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Abstract: Woody lignocellulosic biomasses comprise the non-edible parts of fruit trees. In recent
years, the exploitation of this biomass has been widening in order to mitigate environmental issues.
At the same time, this waste could be transformed into a value-added product (active carbon by
pyrolysis, isolation of nanocellulose, oils or proteins). For either valorization path, a complete thermo-
mechanical characterization is required. A detailed thermo-mechanical study (TGA, DSC, DMA)
was performed on two types of lignocellulosic wastes, with and without kernels: on one side, the
walnut shells (WS) and the pistachio shells (PsS) and, in the second category, the apricot seeds (AS),
the date seeds (DS), and the plum seeds (PS). The results of the sample-controlled thermal analyses
(HiRes TGA) evidenced a better resolution of the degradation steps of WS. Kinetic studies conducted
also by conventional TGA (Flynn–Wall–Ozawa) and modulated TGA (MTGA) allowed us to make
comparative reasonings concerning the degradation of the investigated biomasses. The DMA results
revealed the effect of water traces and oil kernels on relaxation and supported the atypical DSC
endotherm emphasized in the freezing temperature domain.

Keywords: lignocellulosic biomass; thermogravimetric analysis; high resolution TGA; modulated
TGA; dynamic mechanical analysis; differential scanning calorimetry

1. Introduction

The survey of the current scientific literature dedicated to what scientists call biomass
refinery reveals the astonishing interest in putting forward the potential of biomasses and
the extraordinary progress made in recent years in the field. The circular economy strategy
includes, among its targets, the valorization of agro-industrial waste, which represents a
rich source of lignocellulosic biomass, principally composed of cellulose, hemicellulose,
and lignin [1,2]. The woody biomass waste derived from fruit trees consists of non-edible
products such as shells (pistachio, walnut) and seeds (olive, plum, peach, apricot, date,
cherry) [3–11].

There is a tremendous flexibility in the exploitation of lignocellulosic biomass. Efforts
have been made in the direction of the production of activated carbon (biochar and hy-
drochar) largely used for the adsorption of metals from aqueous solutions or dedicated
to the fabrication of natural sanitizers [11–17]. The incorporation of biomass fillers into
polymeric matrices to obtain biocomposites represents a trend in major significance [18–24].
Moreover, lignocellulosic biomass is a source of cellulose nanocrystals [25–27], oligosaccha-
rides, lignin, and various ingredients for the cosmetic, pharmaceutical, and food industries
(such as oils or proteins) [28–33].

It is well known from biomass waste practices and the literature that the structural
(Fourier-transform infrared spectroscopy, Raman spectroscopy) [13,16,31,34–37], morphologi-
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cal (X-ray diffraction, scanning electron microscopy, atomic force microscopy) [31,34,36,38,39],
mechanical [40,41], and thermal characterizations (thermogravimetric analysis—TGA; differ-
ential scanning calorimetry—DSC; dynamic mechanical analysis—DMA) [31,35,37,40,42–45]
of these lignocellulosic compounds represent a key stage before addressing any application
field. In this framework, a substantial body of research has been devoted to thermogravi-
metric analysis of biomass powders because it offers a deep understanding of the nature
of pyrolysis phenomena and their kinetics. The results are indispensable for conceiving a
strategy related to the biomass conversion application [46–49]. For example, the biomass
intended for active carbon was investigated by TGA before and also after the adsorption
process. State diagrams of foods have been constructed with the help of DSC results [50].
However, DSC investigations of biomass wastes are much less present in the published
results than TGA, possibly due to the rigid structure of lignocellulose not producing measur-
able heat flow shifts during thermal scanning above room temperature [37]. Rahman et al.
have published extensive DSC studies of pit powders, enlarging the investigated tempera-
ture range to negative temperatures [42]. The phenomena were commented on in terms
of glass transition, ice formation, and fat melting. In the study of the molecular mobility
of macromolecular compounds (natural or synthetic), in the situation of poor DSC signal,
DMA can be the method of choice in identifying faint transitions, provided that the sample
has a regular shape with measurable dimensions (films, bars, discs) [51]. Therefore, the
sample can be fixed in an appropriate attachment and the proper mode of deformation can
be applied: tension, bending, compression, or shear. A great variety of DMA studies have
been performed for wood, especially to explore the influence of water on the viscoelastic
properties. This is an easier task as compared to lignocellulosic wastes because wood
fulfills the DMA requirements for these types of studies [52–55]. Furthermore, there are
alternatives for performing viscoelastic measurements on biomass powders. One option is
to use the material pocket for samples that are not self-supporting. Nonetheless, the results
offer only a qualitative perspective [56]. Another alternative was employed by Guigo et al.,
who used solid pellets of isolated lignin powders for conducting rheometric measurements
in the oscillating mode [57]. Very recently, Al-Khali et al. applied the same modality for
monitoring the mechanical relaxation of de-fatted date-pits on powder tablets [58]. Despite
the fact that both wood and woody biomass wastes are lignocellulosic biopolymers, the
contents of hydrophilic components (cellulose, hemicellulose) are higher in the wood,
which make it much more hygroscopic [23]. Additionally, the bulk microstructures of them
could be different, as it has been described in walnut shells [59]. A distinct DMA behavior
is expected for woody biomass as a consequence of its powdered form.

