possible to conclude that one is
better than the other. The best solution can be selected by using additional preference
information provided a posteriori by the DM [28]. In the third approach, the optimization
and selection of solutions can be made iteratively and interleaved, i.e., the optimization
algorithm delivers different solutions to the decision maker, who indicates the preferences,
and then the optimization algorithm runs again [29].
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Taking into account the need to find a set of non-dominated solutions, the best way
to deal with multi-objective optimization is to use population-based algorithms, such as
evolutionary algorithms (EAs) [26,27]. This type of algorithms is based on the metaphor
of natural evolution, i.e., they use the concepts of mutation and crossover to evolve a
population of individuals, which contains the potential solutions to the problem under
study, along the successive generations. A better opportunity for reproduction is given
to individuals with higher performance, that is, to individuals that have more capacity to
survive. The new solutions (the offspring) are generated through genetic operators such as
crossover and mutation, inheriting most of the parent characteristics. The selection opera-
tors enable the best individuals to have a higher probability of being selected for producing
offspring, and the variation operators allow for the generation of new individuals [26,27].
Selection is based on the quality of each individual, which is given by a fitness function
that is associated with the objective or objective functions for single or multi-objective
optimization, respectively.

Recently, several efficient multi-objective optimization EAs (MOEAs) have been pro-
posed [30–34]. Algorithm 1 outlines the general framework of MOEA.

Algorithm 1 MOEA

1: P← Initialization ()
2: Repeat
3: R←MatingSelection (P)
4: Q← Variation (R)
5: P← EnvironmentalSelection (P ∪ Q)
6: Until stopping criterion is met
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The algorithm starts with the initialization, in which a population of solutions is
randomly generated within the search space. Then, this population is subjected to the
evolutionary process by the sequential application of the mating selection, variation, and
environmental selection procedures. The mating selection consists of selecting parents from
the population for reproduction with a higher probability for fitter individuals, considering
the existence of multiple objectives. Variation involves the use of evolutionary operators
that are applied to the chromosomes of parent individuals for producing offspring. Finally,
the environmental selection procedure is based on the concept of the survival of the fittest
from natural evolution, forming the population of the next generation from the multiset of
the current and offspring populations. The differences between the existing MOEAs are
related to the design of its procedures, but all fit in this algorithm.

The present work adopts the S-Metric Selection Evolutionary Multiobjective Optimiza-
tion Algorithm (SMS-EMOA), proposed by Beume et al. [34], which is a state-of-the-art
MOEA that proved to be very efficient in solving real-world optimization problems. In this
algorithm, the population is subjected to a steady-state evolutionary process where a single
offspring is produced in each generation. The mating selection is performed by selecting
a set of different population members at random, but distributed along the whole Pareto
front. In the variation operator, a single offspring is generated by recombining selected
parent individuals. Then, the environmental selection procedure consists of updating the
population by removing the individual with the smallest hypervolume contribution in the
last nondominated front. Evolution takes place for the number of generations specified by
the user.

3.2. Data Mining Methodology and Decision Making

Usually, dealing with Multi-Objective Optimization Problems (MOOP) requires some
degree of interaction with a DM, i.e., with an expert in the field. Simultaneously, albeit
the high amount of data and the potentially complex relationships between the variables
and the objectives and between the objectives, these must be established to support the
optimization and decision processes. Moreover, in such complex processes, the DM must
understand the optimization process as well as the procedure for selecting solutions.
Therefore, it is desirable to (i) use data analysis to define the above relationships; (ii) to
determine whether all objectives are really necessary or if their number can be reduced;
(iii) to explain the solutions found; and (iv) to provide a very good approximation to the
final solution to be used in the real problem studied. This can be performed by linking data
analysis tools with optimization methodologies.

For these purposes, this work uses the DAMICORE (proposed in 2011) framework
based on the estimation of distances by compression algorithms, called NCD. This algo-
rithm showed a good performance when tested in a problem similar to the one being
studied here, simultaneously allowing an easy explanation of the decision process to the
DM. In this framework, a Feature Sensitivity Optimization based on Phylogram Anal-
ysis (FS-OPA) [35–37] is applied to find the set of the principal features of the problem
considering the real context, i.e., its feature interactions and their contribution to a target
or an objective. In the context of this work, a phylogram is a diagram representing the
relationships and distances between different groups of variables and/or objectives in the
form of a branching diagram. The branches on a phylogram are proportional to the number
of changes between different variables and/or objectives.

