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Abstract: In recent years, polymeric materials have been used in a wide range of applications in a
variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a
possible new avenue for the development of products with better biocompatibility, biodegradability,
and non-toxicity. This paper reviews the structural and physicochemical properties of alginate
and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue
engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic
acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how
to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue
engineering and drug delivery to achieve better eco-economic value.
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1. Introduction

As the demand for novel materials in the field of bioengineering continues to grow, the
pursuit of advanced functional materials has become a hotbed of research [1]. Numerous
polymer-based material systems, such as microgels [2,3], liposomes [4,5], dendritic poly-
mers [6], and micelles [7,8], have been developed. Given their application in living systems,
these materials must degrade in a manner consistent with their intended function, possess
mechanical properties suitable for their intended use, produce non-toxic biodegradation
products, be readily absorbed or excreted [9], and not cause prolonged inflammation [10].

Polysaccharide-based biomaterials have garnered significant attention and research,
owing to their excellent biocompatibility [11], biodegradability, low toxicity, and renewable
prospects. Hyaluronic acid (HA), an acidic mucopolysaccharide with potent antioxidant,
gelling, anti-inflammatory, and wound-healing properties, is ideally suited for use in the
pharmaceutical and personal care industries [12]. For example, Xia [13] cross-linked HA
with CMSS via the Schiff base reaction to form a biocompatible hydrogel adhesive for
hemostasis. Additionally, it is used as a drug delivery agent and can be administered
by different routes, such as nasal, oral, pulmonary, and gastrointestinal [14]. It has been
reported that insulin-loaded HA nano-delivery systems exhibit an effective hypoglycemic
effect [15]. Alginate, a natural polysaccharide extracted from seaweed, finds widespread
use in the fields of tissue engineering, wound healing, and regeneration, primarily in
the form of hydrogels [16]. For example, Yao [17] found that gelatin and sodium alginate
composite hydrogels performed well in wound healing through in vitro models of secretion
system experiments. Alginate for scaffold fabrication and stem cell regeneration has been a
hot research topic in recent years [18]. A composite of glass nanoparticles and alginate has
been shown to be useful for bone regeneration [19].

This paper undertakes a comprehensive review of the structure and properties of
alginate and hyaluronic acid, and compares the differences in the application of their
modified cross-linked derivatives in bone tissue engineering, wound dressings, and drug
carriers.
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2. Molecular Structure and Properties of Alginate and Hyaluronic Acid
2.1. Alginate

Alginic acid is a natural polysaccharide polymer compound rich in carboxyl groups
(COOH−) and has been widely used in cell engineering, 3D bioprinting, drug delivery
systems, medical dressings, and other fields [20]. The discovery of alginic acid can be traced
back to 1881, when Stanford extracted alginic acid with sodium carbonate and precipitated
it in an acidic solution, discovering D-mannuronic acid as one of the components of alginic
acid. In 1950, Fischer and Dörfel used chromatographic techniques to identify L-guluronic
acid in alginic acid. Brown algae such as kelp, macroalgae, Golden algae phylum, and
sargassum, and bacteria such as nitrogen-fixing bacteria and Pseudomonas are the main
sources of alginic acid [21,22].

It is worthy to note that the extracts derived from seaweed are typically alginates,
which are linear anionic block copolymers consisting of (M-block) β-D-mannuronic acid
and (G-block) α-L-guluronic acid [23] (Figure 1). Alginate, with its plethora of oxygen-
containing groups, including carboxyl and hydroxyl groups, is capable of forming in-
tramolecular hydrogen bonds [24]. Certain alginate extracted from seaweed may also carry
sulfate groups, while alginate-containing acetyl groups can be found in select bacteria.

The physicochemical properties of alginate depend on the M/G ratio [25], the block
length, and the arrangement of repeating units in the biopolymer [26]. Therefore, the
physicochemical properties of alginate can be influenced by where the extracted seaweed
is grown and the season of harvesting. Alginate-based biomaterials have been developed
to act in different forms in various fields. Among them, alginate hydrogels have been
extensively studied because of their better hygroscopicity, biocompatibility, non-toxicity
and flexibility, especially in tissue repair as well as in delivery systems. When high levels
of G-blocks meet divalent cations, the alginate backbone forms a rigid hydrogel and the
divalent cations bind to two oppositely placed G-blocks, forming an egg-box conformational
arrangement. Alginate gels with more repeating G-block units are considered stiffer and
more brittle [27]. In contrast, alginate gels characterized by a high proportion of M-blocks
behave as soft and more elastic gels [28]. Alginate with a high content of M-blocks was
reported to have reduced adhesion and showed immunostimulatory activity compared
to alginate with a high content of G-blocks [29,30]. Additionally, the stirring speed [31],
compression rate [32], and deformation percentage during the preparation process affect
the mechanical strength of alginate gels.

Over the course of recent years, myriad in vivo and in vitro experiments have been
conducted in order to assess the biocompatibility of alginate [33]. However, despite
these endeavors, the effects of alginate on the human population remain a contentious
and disputed issue. In a study conducted by Otterle [34], it was revealed that alginate
with high M content engenders heightened immunogenicity; nonetheless, this claim has
been challenged by other researchers, who have not encountered similar findings. It has
been observed that immunogenic reactions that arise at the site of injection are frequently
attributable to residual impurities, including, but not limited to, heavy metals and proteins.
In addition, Lee [35] conducted a study in which commercially available, highly purified
alginate gel was injected subcutaneously into mice, and it was determined that a significant
inflammatory response was not detected. Thus, it can be deduced that alginate that has
been purified several times does not elicit significant reactions when introduced into the
human body [36].

