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Abstract: Rotary friction welding (RFW) could result in lower welding temperature, energy con-
sumption, or environmental effects as compared with fusion welding processes. RFW is a green
manufacturing technology with little environmental pollution in the field of joining methods. Thus,
RFW is widely employed to manufacture green products. In general, the welding quality of welded
parts, such as tensile strength, bending strength, and surface hardness is affected by the peak temper-
ature in the weld joint during the RFW of dissimilar plastic rods. However, hitherto little is known
about the domain knowledge of RFW of acrylonitrile butadiene styrene (ABS) and polycarbonate
(PC) polymer rods. To prevent random efforts and energy consumption, a green method to predict
the peak temperature in the weld joint of dissimilar RFW of ABS and PC rods was proposed. The
main objective of this work is to investigate the peak temperature in the weld joint during the RFW
using COMSOL multiphysics software for establishing an empirical technical database of RFW of
dissimilar polymer rods under different rotational speeds. The main findings include that the peak
temperature affecting the mechanical properties of RFW of PC and ABS can be determined by the
simulation model proposed in this work. The average error of predicting the peak temperature using
COMSOL software for five different rotational speeds is about 15 ◦C. The mesh element count of
875,688 is the optimal number of meshes for predicting peak temperature in the weld joint. The
bending strength of the welded part (y) using peak welding temperature (x) can be predicted by
the equation of y = −0.019 x2 + 5.081x − 200.75 with a correlation coefficient of 0.8857. The average
shore A surface hardness, impact energy, and bending strength of the welded parts were found to be
increased with increasing the rotational speed of RFW.

Keywords: energy consumption; environmental effects; rotary friction welding; acrylonitrile butadi-
ene styrene; polycarbonate; peak temperature; weld joint; environmental pollution

1. Introduction

The energy consumption associated with the pre-processing, welding process, and
post-processing steps of rotary friction welding (RFW) is obviously lower than gas metal
arc welding. The advantage of adhesive bonding is that it can be bonded with dissimilar
materials economically [1,2]. However, it is not suitable for industrial applications because
of its low working efficiency. The RFW [3–7] is a solid-state joining process using a
compressive axial force. According to practical experience in the industry, the RFW gives
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many advantages. The welding process has a lower peak temperature in the weld joint
than fusion welding (FW) [8,9]. Thus, intermetallic formation can be reduced. In addition,
a wide range of dissimilar materials can be joined. The welding process does not need a
filler metal and shielding gas. Many common defects associated with high-temperature
melting and solidification during FW, such as solidification cracks or pores can be avoided.
Therefore, welded parts with low defect rates as well as low distortion can be obtained
easily. The material used and manufacturing costs are reduced greatly compared with
subtractive techniques, such as machining from buck materials [10,11].

Zhang et al. [12] proposed a thermal compression bonding process to influence the
friction flow of formation intermetallic compounds in friction welding. Results revealed that
the frictional flow significantly promoted the formation of sub-micron-sized intermetallic
compounds along the weld interface. Ma et al. [13] studied the effects of temperature on
the mechanical performances of friction stir welded aluminum (Al) alloy joints. The results
revealed that the pin increases heat input and material flow at the bottom, reducing the
gradient along the thickness. Eliseev et al. [14] focused on the structural evolution in the
transfer layer of Al alloy welds fabricated with various axial loads. It was found that the
volume fraction and size of incoherent intermetallic particles decrease towards the center
of the layer. Iftikhar et al. [15] investigate the friction stir spot welding of thermoplastic
polymers. The results revealed that it is difficult to optimize the welding process parameters
because of the dependence on many factors. Pereira et al. [16] focused on the influence of
different welding methods on the mechanical strength of friction stir welds of thermoplastic
polymers. The results revealed that the increase in the welding speed ratio increased the
joint efficiency. Unfortunately, it was difficult to establish mathematical models because of
the variation in welding conditions. Wang et al. [17] studied RFW on dissimilar brass bars
using a pre-heating approach. It was found that a very narrow intermetallic compound
layer was formed. Ishraq et al. [18] analyzed the weld strength by optimizing the process
parameters of RFW at different levels. It was found that the reason for the high strength of a
selected material is the optimal level of fiberglass. Hangai et al. [19] investigated the effects
of the porosity of Al foam on the RFW. It was found that the Al foam can be welded to a
polycarbonate plate by RFW. Dhooge et al. [20] proposed a promising welding approach for
the fully automatic joining of pipelines, which is a new variant of the conventional friction
welding process, and discussed the optimization of the duration of the friction phase.