DAMICORE is a constructor of models based on phylograms able to deal with any
type of data (integer, real and complex numbers, categorical, images, sound, etc., and
mixtures of them), sequentially involving the following main tasks:

(1) Generate a distance matrix from the data using the Normalized Compression
Distance (NCD) metric [38];

(2) Construct evolutionary trees using phylogram-based modeling. DAMICORE uses
a distance reconstruction algorithm called Neighbour Joining (NJ) in which the quality of
the models is improved using a systematic resampling strategy [36];
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(3) Perform community detection by analyzing the phylograms found and extract
important and trustworthy information from them. In this case, a complex network
approach known as Fast Newman (FS) is applied [39]. In this way, it will be possible to
find subgroups of data that share information (DNA), designated as clades, which identify
the communities.

The application of this methodology encompasses the generation of phylograms with
information delivered in two levels of learning as follows:

1. In the first level, the aim is to find clades, each representing a cluster of variables
sharing information. For optimization purposes, each of these clusters represents the
set of variables with important interactions. The result is a table with a list of variables
with a cluster per row;

2. In the second level of learning, the FS-OPA calculates the contribution of each clade
to the objectives, by measuring the distance between the clades of objectives (oclade)
and each variable clade (vclade) using the phylogram obtained. These distances
correspond to an estimation of the influence of a clade on the improvement of an
objective. As a result, three matrices are produced, one with the phylogram distances
from vclades to oclades, the second with the relative phylograms distances from each
variable to each objective, and the third with the distances between each objective and
the other objectives.

This methodology was recently applied to another extrusion problem with different
objectives including (i) to learn from computational data [40], (ii) decision making [41],
and (iii) reduction in the number of objectives [42,43]. In the last case, the objectives to
be selected were chosen using both the phylogram and the table with the distance of
objectives–objectives, as follows:

1. Choose the objective(s) of the less distant clusters;
2. Choose one objective of the more distant (single) cluster;
3. Choose the objective(s) from each of the remaining clusters taking into account the

phylogram and the expertise of the DM(s) on the process.

Finally, the WSFM technique [44] was used to quantify the significance of the solutions,
taking into account the relative importance of the different objectives. WSFM is based
on the concept of rubbers, whereby each point in the Pareto front is connected by a line
between the point identifying the solution and perpendicular to the Cartesian axes. Then, a
stress (σwi) is calculated for each line, taking into account the weights previously defined
(wi) and the value of the objective at that point. The stress function, T(x), is determined by
the following:

T(x) = max
i

(σwi( f (X))) (2)

Finally, the best solutions are those that minimize T(x) (for more details, see Ferreira et al. [44]).

4. The Barrier Screw to Be Designed

The methodology proposed will be applied to the extruder shown in Figure 4, fitted
with an MBS. The figure illustrates the main geometrical features of the equipment and
identifies the decision variables, which comprise the following: (i) the operating conditions:
screw speed (N), barrel temperature profile in three zones (Tb1, Tb2 and Tb3), and (ii) the
screw geometry: length of the feed and compression zones (L1 and L2), and internal screw
diameters in the feed and metering zones (D1 and D3). In the particular case of an MBS,
L2 is the axial length of the barrier, and two additional design variables are also defined,
namely, the thickness of the barrier flight (Wf) and the clearance/gap between the barrel
and the barrier flight (Hf). The length of the metering zone (L3) is obviously determined
from the difference between the total screw length (L) and L1 + L2.
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Figure 4. Extruder geometry.

Table 1 presents the physical, thermal, and rheological properties of the two commer-
cial polymers considered for the design of the screw, a low-density polyethylene (LDPE),
and a polypropylene (PP), which represent well the typical characteristics of extrusion-
grade materials. The rheological properties are quantified by the Carreau-Yasuda law
as follows:

η = η0 aT

(
1 +

(
λ aT

.
γ
)a
) n−1

a (3)

where

aT = exp
(

E
R

(
1
T
− 1

T0

))
(4)

Table 1. Physical, thermal, and rheological properties of the polymers used in this work as follows:
LDPE (LUPOLEN 33FM, LyondellBasell) and PP (ISPLEN 030G1E, Repsol YPF).