Alginate can achieve structural and property changes such as mechanical strength,
gelation properties and cell affinity by binding other biomaterials, immobilizing specific
ligands (peptides and sugar molecules) and by physical or chemical cross-linking. Alginate
is also one of the most important polymers used in the production of biomaterials (films,
gels, hydrogels, nanofibers, gauze, etc.) that create and maintain a moist environment
around wounds as a means of promoting rapid wound healing [37]. More importantly,
alginate-based biomaterials have been used in drug delivery systems due to their cross-
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linking activity and gelling properties, and the role of alginate gels in wrapping islets for
the treatment of type I diabetes has been demonstrated [38].
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2.2. Hyaluronic Acid

Hyaluronic acid (HA) is a glycosaminoglycan originally discovered in the vitreous
humor of the bovine eye in 1934, followed by in vitro synthesis in 1964. Hyaluronic
acid is made up of repeating D-glucuronic acid and N-acetyl-D-glucosamine linked by
β1-3 and β1-4 bonds [40] (Figure 2) and polymerized into a macromolecule of over
30,000 repeating units. Hyaluronic acid is one of the largest components of the extra-
cellular matrix (ECM) and is widely distributed in connective tissue, epithelial tissue, and
neural tissue. According to the molecular weight distribution, HA can be classified as
oligosaccharide (O-HA, <10 kDa), low-molecular-weight HA (LMW-HA, 10–250 kDa),
medium-molecular-weight HA (MMW-HA, 250–1000 kDa), high-molecular-weight HA
(HMW-HA, >1000 kDa), and ultra-high-molecular-weight HA (vHMW-HA, >6000 kDa).
In the physiological environment, each carboxyl group in the HA molecule carries an an-
ionic charge, and these charged carboxyl groups can establish hydrogen bonds with water
molecules, thereby stabilizing the secondary structure of HA molecules. The formation
of such hydrogen bonds is related to the molecular weight of HA, with higher molecular
weights exhibiting higher stability, viscosity, and viscoelasticity [41,42].

The viscosity of HA is of paramount importance in the development of biochemical
processes, tissue engineering, and drug delivery applications. The rheology of HA is influ-
enced by several factors, including the ionic strength of the solution, pH, and temperature.
When the pH of the solution is outside the range of 4 to 11, the HA molecule undergoes
hydrolytic degradation, which can compromise the integrity of the polymer network and
reduce its viscosity [43]. Interestingly, Kobayashi [44] discovered a remarkable linear re-
lationship between the viscosity and molecular weight of HA. Changes in the molecular
weight of HA, whether an increase or decrease by a factor of two, can lead to a ten-fold
change in shear viscosity.

With the development of biomaterials, the biological properties of HA-based materials
have received considerable attention. However, understanding the molecular weight of
HA is still necessary for wound healing, scaffold development, and other cutting-edge
technologies. The size of the molecular weight of HA also affects its biological effects
and applications, to some extent [45] (Table 1). Additionally, the biocompatibility and
cytotoxicity of HA are the most critical properties of HA as a biomaterial. Increasing the
content of HA not only enhances the mechanical properties of HA–PL hydrogels, but also
improves the cellular biocompatibility without exhibiting any cytotoxicity [46]. This finding
is consistent with the research of Aunina [47].



Polymers 2023, 15, 2149 4 of 20

Table 1. Properties and applications of different molecular weights of hyaluronic acid.

Molecular Weight Characteristic Application References

0.4–4 kDa Non-apoptotic Inducer of heat shock
proteins [48,49]

6–20 kDa Immunostimulatory Cell proliferation
angiogenesis [49,50]

200–250 kDa Immunosuppressive Wound dressing [51,52]

<500 kDa Anti-angiogenic
activity

Space filler
Natural immunologic
depressant

[45,53,54]

Due to the large number of carboxyl and hydroxyl groups in the hyaluronic acid
molecule, this allows hyaluronic acid to absorb exudates and enhance cell adhesion [55].
The free carboxyl and hydroxyl groups also allow HA to be richly chemically modified and
many HA derivatives can be formed by chemical functionalization of carboxyl, hydroxyl
and amide functional groups through methacrylate and carbodiimide reactions [56]. In
addition, hyaluronic acid polymers can be completely hydrolyzed by the enzymatic action
of hyaluronidase (HYAL), which allows hyaluronic acid composites to play an important
role in tissue engineering and drug delivery systems [57].
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2.3. Analytical Comparison of Alginate and Hyaluronic Acid

Although alginate and hyaluronic acid are both natural polymers that have shown
potential for biomedical applications, they have different chemical structures, physical
properties, and biological functions that make them suitable for different applications. The
chemical structure of alginate is linear and it has relatively low viscosity and viscoelastic-
ity [59]. Moreover, the hydrophobicity of alginate is high, which can interact with some
proteins and, thus, affect its biological activity [60]. In contrast, the N-acetylglucosamine
unit on the hyaluronan molecule causes the molecule to exhibit a branched structure [61],
which gives hyaluronan a more spatial structure and allows it to form a more stable molec-
ular conformation in aqueous solution. This leads to a higher viscosity and viscoelasticity
of hyaluronic acid in an aqueous solution, resulting in better moisturizing properties.

In addition, alginate forms gels in the presence of divalent cations (e.g., calcium ions),
which cross-link the polymer chains. The properties of the resulting hydrogel can be
controlled by varying the concentration of alginate and the type and concentration of
cross-linking agent. Hyaluronic acid, on the other hand, forms gels in a different way, either
by physical entanglement of polymer chains or by chemical cross-linking with cross-linking
agents to form hydrogels [62].

Alginate is biocompatible, biodegradable, and non-toxic, which makes it an excellent
candidate for use in biomedical applications [63]. It has been used in wound healing, drug
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delivery, and tissue engineering. Alginate also has immunomodulatory properties that
can be useful in the treatment of inflammation and autoimmune diseases. Hyaluronic
acid plays an important role in tissue hydration, lubrication, and cell proliferation. It is
found in many tissues throughout the body, such as in the skin, cartilage, and synovial
fluid. Hyaluronic acid has been extensively studied for its use in tissue engineering, wound
healing, and drug delivery [64]. It is also used in cosmetic products for its hydrating and
anti-aging properties. We analyze and compare their similarities and differences in three
aspects: bone tissue engineering, wound dressings, and drug carriers.

3. Analytical Comparison of Alginate and Hyaluronic Acid for Tissue Engineering and
Drug Delivery Applications
3.1. Composites Based on Alginate and Hyaluronic Acid

Although natural polymers such as alginate and hyaluronic acid have been used in
biomedicine for thousands of years, they still have limitations as single materials. The high
hydrophilicity of hyaluronic acid makes it difficult to directly combine it with hydrophobic
drugs; alginate hydrogels exhibit poor mechanical properties and, due to their inertness,
alginates do not provide binding sites for cells [65]. However, numerous studies on
natural biopolymers in recent decades have found that composites based on alginate
and hyaluronic acid could make them more attractive biomaterials. Sithole [66] forms
polyelectrolyte complexes from sodium alginate and poly (ethyleneimine) through solution
interactions and designs scaffolds with mechanical capabilities for bone tissue engineering
applications. Drozdova [67] prepared a composite macroporous hydrogel with hyaluronic
acid/chitosan (Hyal/Ch) to load hydroxyapatite nanoparticles (nHAp), which can promote
cell growth and proliferation and is expected to be used for bone tissue repair.