Polymer is frequently used in some structures, such as automobiles, pressure vessels,
and aircraft. Especially, the major difference between metal and polymer is that polymer
is more lightweight and anti-corrosive than metal. Polycarbonate (PC) and acrylonitrile
butadiene styrene (ABS) are compatible with each other since they have similar polarities.
Therefore, mixtures of ABS and PC have been widely employed in engineering applications.
In general, the major shortcomings of the trial-and-error method involve random efforts
and energy consumption. It is well known that the [21–25] thermal analysis solutions
can solve the most complex thermal challenges to predict the temperature. Unfortunately,
hitherto little is known about the domain knowledge of the RFW of ABS and PC polymer
rods. For this reason, the main objective of this study is to establish domain knowledge
of the RFW of ABS and PC rods. To prevent random efforts and energy consumption, a
green method to predict peak temperature in the weld joint of dissimilar RFW of ABS
and PC rods was proposed. Therefore, the COMSOL multiphysics software [26] was
employed to investigate the peak temperature in the weld joint during dissimilar RFW
of ABS and PC rods. An infrared thermal imager was employed to investigate the peak
temperature in the weld joint during RFW under five different rotational speeds. After
FRW, the peak temperature obtained by the experiment was compared with the simulation
results. Finally, an empirical technical database of RFW of dissimilar polymer rods under
different rotational speeds is established.
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2. Experimental Details

Figure 1 shows the research flowchart of this study. The research flow involves de-
signing the workpiece, investigating optimum printing parameters using fused deposition
modeling (FDM) [27], fabricating the workpieces, FRW, the determination of peak tem-
perature by an infrared thermal imager [28] under five different rotational speeds [29],
investigating the peak temperature by applying COMSOL multiphysics software, com-
paring the simulation results with the experimental results, and proposing a database of
dissimilar RFW of ABS and PC rods. In the COMSOL multiphysics software, an attempt
was made to simulate the peak temperature in the weld joint under the cycle time of 60 s.
Generally, ABS thermoplastic material has good toughness and impact properties [30]. PC
is an engineering thermoplastic material that has durability and thermal insulation [31,32].
In this study, two different kinds of filaments, i.e., ABS (Thunder 3D Inc., New Taipei City,
Taiwan) and PC (Thunder 3D Inc., New Taipei City, Taiwan) were used to print welding
workpieces.
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Figure 1. Research flowchart of this study.

Figure 2 shows the flowchart of numerical simulation by applying COMSOL multi-
physics software, which includes the thermal pattern analysis and the suitable boundary
conditions for the RFW model. The entire process involves establishing the finite element
mesh model of RFW, setting the parameters for RFW, setting the material nonlinear heat
transfer properties, setting both boundary conditions and initial conditions, thermal analy-
sis of the finite element model, analysis of the temperature distribution of the weld joint,
analysis of the temperature rise in the weld bead, and the prediction of the temperature
profile and peak temperature. The welding workpiece is a cylindrical rod with a diameter
of 20 mm and a length of 40 mm. The UltiMaker Cura software was then employed to
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generate a printing program. The welding specimens were built with a fused deposition
modeling (FDM) machine [33,34]. The build direction of the printed welding specimen was
determined according to fewer supports, high dimensional accuracy, less printing time, and
high surface quality. Firstly, the welding workpiece was designed using software named
Cero (parametric technology corporation Inc., New Taipei City, Taiwan). According to
practical experience, the printing parameters for PC welding workpieces involve a printing
temperature of 245 ◦C, a printing speed of 50 mm/s, a layer thickness of 0.1 mm, and a
printing bed temperature of 100 ◦C. In addition, the printing parameters for ABS welding
workpieces involve a printing temperature of 230 ◦C, a printing speed of 45 mm/s, a layer
thickness of 0.1 mm, and a printing bed temperature of 100 ◦C.
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Figure 2. Flowchart of numerical simulation by applying COMSOL multiphysics software.