Property LDPE PP Units

Density
Solids (ρs) ρ∞ 495.0 691 kg/m3

Melt (ρm) g0 923 902 kg/m3

Friction
coefficients

Internal 0.53 0.50 —

Hopper 0.30 0.30 —

Barrel 0.40 0.45 —

Screw 0.20 0.25 —

Thermal
conductivity

Solids ks 0.141 0.210 W/m ◦C

Melt km 0.078 0.180 W/m ◦C

Specific
Heat

Solids (Cs) C0 2725.0 1882.0 J/kg

Melt (Cm) C0 2574.0 1975.0 J/kg

Enthalpy of melting h 116,100.0 120,490.0 J/kg

Melting temperature Tm 100.3 169.1 ◦C

Viscosity
(Carreau-Yasuda law)

η0 33,000.0 3041.5 Pa s

E/R 5000.0 4023.3 K

λ 1.00 0.17 S

a 1.80 1.82 —

n 0.35 0.35 —

T0 423.15 533.15 K

In these equations, η is the melt viscosity at temperature T and at shear rate
.
γ, η0, n, λ,

and a are material constants resulting from adjusting the equation to the experimental data,
and T0 is the reference temperature.
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As identified in Table 2, the design/optimization was performed considering six
objectives, which consist of major process performance criteria, namely, mass output,
length of screw required for melting, average melt temperature at die exit, mechanical
power consumption, a measure of distributive mixing (WATS) proposed by Pinto and
Tadmor [45], and viscous dissipation. The aim of the optimization (two objectives to
maximize and four to minimize) and the allowable range of variation are also specified.
Tables 3 and 4 present the different case studies selected for each material. In Cases 1 to 6
for LDPE, and Cases 8 to 11 for PP, the operating conditions were defined and kept constant,
while for Cases 7 and 12, the operating conditions can vary within the range specified.
Table 5 indicates the geometrical parameters to be optimized and their range of variation.
The optimization exercise was extended to an equivalent conventional three-zone screw
(CS), in order to compare the performance of the two types of geometries. An additional
variable designated as ‘case’ and ranging in the interval [0,1] was created for this purpose.
If ‘case’ is lower than or equal to 0.5, the program activates the variables corresponding
to the conventional screw (CS); otherwise, the MBS is considered. In this way, during the
evolution process, the EA does not lose information concerning both screws, even if one
type of screw is activated for a certain solution.

Table 2. Optimization objectives, aim of the optimization, and allowed range of variation (values for
PP between brackets).

Objectives Aim xmin xmax

Output—Q (kg/h) Maximize 1 30
Length for melting—L (m) Minimize 0.1 0.9

Melt temperature at die exit—T (◦C) Minimize 150 (LDPE) 210 (LDPE)
Melt temperature at die exit—T (◦C) Minimize 190 (PP) 240 (PP)

Power consumption—Power (W) Minimize 0 9200
WATS Maximize 0 1300

Viscous dissipation—TTb Minimize 0.9 1.2

Table 3. Case studies for LDPE (the operating conditions are included as decision variables in Case 7).

Case Operating
Conditions

Decision Variables

N (rpm) Tb1 (◦C) Tb2 (◦C) Tb3 (◦C)

1 Constant 40 140 140 140
2 Constant 60 140 140 140
3 Constant 80 140 140 140
4 Constant 40 180 180 180
5 Constant 60 180 180 180
6 Constant 80 180 180 180
7 Variable [40–80] [140–180] [140–180] [140–180]

Table 4. Case studies for PP (the operating conditions are included as decision variables in Case 12).

Case Operating
Conditions

Decision Variables

N (rpm) Tb1 (◦C) Tb2 (◦C) Tb3 (◦C)

8 Constant 40 200 200 200
9 Constant 40 230 230 230
10 Constant 70 230 230 230
11 Constant 100 230 230 230
12 Variable [40–100] [200–230] [200–230] [200–230]
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Table 5. Geometrical parameters of both CSs and MBSs.