In addition, the morphology of alginate- and hyaluronic-acid-based composites is
diverse. Thin films, sponges, aerogels, and microspheres have all been widely used in
biomedical applications. We summarize some common composites in Table 2.

Table 2. Composites based on alginate and hyaluronic acid.

Form Composites Technique References

Nanofibers Alginate/poly(ethylene oxide)
Hyaluronic acid derivative

Electrostatic pinning
Electrostatic pinning

[68]
[69]

Microparticles
Calcium alginate/zein/hydroxypropyl

Methylcellulose
Hyaluronic acid/PLGA-/PLA

High voltage electrical
discharge

Double emulsion solvent
evaporation

[70]
[71]

Hydrogel film Alginate/acacia
Hyaluronic acid/Pt

Polymerization
Cross-linking

[72]
[73]

Hydrogels Sodium alginate/acrylic acid
Hyaluronic acid/ε-Polylysine

Electronic cross-linking and
grafting

Physical cross-linking

[74]
[47]

Scaffolds Alginate/gelatin/HEMA
Methacrylated hyaluronic acid

Porogenation method and
cross-linking
Cross-linking

[75]
[76]

Aerogels Alginate/poly(vinyl alcohol)
Hyaluronic acid/ε-Polylysine

Interpenetrating cross-linking
Electrostatic interaction

[77]
[78]

Film Sodium alginate/antagonistic yeasts
Hyaluronic acid/silk fibroin

Polymerization
Cross-linking

[79]
[80]

Sponge Alginate/chitosan
Hyaluronic acid/PAA/PVP

Cross-linking
Solid/solution interface

complexation

[81]
[82]

PLGA: poly(lactide-co-glycolide); PLA: poly(lactide); HEMA: 2-hydroxyethyl methacrylate; PAA: poly(acrylic
acid); PVP: polyvinylpyrrolidone.
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3.2. Bone and Cartilage Tissue Engineering

It is well-known that bone tissue has a natural ability to regenerate, but when the
damage exceeds 2 cm, the bone injury will not be able to heal on its own [83]. With the
advent of different biomaterials, bone and cartilage tissue engineering have received a lot
of attention. The main goal of bone tissue engineering is to prepare a material that can
be used for cellular remodeling by the body itself after artificial introduction of a bone
defect [84]. Despite considerable progress in the development of biomaterials for bone
tissue engineering applications, there are still some barriers to clinical translation. For
example, while mechanical stability of scaffolds is required in many applications, rapid
degradability is also required to accelerate tissue inward growth. Thus, composite materials
offer the potential to develop tunable systems that meet a variety of requirements.

Scaffolds are temporary support structures for growing cells and tissues and play a
vital role in supporting cells [85]. After a scaffold is implanted in the body, it can effectively
support and act as a platform for host cell adhesion, proliferation, differentiation, and
the formation of new bone tissue in vivo. The scaffolds should have several essential
characteristics: (a) the surface can be adhered to by cells, promote cell growth, and retain
the differentiation function of the cells [86]; (b) the scaffolds and their degradation by-
products should not cause inflammation or be toxic in vivo [87]; (c) the implanted scaffolds
must have adequate mechanical integrity [88]; (d) the porosity should be high enough
to provide sufficient space for cell adhesion and extracellular matrix (ECM) regeneration
during the culture process [89,90].

The HA scaffold material is prepared by different chemical modifications [91]. The
derivatives obtained by chemical modification have different physicochemical properties
from the natural polymers, but most of them can still maintain the biocompatibility and
biodegradability of HA [92]. HA has many advantages as a tissue scaffold: (a) HA plays
an important role in cell differentiation and cell growth [93]; (b) as HA can be involved
in every step of the wound healing process, exogenous HA has the potential to provide a
faster healing effect [94].

It has been shown that HA polymer scaffolds can be used in cartilage regeneration [95].
Several authors have used freeze-dried HA/chitosan [96] and HA/collagen scaffolds [97]
to wrap auricular chondrocytes for cellular cartilage regeneration. Liu [98] implanted
aortic endothelial cells into a scaffold formed by cross-linking thioglycolic acid (HA) with
polyethylene glycol diacrylate (PEGDA) and transplanted it into a patellar groove defect
in rabbit femoral articular cartilage. After 12 weeks, the defect was completely repaired.
Lee [99] reconstructed articular cartilage using a chitosan–HA scaffold and showed that
chondrocytes within the scaffold re-differentiated into hyaline cartilage structures and had
collagen II expression. The hyaline cartilage obtained was transplanted to cartilage defects
in the patellar groove of the rabbit knee and assessed by immunohistology: both hyaline
cartilage and cartilage defects were restored, in contrast to the fibrocartilage formed in the
control group.

Park [100] evaluated the utility of three novel hydrogels loaded with human periodon-
tal ligament stem cells (hPLSC) for cartilage tissue engineering based on click-cross-linked
hyaluronic acid hydrogels (cx-ha), namely, cx-ha, covalently linked and physically loaded
cell regulatory protein-2 (CM), Cx-HA-CM, and Cx-HA(+CM). Cx-ha consists of the prepa-
ration of tetrazine-modified HA (HA-Tet) and transcyclooctene-modified HA (HA-TCO).
In vivo cartilage differentiation results show that implantation of Cx-HA, Cx-HA(+CM),
and Cx-HA-CM with hPLSC show a more organized tissue-like structure(Figure 3). The
reason for this is that the action of CM on cell surface TGF-β receptors synergistically
induces chondrogenic differentiation of hPLSC.
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Scaffolds prepared from alginate-based composites have adjustable mechanical prop-
erties and low cost, and are considered to be one of the best materials for cartilage regen-
eration [101]. The use of regeneration promoters including bone marrow mesenchymal
stem cells (MSCs) or supplementation with natural growth factors such as platelet-rich
concentrates (PRC) has been shown to promote cartilage regeneration. The simultaneous
use of MSCs and PRC may provide a synergistic effect and improve the repair of local carti-
lage damage, but this has not yet been demonstrated. Therefore, Samuel [102] conducted
an experimental evaluation of whether the combined application of PRC could further
enhance the repair capacity of alginate-coated MSCs in rabbit cartilage injury. Artificial
total cartilage defects were modelled in the weight-bearing region of the medial femoral
condyle of the bilateral knee joint in 30 New Zealand White rabbits. One month later, the
30 rabbits were randomly and equally divided into three treatment groups: alginate-coated
PRC, MSCs, and PRC + MSCs composite grafts were implanted in the right knee joint.
The results show that at 3 months, the grafts with PRC alone are as effective as MSCs in
inducing cartilage defect repair. In contrast, the histological score is significantly higher in
the PRC + MSC group (p < 0.05). At 6 months, in addition to the higher histological score
and stronger staining, glycosaminoglycan per total protein content is significantly higher
in the PRC + MSC group (3.4 ± 0.3 mg/mg) than in the MSC group (2.6 ± 0.2 mg/mg) or
the PRC group (2.1 ± 0.2 mg/mg) (p < 0.05).