A conventional lathe was used to perform RFW. In general, the RFW provides axial
movement to obtain the required weld strength. During RFW, one welding specimen was
rotated at a constant speed while the other was held stationary. Two welding specimens
were brought together under pressure for a certain period of time. In this study, the cycle
time of FW was set to 60 s. The cycle time involves a friction time of 30 s, a weld time of
20 s, and a cooling time of 10 s. The burn-off length was set to 2 mm since the FW was
carried out 20 times with a weld length of 0.1 mm each time. The selection of five rotational
speeds is mainly based on the specifications of the lathe used in this study. To investigate
the effects of rotational speed on peak temperature in the weld joint, five different rotational
speeds, i.e., 330 rpm, 490 rpm, 650 rpm, 950 rpm, and 1350 rpm were carried out in this
study. The peak temperature in the weld joint during the RFW of dissimilar specimens was
monitored and recorded using an infrared camera (BI-TM-F01P, Panrico trading Inc., New
Taipei City, Taiwan). After RFW, the shore A surface hardness test (MET-HG-A, SEAT Inc.
New Taipei City, Taiwan), three-point bending test (RH-30, Shimadzu Inc., Kyoto, Japan),
and impact test (780, Instron Inc., Massachusetts, MA, USA) were carried out to evaluate
the mechanical properties of the frictionally welded parts.
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3. Results and Discussion

In general, the welding quality of the welded parts was influenced by the peak
temperature in the weld joint during RFW of dissimilar plastic rods since the mechanical
properties were affected by the peak temperature during RFW [35]. In this study, the
COMSOL multiphysics software was used to investigate the peak temperature in the weld
joint. Ten different kinds of element sizes, i.e., 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm,
0.9 mm, 1.0 mm, 1.1 mm, 1.2 mm, and 1.3 mm were performed to investigate the peak
temperature in the weld joint during RFW. Figure 3 shows the geometry and mesh of the
workpieces in the simulation. The element size of the processed workpieces is 0.8 mm. To
determine the type of mesh suitable for RFW, Figure 4 describes the number of meshes as
a function of computing time and peak temperature in the weld joint. As can be seen, a
higher number of meshes has a higher computation time. In addition, calculating the peak
temperature in the weld joint during RFW of dissimilar plastic rods by applying COMSOL
multiphysics software was feasible [36]. Especially, the peak temperature predicted by
the COMSOL multiphysics software using a mesh element count of 875,688 is very close
to that obtained by the experimental result. This means that the mesh element count of
875,688 seems to be the optimal number of meshes for predicting peak temperature in
the weld joint. Figure 5 shows the temperature distributions for RFW of two dissimilar
workpieces. The thermal model takes into account various parameters such as friction
pressure, rotational speed, feed rate, and material properties of the polymer rods being
joined. As can be seen, the temperature distribution, amount of energy required to achieve
a successful weld, and heat-affected zone can be calculated based on the thermal model
in the COMSOL multiphysics software. Figure 6 shows the peak temperature in the weld
joint for five diffident rotational speeds predicted by COMSOL multiphysics software. The
peak temperatures in the weld joint for five diffident rotational speeds of 330 rpm, 490 rpm,
650 rpm, 950rpm, and 1350 rpm are 53 ◦C, 70 ◦C, 86 ◦C,116 ◦C, and 156 ◦C, respectively.

To investigate the repeatability of the RFW experiments in this study, three samples
were used in this study. The material emissivity of ABS and PC is about 0.92 and 0.95,
respectively. The image resolution for the thermal imaging data is about 1440 × 1080 pixels.
In general, the melting temperature for PC and ABS is about 155 ± 10 ◦C and 245 ± 10 ◦C,
respectively [37,38]. Figure 7 shows the relationship between weld joint temperature
and FW time for PLA and PLA rods at a rotational speed of 950 rpm. As can be seen,
the relationship between weld time and joint temperature for the RFW of ABS and PC
workpieces at a rotational speed of 950 rpm is repeatable. The peak temperature in the weld
joint was found to be approximately 118 ◦C. This result is supported by the experiment
proposed by Mura et al. [39], showing the glass transition temperature of PC-ABS is
approximately 125 ◦C. Figure 8 shows the relationship between weld joint temperature
and FW time for PLA and PLA rods at five different rotational speeds. The results showed
that the average peak temperatures of weld joint for rotational speeds of 330 rpm, 490 rpm,
650 rpm, 950 rpm, and 1350 rpm are approximately 88 ◦C, 99 ◦C, 106 ◦C, 114 ◦C, and 153 ◦C,
respectively. The results revealed that the peak temperatures in the weld joint increase
gradually with increasing rotational speed.
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Figure 4. Number of meshes as a function of computing time and peak temperature in the weld joint.
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Figure 5. Temperature distributions for RFW of two dissimilar workpieces.
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Figure 8. Temperature history in the weld joint for RFW of PC and ABS rods at five different
rotational speeds.