Screw Type Decision Variables

CS case L1 L2 D1 D3 P e
MBS L1_ L2_ D1_ D3_ P_ e_ Hf wf

Range of variation [0,1] [190–400] [190–400] [18–22] [22–26] [25–35] [3–4] [0.3–0.9] [2–4]

5. Results and Discussion
5.1. Optimization Analysis

This section presents and discusses the optimization results using the SMS-EMOA
algorithm. Figure 5 displays the bi-objective optimization runs for LDPE, Cases 1 and 4,
in terms of length for melting (L) versus output (Q) (Figure 5A,C), and degree of mixing
(WATS) versus output (Q) (Figure 5B,D). Due to the random generation of the initial
population, the number of CSs and MBSs is very similar. However, when comparing the
initial and final populations, it becomes evident that the MOEA used is able to considerably
increase the performance of the solutions, since the values for the two objectives are
much higher, following the direction shown of the arrows. For Case 1 (Figure 5A,B), for
N = 40 rpm and Tbi = 140 ◦C (Table 3), the best screw to use is the MBS. This is not true
for Case 4 (Figure 5C,D), for N = 40 rpm and Tbi = 180 ◦C (Table 3), where for L vs. Q
there is a single solution representing a CS, but for WATS vs. Q there are two regions, one
represented by a CS for higher values of the degree of mixing, and another represented
by an MBS for higher values of output. This can be explained by the fact that for higher
barrel temperatures (Case 4), the polymer melts earlier in the CS due to the heat conducted
from the barrel, thus making available a longer channel length for melt conveying and,
consequently, for higher WATS. Simultaneously, in this case, the length of the Pareto front
is higher, providing more options for choosing the best screw.
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Figure 6 compares the results obtained for Cases 1 to 3 in the same domains as before,
i.e., L vs. Q and WATS vs. Q. As anticipated, when the screw speed increases (from Case 1
to Case 3), the Pareto optimal front moves in the direction of higher outputs, but in all
cases, the best solutions are only for the MBS. However, when the same variation of screw
speed is tested together with higher barrel temperature profiles (Cases 4 to 6, Figure 7),
the outcome might be different. For the lower screw speed, when optimizing together Q
and WATS, the solutions obtained include both CSs and MBSs, again, because of earlier
polymer melting in the CS.
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Figure 8 shows the results for Case 7, in which the operating conditions (N and Tbi) are
also decision variables, i.e., they are allowed to change in the range of variation indicated in
Table 3. The results are very similar to those of Case 6, when N and Tbi are fixed at 80 rpm
and 180 ◦C. Indeed, both the screw speed and the barrel temperature profile converge to
the upper limits (80 rpm and 180 ◦C). In fact, Figure 6 demonstrates that the optimal Pareto
fronts obtained for Case 3 dominate those for Cases 1 and 2, this being the reason for the
similarity of the results for Cases 3 and 7.
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vs. L; right—Q vs. WATS).

Figures 9 and 10 show similar results for PP. Figure 9 displays the initial and final
populations for the two bi-objective optimization runs of Case 8, L vs. Q and WATS vs.
Q. Again, there is a clear improvement along the generations. However, in this instance,
the CS solutions prevail in the final population. This happens because the melting of PP
occurs very fast in the screw due to its thermal properties. Consequently, not only it is
unnecessary to use a barrier screw to assist/force melting, but the CS also performs better
concerning the other optimization objectives, i.e., WATS vs. Q. The same is observed in
Figure 10, where the effect of increasing screw speed is depicted. As for LDPE (Figure 6),
the optimal Pareto front solutions allowed a higher output when the screw speed was
increased. Nevertheless, at higher screw speeds (Figure 10E), the higher outputs are only
achieved by MBS, as they imply later polymer melting in the screw.
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Figures 11 and 12 present the optimization results for six objectives for LDPE and
PP, respectively. Each column depicts the bi-dimensional representation of optimal Pareto
fronts for the six objectives for Cases 1, 4, and 7 for LDPE (Figure 11) and for Cases 8, 11,
and 12 for PP (Figure 12). Note that this is a six-dimensional space from which it is difficult
to infer the best solution (or solutions) to select, since in this high-dimensional space, it
is very difficult to find the solution that fits all objectives simultaneously. Therefore, the
methodology discussed in Section 3.2 will be applied to Cases 7 and 11. This includes the
definition/selection of the relevant objectives using the DAMICORE, and the application
of a decision-making methodology to select the best solutions. Throughout this process, it
is important that the decision maker has a good understanding about the solutions found.
This will be performed in the next section.