The application of alginate hydrogels has been reported to improve the histologic prop-
erties of tendon repair in vivo [103]. Yao [104] prepared a polycaprolactone (PCL)/sodium
alginate (ALG) hydrogel composite scaffold loaded with melatonin MLT by electrostatic
spinning technique, which had good mechanical properties and biocompatibility. The
experimental results show that the PCL/MLT–ALG scaffold inhibits the production of
reactive oxygen species (ROS), thus, promoting tendon repair. Here, we exemplify some
examples of alginate- and hyaluronic-acid-based composites in bone tissue engineering in
Table 3.

Alginate scaffolds facilitate cell regeneration and bone tissue formation, and can be
used for the repair of some bone defects that require a relatively short time to form new bone
tissue, such as bone severance and alveolar bone defects. The differences in the application
of alginate and HA in bone tissue engineering have been investigated. Robert [112] used
different concentrations of alginate and high-relative molecular mass HA hydrogels to
culture osteoblasts MC3T3-E1 cells separately for a long period. The results show that
the cells cultured with alginate show elevated bone sialic acid protein (BSP) mRNA levels
and osteocalcin mRNA levels at later stages of maturation compared to control cells and
cells cultured with high relative molecular mass HA, which are considered indicators of
osteoblast differentiation and mineralization. This demonstrates that alginate hydrogels
may be more suitable for bone tissue engineering applications than high-relative molecular
mass hyaluronic acid hydrogels.
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Table 3. Alginate- and hyaluronic-acid-based composites in bone tissue engineering.

Material Fabrication Form Main Outcomes Reference

Collagen/oHAs/
hydroxyapatite Lyophilization Composite scaffold

Facilitate the osteogenic
differentiation of

MC3T3-E1 and BMSCs
[105]

HA/gelatin Low-temperature
polymerization Cryogels

Restores and improves
damaged tissue

3T3 cell adhesion is
enhanced

[106]

HA/peptide Electrostatic
spinning

Electrospun fibrous
scaffold

MC3T3-E1 has
significant osteogenic

differentiation and
calcium mineralization.

[107]

HA/corn silk Low-temperature
polymerization Antibacterial scaffold

Mesenchymal stem
cells exhibit a high

degree of bone
differentiation

[108]

ALG/PGU/CNFs Polymerization Hydrogel
nanocomposite

Improved success rate
of bone regeneration [109]

ALG/BCNs/CS Layer-by-layer Composite scaffold

Promoted the adhesion
and spreading of MG70

cells and MC63T3-E3
cells

[110]

ALG/Hydroxyapatite Electrostatic
spinning Nanocomposite fibers

More stable attachment
of rat cranial osteocytes

to the scaffold
[111]

CNFs: carbon nanofibers; PGU: polyglucuronic acid; BCNs: bacterial cellulose nanocrystals; CS: chitosan.

3.3. Wound Dressings

The skin, our body’s frontline defense against microbial invasion and dehydration,
is crucial in maintaining our overall well-being [113]. However, trauma to the skin can
lead to fluid loss and wound infection, potentially delaying or even preventing proper
wound healing [114]. In order to avoid such deleterious outcomes, a variety of biomaterials,
including sponges, films, and hydrogels, have been developed for tissue repair.

Hyaluronic acid (HA), the primary component of the skin’s extracellular matrix (ECM),
plays a pivotal role in inflammatory responses, angiogenesis, and tissue regeneration. How-
ever, different molecular weights of HA have distinct effects on wound healing [115].
High-molecular-weight HA (HMW-HA) can suppress inflammation by regulating the re-
cruitment of inflammatory cells, cytokine production, and stem cell migration. In contrast,
low-molecular-weight HA (LMW-HA) promotes angiogenesis. Meanwhile, oligomeric HA
(O-HA) stimulates endothelial cell migration and differentiation and fosters the prolifera-
tion of dermal fibroblasts and keratin-forming cells. As a result, composite materials based
on hyaluronic acid have been developed for use in wound dressings.

In the realm of wound healing, the film serves as an essential mediator of water
vapor transport, O2/CO2 exchange, and drug delivery. Wang’s latest creation [116], the
montmorillonite/hyaluronic acid-gentamicin (MMT/HA–GS) multilayer film, is a prime
example of such technology. This unique film, with its ability to respond to hyaluronidase
(HAS) and bacterial infection microenvironments, facilitates the progressive release of GS,
thus, accelerating wound healing. Not only does it offer the ability to load high doses of
drugs (0.85 mg/cm2), but it also allows for intelligent drug release and peels away from the
wound surface. In vitro and in vivo tests have shown that the film is highly bactericidal,
and its mammalian cytological and histocompatibility properties are superior.

The sponge was able to absorb a large amount of wound exudate and maintain a moist
environment at the wound site [117]. Rania [118] developed a chitosan–hyaluronic acid
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composite sponge enriched with andrographolide (AND). In vivo healing experiments
in rats show that the hyaluronic acid composite sponge accelerates wound healing and
reduces scar formation. Matsumoto [119] obtained cross-linked HMW-HA/LMW-HA
sponges by immersing HMW-HA sponges in LMW-HA solution during experiments.
Based on abdominal data from rats, the vascular area was higher in rats treated with
HMW-HA/LMW-HA (≈0.05 mm2), which was in contrast to rats treated with HMW-HA
sponges (≈0.03 mm2). This suggests that doping the sponges with LMW-HA accelerates the
angiogenic process. Furthermore, the presence of myeloperoxidase (MPO) in neutrophils
confirms that LMW-HA also inhibits the exuberant inflammatory response.