Figure 9 shows the surface hardness in the weld joint for RFW of PC and ABS rods at
five different rotational speeds. As can be seen, the average shore A surface hardness in
the weld joint is increased with increasing the rotational speed of RFW. Figure 10 shows
the impact energy of dissimilar polymer rods welded at five different rotational speeds.
The results showed that the impact energy in the weld joint is increased with increasing
the rotational speed of RFW. This result was also confirmed by the experiment proposed
by Dhaiwat et al. [40]. Figure 11 shows the ending strength of the welded part under
five different rotational speeds. As can be seen, the bending strength in the weld joint
is increased with increasing the rotational speed of RFW. Figure 12 shows the bending
strength as a function of peak welding temperature. It was found that the equation of
y = −0.019 x2 + 5.081x − 200.75 with the correlation coefficient [41] of 0.8857 seems to be
an optimum trend equation for predicting the bending strength of the welded part (y) using
peak welding temperature (x).
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Figure 11. Bending strength of the welded part under five different rotational speeds.
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Figure 13 shows the comparison of the numerical simulation and experimental results
of the peak temperature for RFW of PC and ABS rods at five different rotational speeds.
Figure 14 shows the comparison of the numerical simulation and experimental results of
the temperature profile. As can be seen, the difference in the peak temperature between
simulation and experimental results for rotational speeds of 330 rpm, 490 rpm, 650 rpm,
950 rpm, and 1350 rpm is about 34 ◦C, 29 ◦C, 20 ◦C, −2 ◦C, and −3 ◦C, respectively. Thus,
the average error of predicting the peak temperature by applying COMSOL software for
five different rotational speeds is about 15 ◦C.
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Figure 13. Comparison of the numerical simulation and experimental results of the peak temperature
for RFW of PC and ABS rods at five different rotational speeds.

In practice, one of the advantages of the FRW is reduced energy consumption as
compared to arc welding processes [42]. Therefore, the RFW of dissimilar polymer rods is a
green manufacturing technique for joining dissimilar polymer rods and meets sustainable
development (SDGS 9 and 12) [43]. In general, this technique can be used for jointing
automotive components, aircraft components, axle shafts, aerospace components, fluid
mechanical components, or transmission shafts [44,45]. In this study, a conventional lathe
was employed to perform RFW of ABS and PC rods. In future investigations, the computer
numerical control turning machine [46] is recommended to perform RFW of ABS and PC
rods since the feed rate of RFW can be precisely controlled to replace human error. In
addition, the rotational speed [47–52] can be changed during the whole process of RFW.
These topics are interesting research topics and are currently being investigated, and the
results will be presented in later works.
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Figure 14. Comparison of the numerical simulation and experimental results of the tempera-
ture profile.

4. Conclusions

An energy-related key performance indicator is frequently used as a tool to evaluate
the energy consumption of manufacturing processes, focusing on energy consumption and
environmental impact. RFW is a green manufacturing process and is becoming useful in lots
of industrial applications. RFW is a sustainable manufacturing technology with low energy
consumption since it generates heat through mechanical friction between thermoplastics.
The advantages of RFW include being free from thermal distortion or porosity which are
defects seen in other welding techniques. In this work, an analysis of the peak temperature
in the weld joint during dissimilar RFW of ABS and PC rods by applying the COMSOL
multiphysics software is presented. The main conclusions from the experimental work in
this study are as follows:

1. The use of COMSOL software was feasible for calculating the peak temperature in
the weld joint during dissimilar RFW of ABS and PC rods. The mesh element count
of 875,688 is the optimal number of meshes for predicting peak temperature in the
weld joint. The average error of predicting the peak temperature using the COMSOL
software for five different rotational speeds is about 15 ◦C.

2. The bending strength of the welded part (y) using peak welding temperature (x) can
be predicted by the equation of y = −0.019 x2 + 5.081x − 200.75 with the correlation
coefficient with a correlation coefficient of 0.8857.

3. The bending strength, average shore A surface hardness, and impact energy of the
welded parts were increased with increasing the rotational speed of RFW.
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