Polymers 2023, 15, 2212 14 of 23
Polymers 2023, 14, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. Bi-objective optimization (length for melting, L, and WATS) for PP as follows: (A,B) Case 
9; (C,D) Case 10; (E,F) Case 11. 

Figures 11 and 12 present the optimization results for six objectives for LDPE and PP, 
respectively. Each column depicts the bi-dimensional representation of optimal Pareto 
fronts for the six objectives for Cases 1, 4, and 7 for LDPE (Figure 11) and for Cases 8, 11, 
and 12 for PP (Figure 12). Note that this is a six-dimensional space from which it is difficult 
to infer the best solution (or solutions) to select, since in this high-dimensional space, it is 
very difficult to find the solution that fits all objectives simultaneously. Therefore, the 
methodology discussed in Section 3.2 will be applied to Cases 7 and 11. This includes the 
definition/selection of the relevant objectives using the DAMICORE, and the application 
of a decision-making methodology to select the best solutions. Throughout this process, it 
is important that the decision maker has a good understanding about the solutions found. 
This will be performed in the next section. 

Figure 10. Bi-objective optimization (length for melting, L, and WATS) for PP as follows: (A,B) Case
9; (C,D) Case 10; (E,F) Case 11.

Polymers 2023, 14, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 11. Two-dimensional representation of the optimization results for six objectives for LDPE 
as follows: (A) Case 3; (B) Case 6; (C) Case 7. 

 

Figure 12. Two-dimensional representation of the optimization results for six objectives for PP: (A) 
Case 8; (B) Case 11; (C) Case 12. 

Figure 11. Two-dimensional representation of the optimization results for six objectives for LDPE as
follows: (A) Case 3; (B) Case 6; (C) Case 7.



Polymers 2023, 15, 2212 15 of 23

Polymers 2023, 14, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 11. Two-dimensional representation of the optimization results for six objectives for LDPE 
as follows: (A) Case 3; (B) Case 6; (C) Case 7. 

 

Figure 12. Two-dimensional representation of the optimization results for six objectives for PP: (A) 
Case 8; (B) Case 11; (C) Case 12. 

Figure 12. Two-dimensional representation of the optimization results for six objectives for PP:
(A) Case 8; (B) Case 11; (C) Case 12.

5.2. Analysis of the Optimization Process

The application of DAMICORE to the six objectives problem of Case 7 yields the
phylograms for the initial and final populations of Figure 13 and the resulting Tables of
distances 6 and 7. In the figure, the objectives are identified in boxes. The decision variables
(DVs) and the objectives are clustered, taking into account the NCD metrics (Section 3.2).
The observation of the phylograms allows for the identification of the clusters that share
information, as well as the distances of DVs–DVs, DVs–objectives, and objectives–objectives.
The distances are represented by the path that is necessary to go through, i.e., the length of
the branches on a phylogram. For the final population, the objectives are grouped in the
sets (Q, L), (Power, WATS), and (T) and (TTb). From these phylograms, it is possible to
determine those distances. For example, Table 6 shows the distances of DVs–objectives for
the final population ordered from the lowest to the highest. The following conclusions can
be drawn:

• On average, the most important DVs are L2_, case, N, and L1_;
• Q and L are more influenced by L2_ and L1_;
• Power and WATS are influenced by L2_, case, N, and L1_;
• T and TTb constitute two separate groups, even considering that TTb is equal to T/Tb,

and this happens because Tb is changing.
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Table 6. Distances between DVs and objectives for Case 7 (LDPE).