Nanofibrous membranes prepared by electrostatic spinning have a unique reticular
structure [120] that promotes cell adhesion, growth, migration, and differentiation [121].
Figueira [122] used electrostatic spinning to prepare a bilayer electrostatic spinning mem-
brane, with the upper layer consisting of hyaluronic acid and polycaprolactone, which acts
as a physical barrier against external threats. The lower layer of the membrane consisted
of chitosan and salicylic acid, which conferred anti-inflammatory and antibacterial activ-
ity to the lower layer. According to confocal laser scanning microscopy (CLSM images)
(Figure 4), human fibroblasts maintain biological activity on the surface of the electrostati-
cally spun membrane, and after 3 days, cell adhesion and proliferation occur. This suggests
that this hyaluronic acid electrostatic-spun silk membrane has the potential to accelerate
wound healing.
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Figure 4. CLSM images of fibroblasts cultured at surface of culture plates (µ-slide 8 well Ibidi imaging
plates (control)), HA_PCL and CS_ZN_SA membranes after 1 and 3 days. Blue channel: cell nuclei-
labeled Hoechst33342; red channel: cytoplasm stained with WGA-Alexa 594 conjugate. Reproduced
with permission [122] © 2023 Elsevier B.V. All rights reserved.

Wound healing is a multifaceted process that is influenced by various factors [18].
Among the many wound dressing options available, alginate-based dressings have demon-
strated efficacy in creating an optimal wound-healing environment by removing wound
exudate and providing a moist atmosphere [123].

Cheng [124] prepared a composite cellulose oxide nanocrystal (TOCN)/alginate film
and sponge, which could offer superior wound healing properties. Through experimental
evaluation, it was discovered that the water absorption capacity and chemical stability
of the TOCN/SA composite sponges and films were higher than those of the single SA
sponges and SA films. Their hemostatic properties were assessed by the bleeding volume
and time to hemostasis in two injury models (rabbit liver trauma model and rabbit ear
artery model). Astonishingly, the results indicate that the TOCN/SA composite sponge
boasts an extraordinary hemostatic effect and completely degrades after a mere 3 weeks.

Shamshina [125] prepared a chitin–calcium alginate composite fiber dressing by
dry–wet spinning. The ultimate stress value of the dressing was comparable to that
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of calcium alginate fiber and the water absorption capacity was consistent with that of
currently marketed wound dressings. Wound-healing experiments show that rats achieve
95–99% wound closure on day 10 and complete closure on day 14. Tabassum [126] prepared
wafers encapsulated with colloidal silver using sodium alginate and chitosan as raw mate-
rials, which were effective in reducing microbial infections in wounds using a freeze-drying
method. Compared to commercially available products, the rate of wound healing was
significantly increased in wounds treated with wafers containing colloidal silver. Here, we
exemplify some examples of alginate- and hyaluronic-acid-based composites in wound
dressings in Table 4.

Table 4. Alginate- and hyaluronic-acid-based composites in wound dressings.

Type of Wound Dressing Composite Materials Applications Reference

Sponges HA, chitosan
HA, chitosan, AgNPs

Wound healing
Diabetic food ulcer

[118]
[127]

Films Alginate, lactobacillus plantarum
HA, CSH, EEP

Burn wound
Wound healing

[128]
[129]

Hydrogels Alginate, carboxymethyl chitosan
HA-EDA, α-elastin

Chronic wounds
Skin wounds

[130]
[131]

Gauzes Calcium alginate, chitin, gauze
HA, silver sulfadiazine

Sinus surgery
Ulcer healing

[132]
[133]

Foams
Alginate, polyhexamethylene Biguanide,
chitosan
HA, ceramide

Wound dressing
Atopic dermatitis

[134]
[135]

CSH: cornstarch; EEP: ethanolic extract of propolis.

In the realm of wound healing, both alginate- and hyaluronic-acid-based dressings are
thought to be efficacious in speeding up the recovery process. Nonetheless, the question
remains whether their coagulation effects on animals in vivo and in vitro warrant further
exploration. At present, hyaluronic-acid-based wound dressings are more widely used
in clinical applications, but their employment is subject to some limitations. For instance,
hyaluronic acid can be degraded by hyaluronidase secreted by some bacteria found at the
wound site, and under certain circumstances, it can even function as a ligand for microbial
attachment [136]. When selecting the appropriate wound dressing, it is vital to consider
the specific application scenario and the therapeutic effect that needs to be achieved [137].

Alginate-based wound dressings can be chosen when the desired dressing needs to
have better mechanical properties and promote coagulation. Abou-Okeil [138] devised a
cross-linked HA/sodium alginate (SA) film using calcium ions. In addition, he incorporated
sulfadiazine (SD) with silver nanoparticles (Ag-NPs) alone or in combination as bioactive
agents into this film. The findings demonstrate that the HA/SA/Ca2+/SD/Ag-NPs biofilm
display the highest antibacterial activity, and it is proven to be the most effective for wound
healing in rats. These outcomes provide some valuable insights into the preparation of
wound dressings using alginate together with hyaluronic acid as a substrate.

3.4. Drug Delivery Systems

A comprehensive and technologically advanced system known as the drug delivery
system (DDS) has emerged as an intricate solution for regulating the spatial, temporal, and
dosing distribution of drugs within an organism. The DDS can be broadly categorized
into two main types: conventional drug delivery systems (CDDS) and new drug delivery
systems (NDDS) [139]. The CDDSs exhibit drug concentrations that are not constant during
the treatment process, requiring frequent administration, which, in turn, leads to an abrupt
surge in blood levels after each dose and exceeding toxicity limits [140]. In contrast, NDDS
have gained significant traction and research attention in the pursuit of better therapeutic
outcomes and mitigation of deleterious side effects on patients, owing to their ability to
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deliver drugs in optimal doses to specific regions of the body for gradual release, thereby
minimizing the toxic ramifications of the drug [141].