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average

‘L2_’ 0.21 0.21 0.36 0.28 0.28 0.56 0.32

‘case’ 0.36 0.36 0.21 0.28 0.28 0.43 0.32

‘N’ 0.36 0.36 0.21 0.28 0.28 0.43 0.32

‘L1_’ 0.21 0.21 0.36 0.28 0.28 0.56 0.32

‘e’ 0.5 0.5 0.21 0.43 0.43 0.28 0.39

‘P’ 0.5 0.5 0.21 0.43 0.43 0.28 0.39

‘L2′ 0.56 0.56 0.28 0.5 0.5 0.21 0.43

‘L1′ 0.56 0.56 0.28 0.5 0.5 0.21 0.43

‘H1′ 0.71 0.71 0.43 0.64 0.64 0.21 0.55

‘H3′ 0.71 0.71 0.43 0.64 0.64 0.21 0.55

‘Tb1′ 0.86 0.86 0.56 0.79 0.79 0.36 0.7

‘H1_’ 0.86 0.86 0.56 0.79 0.79 0.36 0.7

‘Tb3′ 0.86 0.86 0.56 0.79 0.79 0.36 0.7

‘Tb2′ 0.86 0.86 0.56 0.79 0.79 0.36 0.7

‘e_’ 0.93 0.93 0.64 0.86 0.86 0.43 0.77

‘P_’ 0.93 0.93 0.64 0.86 0.86 0.43 0.77

‘H3_’ 0.93 0.93 0.64 0.86 0.86 0.43 0.77

‘wf’ 1 1 0.71 0.93 0.93 0.5 0.84

‘Hf’ 1 1 0.71 0.93 0.93 0.5 0.84

The question now is how to choose the solution (or solutions) to be used, based on
this six-dimensional objective space. The application of any aggregation method would be
limited, since the DM would not be informed of any explanation concerning the choice,
i.e., they must trust the method. A better way is to check the existing relations between the
objectives in order to possibly remove a few from the process of decision. For that purpose,
the rules defined at the end of Section 3.2 are applied to Table 7, where the distances
between the objectives are presented. The application of Rule 1 allows selecting Power and
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WATS, Rule 2 allows selecting TTb, and Rule 3 selects Q (or any of the others with the same
distance, L or T). Then, by applying the WSFM (Equation (2)) for the objectives selected
(Q, Power, WATS, and TTb), the results presented in Table 8 are obtained. In this example,
two different sets of weights are used, one attributing equal importance to all objectives
(0.25), and the other attributing higher importance to output (0.5) and equal significance
to the remaining (0.1667). The best solutions are those with a lower t(X) value. Table 8
demonstrates that these two sets of solutions have a balanced performance when taking
into account all objectives. When the relative importance of output is higher, the other
decision variables are adjusted to maintain this equilibrium, but different solutions are
found in both cases. Additionally, these adjustments are made in screw speed (N), barrel
temperature in the third zone (Tb3), length of the feed zone (L1_), height of channel in the
metering zone (H3_), and Pitch (P_). These results are coherent with the practical response
of the extruder, i.e., by following this decision process, the DM is able to understand the
optimization mechanism and is also able to select an informed solution.

Table 7. Distances between objectives for Case 7 (LDPE).

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average
‘Q’ 0.00 0.07 0.36 0.28 0.28 0.56 0.26
‘L’ 0.07 0.00 0.36 0.28 0.28 0.56 0.26
‘T’ 0.36 0.36 0.00 0.28 0.28 0.28 0.26

‘Power’ 0.28 0.28 0.28 0.00 0.07 0.50 0.24
‘WATS’ 0.28 0.28 0.28 0.07 0.00 0.50 0.24
‘TTb’ 0.56 0.56 0.28 0.50 0.50 0.00 0.40

Table 8. Best solutions for Case 7 (LDPE).

Decision Variables Objectives
t(x)Weights

Case N Tb1 Tb2 Tb3 L1_ L2_ H1_ H3_ P_ e_ Hf wf Q L T Power WATS TTb

(0.25;
0.25;
0.25;
0.25)

61.2 54.2 165 164 175 268.0 170.0 21.7 22.0 34.8 3.1 0.8 3.5 5.5 0.493 189 2358 383 1.5 0.8
61.2 77.4 165 164 175 267.9 170.0 21.7 22.0 35.0 3.0 0.8 3.5 5.3 0.487 189 2278 308 1.5 0.8

61.3 63.5 165 160 160 170.8 170.0 22.0 26.0 25.0 3.0 0.8 3.4 5.8 0.517 190 2395 376 1.5 0.8

59.2 54.1 164 161 160 222.1 170.0 22.0 22.0 35.0 3.0 0.5 3.5 5.7 0.503 190 2397 308 1.4 0.8

61.5 40.0 165 160 167 170.3 170.0 22.0 26.0 25.0 3.0 0.8 3.4 6.4 0.527 192 2834 316 1.4 0.8

(0.5;
0.167;
0.167;
0.167)

61.3 63.5 165 160 160 170.8 170.0 22.0 26.0 25.0 3.0 0.8 3.4 6.1 0.520 191 2583 340 1.4 0.8

61.4 40.2 162 164 178 263.9 170.0 22.0 22.0 35.0 3.0 0.8 3.4 6.4 0.527 192 2834 316 1.4 0.8

61.2 54.2 165 164 175 268.0 170.0 21.7 22.0 34.8 3.1 0.8 3.5 5.8 0.517 190 2395 376 1.5 0.9

59.2 53.8 164 160 160 170.0 170.0 22.0 22.0 35.0 3.0 0.5 3.5 5.7 0.503 190 2397 308 1.4 0.9

59.1 79.1 164 161 176 221.9 170.0 22.0 22.0 35.0 3.0 0.4 3.5 5.5 0.493 189 2331 328 1.5 0.9

When applied to PP, the DM process is more complex because the final Pareto optimal
fronts include both the CS and MBS. Indeed, the most relevant DVs indicated in Table 9
(obtained from the phylogram of Figure 14 are related to both types of screws, namely,
‘case’, L2_, L1_, N, L2, and L1. Following the same strategy, i.e., based on the distances of
objectives–objectives (Table 10) and on the rules of Section 3.2, Q, T, Power, WATS, and TTb
are selected. In this situation, only objective L could be discarded.
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Table 9. Distances between DVs and objectives for Case 12 (PP).

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average

‘case’ 0.21 0.21 0.64 0.28 0.28 0.43 0.34

‘L2_’ 0.36 0.36 0.50 0.28 0.28 0.28 0.34

‘L1_’ 0.36 0.36 0.50 0.28 0.28 0.28 0.34

‘N’ 0.21 0.21 0.64 0.28 0.28 0.43 0.34

‘L2′ 0.43 0.43 0.43 0.36 0.36 0.21 0.36

‘L1′ 0.43 0.43 0.43 0.36 0.36 0.21 0.36

‘wf’ 0.56 0.56 0.28 0.50 0.50 0.21 0.43

‘Hf’ 0.56 0.56 0.28 0.50 0.50 0.21 0.43

‘Tb3′ 0.64 0.64 0.07 0.56 0.56 0.28 0.46

‘e_’ 0.71 0.71 0.28 0.64 0.64 0.36 0.55

‘P_’ 0.71 0.71 0.28 0.64 0.64 0.36 0.55

‘H3_’ 0.86 0.86 0.43 0.79 0.79 0.50 0.70

‘H1_’ 0.86 0.86 0.43 0.79 0.79 0.50 0.70

‘Tb2′ 0.93 0.93 0.50 0.86 0.86 0.56 0.77

‘Tb1′ 0.93 0.93 0.50 0.86 0.86 0.56 0.77

‘e’ 1.00 1.00 0.56 0.93 0.93 0.64 0.84

‘P’ 1.00 1.00 0.56 0.93 0.93 0.64 0.84

‘H3′ 1.00 1.00 0.56 0.93 0.93 0.64 0.84

‘H1′ 1.00 1.00 0.56 0.93 0.93 0.64 0.84
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Table 10. Distances between objectives for Case 12 (PP).