In recent times, the use of HA and its derivatives in new drug delivery systems (NDDS)
has garnered considerable attention, primarily as delivery vehicles for steroids, peptides,
and various anti-cancer drugs [142]. These advanced drug carriers exhibit the remarkable
ability to significantly enhance the residence time at the drug delivery site and reduce the
number of doses, thereby circumventing the need for frequent administration [143].

Notably, Song [144] prepared a novel HA-modified graphene oxide (GO) nanohybrid
for controlling the release of the anticancer drug Adriamycin (DOX) in tumor therapy. DOX
achieved a loading efficiency of 42.9% on nanohybrids. In vitro release assays demonstrate
that HA–GO–DOX nanohybrids could release DOX continuously and slowly in phosphate-
buffered solutions. In vivo antitumor efficiency of HA–GO–DOX shows significantly
enhanced tumor inhibition in H22 hepatoma-cell-bearing mice compared to free DOX and
GO–DOX formulations.

The potential of hyaluronic acid hydrogels as drug carriers for treating inflamma-
tory conditions has been extensively researched in recent times. Zhang [145] devises a
carboxymethyl chitosan (CC) microsphere loaded with curcumin (CUR) and encapsulated
it in an HA–gelatin (GE) composite hydrogel to treat inflammatory bowel disease (IBD).
The formulation exhibits good sustained release performance with a drug release rate of
50% at 65 h, underscoring its potential as an ideal drug delivery vehicle. In vivo pharma-
cokinetic experiments show that the colonic tissue can sustain high levels of CUR for over
24 h, thereby providing valuable insights for developing novel oral delivery systems with
controlled release behavior, particularly for treating IBD.

Acne has long been a scourge for millions of people worldwide, but a new route
to treating this condition has been identified by Tolentino [146]. In this novel approach,
chitosan and hyaluronic acid nanoparticles encapsulated with clindamycin are delivered
to the hair follicle sebaceous glands. In vitro skin penetration experiments reveal that
hyaluronic acid nanoparticles encapsulated with clindamycin increase clindamycin content
in the hair follicle sebaceous glands (up to 77% of encapsulation), which is superior to
commercial preparations (25%) and chitosan nanoparticles (53%). Furthermore, subsequent
studies establish that the release of clindamycin is almost 100% when the skin is in the
sebaceous state, signifying the enormous potential of this technique for treating acne.

Alginate hydrogels can be used as drug carriers to deliver low-molecular-weight
drugs and macromolecular polymers, including proteins [147]. Liu [148] synthesized a
temperature-sensitive copolymer, alginate–isopropyl acrylamide (alginate–PNIPAAm).
The copolymer can form self-assembled micelles when the temperature is raised above
the critical micelle temperature. In vitro release experiments show that the anticancer
drug Adriamycin (DOX) is continuously released as micelles in PBS-buffered solutions.
Furthermore, in vitro cellular experiments show that the gradually released DOX micelles
can significantly enhance the uptake of DOX by multidrug-resistant AT3B-1 cells, thereby
suggesting that alginate–PNIPAAm injectable hydrogels may well represent a potential
therapeutic approach to address the vexing challenge of multi-drug resistance in the context
of cancer therapy.

Alginate-based composites can also be used to construct hollow microencapsulated
drug carriers by the layer-by-layer technique [149]. Shen [150] prepared a polyelectrolyte
microcapsule, a chitosan–alginate multilayer bovine serum albumin capsule. The re-
searchers encapsulated DOX in bovine serum albumin (BSA) gel capsules and performed
in vitro antitumor experiments with the human breast cancer Adriamycin-resistant cell line
MCF-7/ADR. The results show that the DOX-loaded BSA gel capsules are more lethal to
MCF-7/ADR cells than free DOX. Additionally, the experimental findings evince some
evidence of reversal of drug resistance, which is a vexing challenge in the context of cancer
therapy. A nude rat transplantation tumor model showed that the encapsulated DOX had
a longer retention time at the tumor site and a greater antitumor capacity in rats. There are
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various forms of alginate- and hyaluronic-acid-based composites in drug delivery (Table 5).
It is not limited to hydrogels and capsules.

Table 5. Forms and techniques of alginate- and hyaluronic-acid-based composites in drug delivery.

Form Composites Technique References

Tablets Methylcellulose/hyaluronic acid/mannitol
Alginate/diisopropylcarbodiimid

Direct compression
Direct compression

[151]
[152]

Capsules HA/PAH/PLL
Chitosan/alginate/BSA

Layer-by-layer
Layer-by-layer

[153]
[150]

Suppositories HA/dehydroepiandrosterone sulphate
Alginate–tamarind

Fusion molding
Curing

[154]
[155]

BSA: multilayer bovine serum albumin; PAH: poly(allylamine); PLL: poly(lysine).

In the realm of drug delivery systems, researchers have been investigating the potential
of combining alginate and hyaluronic acid biocomposites. Zhang [156] devised a series of
injectable hydrogels (HA/ALG) based on oxidized sodium alginate and acylated hyaluronic
acid, utilizing bovine serum albumin (BSA) as a model for studying the controlled release
properties of the drug. The results of in vitro release experiments reveal that the cumulative
release of BSA from HA2/ALG2, HA3/ALG3, and HA4/ALG4 drug-loaded hydrogels
after two days is approximately 72%, 69%, and 20%, respectively (Figure 5). Movahedi [157]
encapsulated oxaliplatin (OXA) for the treatment of rectal cancer on folic acid (Folate)-
coupled hyaluronic acid and encapsulated in alginate nanogels. The antitumor activity
of free OXA, AL, HA/AL, HA/AL/OXA, and F/HA/AL/OXA nanogels were assessed
in vitro. The results show that F/HA/AL/OXA nanogels show the highest antitumor
activity in human colon cancer (HT29) cells, with a significant increase in apoptotic gene
expression in HT29 cells compared to free OXA and empty nanogels. In conclusion, the
combined utilization of alginate and hyaluronic acid in drug delivery systems has shown
great promise, as evidenced by the results of these experiments. HA/ALG injectable
hydrogels and F/HA/AL/OXA nanogels represent some exciting avenues for further
exploration in this field. Here, we give some examples of alginate- and hyaluronic-acid-
based composites in drug delivery, as shown in Table 6.
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Table 6. Alginate- and hyaluronic-acid-based composites for drug delivery.

Drugs Polymer Route Formulation/Design
Approach References

Furosemide Alginate/chitosan Parenteral

Muco-penetrating
nanoparticles for
enhancement of oral
bioavailability

[158]

Ciprofloxacin Sodium alginate/
glycol/chitosan Pulmonary Grafted and

spray-drying [159]

Ciprofloxacin Calcium alginate Transdermal Lyophilized
hydrogels [160]

Irinotecan HA–NLC Intravenous injection Nanostructured lipid
carriers [161]

Doxorubicin HA-PHis/TPGS2k Transdermal pH-sensitive mixed
copolymer micelles [162]

Paclitaxel HA/DOCA Transdermal Redox-sensitive
micelles [163]

Paclitaxel HA/solid lipid
nanoparticles Intravenous injection Solid lipid

nanoparticles [164]

NLC: nanostructured lipid carrier; TPGS2k: d-α-tocopheryl polyethylene glycol 2000; HA-Phis: hyaluronic
acid-g-poly(l-histidine); DOCA: deoxycholic acid.

Alginate and hyaluronic acid have been identified as promising materials for the
construction of DDSs. However, the application of alginate and hyaluronic acid in DDSs
still faces some challenges. On the one hand, the molecular mass and structure of polysac-
charides can be influenced by seasonal variations and environmental factors, which can
affect the performance of the DDSs. On the other hand, the design of alginate- and
hyaluronic-acid-based DDSs is still in its early stages, with many studies only providing
brief evaluations of the properties and pharmacological effects of DDSs through in vitro
and in vivo experiments. The interaction of DDSs with the human body, including the
absorption, distribution, metabolism, and excretion of the carriers in the human body,
requires further investigation. Nevertheless, researchers are hopeful that more alginate-
and hyaluronic-acid-based nanomedicines will be approved for clinical applications. This
would provide new and innovative solutions for drug delivery, potentially leading to
improved therapeutic outcomes for patients.

4. Conclusions

Alginate and hyaluronic acid are emerging as a revolutionary class of biomaterials
with unique biomedical applications. These versatile polymers have opened up new
avenues for developing novel materials for cartilage regeneration, wound healing, and
drug delivery. Tissue engineering has benefitted greatly from these polymers, as they can
recreate the extracellular matrix (ECM) of the skin, thus, promoting stem cell differentiation
or preserving the cellular phenotype. Current studies in this field are aimed at skin wound
repair and repairing damaged cartilage, such as articular cartilage and ganglia. In the
field of drug delivery, alginate- and hyaluronic-acid-based drug delivery systems (DDS)
are gaining popularity as they enable slow, targeted release of drugs to specific cells.
Research in this area is currently focused on developing therapies for inflammation and
cancer treatment, such as containing or killing cancer cells. However, further research is
needed to fully understand the properties and effectiveness of these biomaterials in various
biomedical applications.

This comprehensive review article provides insight into the molecular structure and
physicochemical properties of alginate and hyaluronic acid, as well as their versatile
applications in emerging fields such as tissue engineering and drug delivery systems
(DSS). In addition, we explore the tantalizing possibilities of replacing or even combining
hyaluronic acid composites with alginate composites for greater biomedical efficacy. Given
their rich and diverse origins, as well as their impressive biocompatibility, we are optimistic
that more composites based on these two remarkable materials will be approved for clinical
use, leading to superior therapeutic outcomes and considerable economic benefits.



Polymers 2023, 15, 2149 14 of 20

Author Contributions: S.Z. conceived and designed the structure of this review, J.D. wrote the
manuscript which was finally edited by S.Z., R.P. and Z.X. contributed to literature survey, M.L. and
R.Z. of supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by [Medical-Industrial Crossover Project of High-level University
Construction No. 10-22-310-525], [Ministry of Agriculture and Rural Affairs Key Laboratory Project
No. KLSF-2023-004], [civil-military integration projects of High-level university].

Institutional Review Board Statement: This article does not contain any studies involving human
or animal subjects.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have influenced the work reported in this paper.

References
1. Nair, S.S.; Mishra, S.K.; Kumar, D. Recent progress in conductive polymeric materials for biomedical applications. Polym. Adv.

Technol. 2019, 30, 2932–2953. [CrossRef]
2. Volpatti, L.R.; Facklam, A.L.; Cortinas, A.B.; Lu, Y.C.; Matranga, M.A.; MacIsaac, C.; Hill, M.C.; Langer, R.; Anderson, D.G.

Microgel encapsulated nanoparticles for glucose-responsive insulin delivery. Biomaterials 2021, 267, 120458. [CrossRef] [PubMed]
3. Hoque, J.; Zeng, Y.; Newman, H.; Gonzales, G.; Lee, C.; Varghese, S. Microgel-Assisted Delivery of Adenosine to Accelerate

Fracture Healing. ACS Biomater. Sci. Eng. 2022, 8, 4863–4872. [CrossRef] [PubMed]
4. Guimaraes, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J.

Pharm. 2021, 601, 120571. [CrossRef] [PubMed]
5. Lai, W.F.; Wong, W.T.; Rogach, A.L. Molecular Design of Layer-by-Layer Functionalized Liposomes for Oral Drug Delivery. ACS

Appl. Mater. Interfaces 2020, 12, 43341–43351. [CrossRef] [PubMed]
6. Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and

Therapy. Curr. Drug Metab. 2019, 20, 416–429. [CrossRef] [PubMed]
7. Liu, W.; Li, J.; Qin, Z.; Yao, M.; Tian, X.; Zhang, Z.; Zhang, L.; Guo, Q.; Zhang, L.; Zhu, D.; et al. Zwitterionic Unimolecular

Micelles with pH and Temperature Response: Enhanced In Vivo Circulation Stability and Tumor Therapeutic Efficiency. Langmuir
2020, 36, 3356–3366. [CrossRef]

8. Ishii, S.; Kaneko, J.; Nagasaki, Y. Dual Stimuli-Responsive Redox-Active Injectable Gel by Polyion Complex Based Flower Micelles
for Biomedical Applications. Macromolecules 2015, 48, 3088–3094. [CrossRef]

9. Kumar, R.; Sadeghi, K.; Jang, J.; Seo, J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Sci. Total
Environ. 2023, 882, 163446. [CrossRef]

10. Masaeli, R.; Zandsalimi, K.; Tayebi, L. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms. Ther. Innov. Regul.
Sci. 2019, 53, 120–127. [CrossRef]