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average
‘Q’ 0.00 0.07 0.64 0.28 0.28 0.43 0.28
‘L’ 0.07 0.00 0.64 0.28 0.28 0.43 0.28
‘T’ 0.64 0.64 0.00 0.56 0.56 0.28 0.45

‘Power’ 0.28 0.28 0.56 0.00 0.07 0.36 0.26
‘WATS’ 0.28 0.28 0.56 0.07 0.00 0.36 0.26
‘TTb’ 0.43 0.43 0.28 0.36 0.36 0.00 0.31

Table 11 shows the solutions chosen for three different sets of weights as follows:
(i) objectives with identical importance (weights equal to 0.2), (ii) output with higher im-
portance (weight equal to 0.4, the remaining equal to 0.1), and iii) output with predominant
importance (weight equal to 0.6, the remaining equal to 0.08). The results are the same for
the sets of weights (i) and (ii), including two MBSs and three CSs, while for set (iii), all
screws are MBSs. In all solutions found, the operating conditions do not change. When a
CS was selected, the balance between the solutions was accomplished at the cost of L and P,
while for the MBS, the relevant DVs are only L1_ and L2_. However, the range of variation
of the objectives for these optimal Pareto front solutions is higher. This is probably due to
the presence of more objectives in the calculation of t(X), when compared to the results
obtained for LDPE.

This demonstrates that in a complex real-world optimization problem such as barrier
extrusion screw design, it is important to offer the DM not only the solutions, but also an
insight about the problem.
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Table 11. Best solutions for Case 12 (PP).

Decision Variables Objectives
t(x)Weights

Case N Tb1 Tb2 Tb3 L1 L2 H1 H3 P e L1_ L2_ H1_ H3_ P_ e_ Hf wf Q L T Power WATS TTb

(0.20;
0.20;
0.20;
0.20)

98.1 100.0 227 202 205 179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9
46.3 98.9 230 202 200 170.0 191.0 22.0 23.7 26.0 3.0 13.2 0.171 209 2212 491 1.1 1.0
46.8 99.0 201 202 202 173.6 187.8 22.0 23.7 26.1 3.0 13.1 0.189 208 2371 483 1.0 1.0
41.2 99.5 204 202 200 171.8 170.0 22.0 23.6 30.3 3.0 15.2 0.180 207 2166 442 1.0 1.0
94.1 99.4 230 210 201 400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0

(0.40;
0.15;
0.15;
0.15)

98.1 100.0 227 202 205 179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9
46.3 98.9 230 202 200 170.0 191.0 22.0 23.7 26.0 3.0 13.2 0.171 209 2212 491 1.1 1.0
46.8 99.0 201 202 202 173.6 187.8 22.0 23.7 26.1 3.0 13.1 0.189 208 2371 483 1.0 1.0
41.2 99.5 204 202 200 171.8 170.0 22.0 23.6 30.3 3.0 15.2 0.180 207 2166 442 1.0 1.0
94.1 99.4 230 210 201 400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0

(0.60;
0.10;
0.10;
0.10)

98.1 100.0 227 202 205 179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9
56.6 100.0 200 202 200 193.6 205.0 22.0 22.2 34.0 3.0 0.8 2.3 24.6 0.374 207 1778 285 1.0 1.0
97.1 99.8 200 200 200 194.9 194.9 21.8 22.5 34.8 3.0 0.8 2.9 23.1 0.360 207 1837 296 1.0 1.0
83.3 97.6 201 206 200 293.2 210.6 19.4 22.6 34.6 3.0 0.9 2.4 18.6 0.220 207 2008 296 1.0 1.0
94.1 99.4 230 210 201 400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0
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6. Conclusions

Artificial intelligence techniques, namely, data mining, decision making, and multi-
objective evolutionary algorithms, were applied to design Maillefer-barrier screws, si-
multaneously considering the influence of major process parameters and the processing
of two polymers commonly used in industrial extrusion, LDPE and PP. The competing
performance of conventional screws was also simultaneously taken into consideration.

The optimization methodology adopted was sensitive to the different thermophysical
characteristics of the polymers. Barrier screws are advantageous for processing LDPE,
except for low screw speeds, in which case the two types of screws can be used. For
PP, the optimization methodology suggests the use of both types of screws for a wider
range of operating conditions. While proposing the most adequate screw geometries, the
methodology adopted evidenced the correlations between the process parameters selected
for the design, thus keeping the decision maker informed about the reasons for the selection.

The methodology illustrated here should be directly applicable to other polymer
processing optimization problems.
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