11. Caputo, H.E.; Straub, J.E.; Grinstaff, M.W. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides.
Chem. Soc. Rev. 2019, 48, 2338–2365. [CrossRef] [PubMed]

12. Mohammad, C.A.; Mirza, B.A.; Mahmood, Z.S.; Zardawi, F.M. The Effect of Hyaluronic Acid Gel on Periodontal Parameters,
Pro-Inflammatory Cytokines and Biochemical Markers in Periodontitis Patients. Gels 2023, 9, 325. [CrossRef] [PubMed]

13. Xia, L.; Wang, S.; Jiang, Z.; Chi, J.; Yu, S.; Li, H.; Zhang, Y.; Li, L.; Zhou, C.; Liu, W.; et al. Hemostatic performance of chitosan-based
hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr. Polym. 2021, 264, 117965. [CrossRef] [PubMed]

14. Fakhari, A.; Berkland, C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in
osteoarthritis treatment. Acta Biomater. 2013, 9, 7081–7092. [CrossRef] [PubMed]

15. Wang, S.; Meng, S.; Zhou, X.; Gao, Z.; Piao, M.G. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin
Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023, 15, 820. [CrossRef]

16. Mohd Fauziee, N.A.; Chang, L.S.; Wan Mustapha, W.A.; Md Nor, A.R.; Lim, S.J. Functional polysaccharides of fucoidan, laminaran
and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int. J. Biol.
Macromol. 2021, 167, 1135–1145. [CrossRef]

17. Yao, H.; Yuan, X.; Wu, Z.; Park, S.; Zhang, W.; Chong, H.; Lin, L.; Piao, Y. Fabrication and Performance Evaluation of
Gelatin/Sodium Alginate Hydrogel-Based Macrophage and MSC Cell-Encapsulated Paracrine System with Potential Application
in Wound Healing. Int. J. Mol. Sci. 2023, 24, 1240. [CrossRef]

18. Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428.
[CrossRef]

19. Naruphontjirakul, P.; Panpisut, P.; Patntirapong, S. Zinc and Strontium-Substituted Bioactive Glass Nanoparticle/Alginate
Composites Scaffold for Bone Regeneration. Int. J. Mol. Sci. 2023, 24, 6150. [CrossRef]

20. Wang, M.; Chen, L.; Zhang, Z. Potential applications of alginate oligosaccharides for biomedicine—A mini review. Carbohydr.
Polym. 2021, 271, 118408. [CrossRef]

https://doi.org/10.1002/pat.4725
https://doi.org/10.1016/j.biomaterials.2020.120458
https://www.ncbi.nlm.nih.gov/pubmed/33197650
https://doi.org/10.1021/acsbiomaterials.2c00977
https://www.ncbi.nlm.nih.gov/pubmed/36266245
https://doi.org/10.1016/j.ijpharm.2021.120571
https://www.ncbi.nlm.nih.gov/pubmed/33812967
https://doi.org/10.1021/acsami.0c13504
https://www.ncbi.nlm.nih.gov/pubmed/32877163
https://doi.org/10.2174/1389200219666180918111528
https://www.ncbi.nlm.nih.gov/pubmed/30227814
https://doi.org/10.1021/acs.langmuir.0c00206
https://doi.org/10.1021/acs.macromol.5b00305
https://doi.org/10.1016/j.scitotenv.2023.163446
https://doi.org/10.1177/2168479018774320
https://doi.org/10.1039/C7CS00593H
https://www.ncbi.nlm.nih.gov/pubmed/30742140
https://doi.org/10.3390/gels9040325
https://www.ncbi.nlm.nih.gov/pubmed/37102937
https://doi.org/10.1016/j.carbpol.2021.117965
https://www.ncbi.nlm.nih.gov/pubmed/33910708
https://doi.org/10.1016/j.actbio.2013.03.005
https://www.ncbi.nlm.nih.gov/pubmed/23507088
https://doi.org/10.3390/pharmaceutics15030820
https://doi.org/10.1016/j.ijbiomac.2020.11.067
https://doi.org/10.3390/ijms24021240
https://doi.org/10.1016/j.ijbiomac.2020.07.311
https://doi.org/10.3390/ijms24076150
https://doi.org/10.1016/j.carbpol.2021.118408


Polymers 2023, 15, 2149 15 of 20

21. Benslima, A.; Sellimi, S.; Hamdi, M.; Nasri, R.; Jridi, M.; Cot, D.; Li, S.; Nasri, M.; Zouari, N. The brown seaweed Cystoseira
schiffneri as a source of sodium alginate: Chemical and structural characterization, and antioxidant activities. Food Biosci. 2021,
40, 100873. [CrossRef]

22. Rashedy, S.H.; Abd El Hafez, M.S.M.; Dar, M.A.; Cotas, J.; Pereira, L. Evaluation and Characterization of Alginate Extracted from
Brown Seaweed Collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [CrossRef]

23. Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of
Alginates. Mar. Drugs 2022, 20, 364. [CrossRef] [PubMed]

24. Gorshkova, M.Y.; Volkova, I.F.; Grigoryan, E.S.; Valuev, L.I. Sodium Alginate Interpolymer Complexes as a Platform for pH-
Tunable Drug Carriers. Polym. Sci. Ser. B 2020, 62, 678–684. [CrossRef]

25. Yang, X.; Sui, H.; Liang, H.; Li, J.; Li, B. Effects of M/G Ratios of Sodium Alginate on Physicochemical Stability and Calcium
Release Behavior of Pickering Emulsion Stabilized by Calcium Carbonate. Front. Nutr. 2021, 8, 818290. [CrossRef]

26. Khajouei, R.A.; Keramat, J.; Hamdami, N.; Ursu, A.-V.; Delattre, C.; Laroche, C.; Gardarin, C.; Lecerf, D.; Desbrières, J.; Djelveh,
G.; et al. Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. Int. J. Biol.
Macromol. 2018, 118, 1073–1081. [CrossRef]

27. Fu, S.; Thacker, A.; Sperger, D.M.; Boni, R.L.; Buckner, I.S.; Velankar, S.; Munson, E.J.; Block, L.H. Relevance of rheological
properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech 2011, 12, 453–460. [CrossRef]

28. Mancini, M.; Moresi, M.; Rancini, R. Mechanical properties of alginate gels: Empirical characterisation. J. Food Eng. 1999, 39,
369–378. [CrossRef]

29. Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering
applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100067. [CrossRef]
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