The paper reports further evidence of the thermo-mechanical behavior originating
from TGA, DSC, and DMA experiments performed on two types of lignocellulosic wastes,
with and without kernels. The first category comprises walnut shells (WS) and pistachio
shells (PsS) that do not have kernels. The apricot seeds (AS), date seeds (DS), and plum
seeds (PS) belong to the second category; they were grounded without removing kernels.
All the TGA studies performed on lignocellulosic materials have described their degra-
dation process as overlapping degradation steps of hemicellulose, cellulose, and lignin.
In parallel with conventional TGA (constant heating rate in the investigated temperature
interval), sample-controlled thermal analysis (HiRes TGA) [60,61] and modulated tempera-
ture TGA (MTGA) [62,63] will be conducted on WS in order to improve the resolution of
overlapping processes. Specific for HiRes TGA is the use of the feedback from the sample
to control the heating profile. In this way, the heating rate trends to zero when degradation
occurs and has a value defined by the experiment in the absence of degradation. In MTGA,
a modulated temperature profile superimposes the conventional one. The aim of the kinetic
approach is to determine the activation energy, which will support the whole rationale of
the TGA study. The investigations also project to probe the molecular mobility phenomena
(transitions/relaxations), as they are evidenced by DSC and DMA measurements on the
mentioned lignocellulosic wastes that were not examined thus far.
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2. Materials and Methods
2.1. Materials

Walnut shells (WS), apricot seeds (AS), and plum seeds (PS) were obtained from local
farmers. Date seeds (DS) and pistachio shells (PsS) were purchased from the local market.
The contents of the lignocellulosic components, as the literature reports, are included in
Table 1. Of course, the contents of cellulose, hemicellulose, and lignin may slightly differ
depending on the origin of biomass.

Table 1. The contents of the main components of biomasses, as is reported in the literature.

Hemicellulose Cellulose Lignin Reference

WS 22.40 23.90 50.30 [4,19,22]
PsS 31.40 38.10 25.60 [26]
AS 17.01 29.57 47.97 [22,24]
DS 26.80 23.90 21.60 [14]
PS 24.46 21.34 42.15 [64]

All biomasses were conditioned as in our previous work [65,66]. Briefly, they were
primarily washed with distilled water to remove dust and other impurities, followed by
drying in an oven at 105 ◦C for 24 h. Then, they were mechanically ground with a Knife
Mill Pulverisette 11 (Fritsch, Idar-Oberstein, Germany). The resulting crumbs were sieved
using a Retsch AB system (Germany), and the powder fraction with dimensions between
125 µm and 250 µm was retained (ISO 3310-1). It was kept at room temperature, in a dry
place, until use.

2.2. Methods
2.2.1. Thermogravimetric Analysis

The thermogravimetric analyses of the powdered samples were carried out on a Dis-
covery TGA 5500 (TA Instruments, New Castle, DE, USA). The tests were conducted using
three heating rate algorithms: constant heating rate, dynamic heating rate (HiRes TGA,
and modulated approach (MTGA). The temperature increased from ambient temperature
to 700 ◦C. The experiments were performed in a nitrogen atmosphere at a flow rate of
25 mL/min. Around 6 mg of the samples was evenly and loosely distributed on a platinum
pan in order to ensure good temperature uniformity during the measurement.

In the case of conventional TGA, the samples were heated at four constant heating
rates: 2 ◦C/min, 5 ◦C/min, 10 ◦C/min, and 20 ◦C/min.

The HiRes TGA experiments were performed at sensitivity 1 and resolution 6, using
an initial heating rate of 20 ◦C/min.

A slow heating rate of 2 ◦C/min was used in MTGA to provide enough modulation
cycles for each reaction step. A temperature modulation amplitude of ±5 ◦C and a period
of 200 s were used.

The activation energy (Ea) for biomass pyrolysis was estimated with the help of the
Flynn–Wall–Ozawa isoconversional method (method free) and modulated TGA [67]. Under
linear heating, Ea was calculated as the slope of the straight line determined by plotting the
natural logarithm of the heating rate (ln β) vs. reciprocal temperature (1/T) at different
degrees of conversion:

Ea = −R
b
×

[
dlogβ
d(1/T)

]
where Ea is the apparent activation energy (J/mol), β is the heating rate (◦C/min), R is the
gas constant (8.314 J/mol·K), T is the temperature at a specific conversion (K), and b is a
constant (0.457).

In MTGA, the Ea for the conversion of interest was obtained in a single experimental run.
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2.2.2. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was performed using a Discovery DSC 250
(TA Instruments, New Castle, DE, USA) under a nitrogen atmosphere (50 mL/min). The
sample (powder) with a mass of 6 mg was sealed in an aluminum crucible. A heating–
cooling–heating program with a heating rate of 20 ◦C/min was employed between−100 ◦C
and 200 ◦C.

2.2.3. Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) tests were carried out on an RSA G2 analyzer (TA
Instruments, New Castle, DE, USA) in compression mode. The disks for the experiments,
having 15 mm diameters, were obtained using a Specac Atlas Manual Hydraulic Press. The
disks were deformed with a 0.03% strain, which was well within the viscoelastic linear
range. The changes in the storage modulus (E′), loss modulus (E′′), and loss factor (tan δ)
were recorded as a function of temperature and frequency.

The dimensional stability of the disks was tested in the frequency range of 0.01 ÷ 100 Hz
and in time (150 min).

The isochronal experiments (1 Hz) were run with a heating rate of 2 ◦C/min from
−100 ◦C up to 200 ◦C. Multifrequency experiments were performed at 0.1, 0.5, 1, 2, 5, and
10 Hz.

The heating (2 ◦C/min)–cooling (2 ◦C/min)–heating (2 ◦C/min) experiment was
performed to prove the release of volatile compounds during the first heating step.

3. Results and Discussion
3.1. Thermogravimetric Analysis

First, the conventional TGA provided essential information required before performing
any DSC or DMA investigations. For DSC cell safety reasons, the end temperature of
any DSC experiment was established as a function of the thermal degradation onset.
Additionally, the knowledge of the degradation steps was helpful for suitable ascertainment
of the origin of phenomena featured in DMA. Figure 1a,b show the conventional TGA and
temperature derivative (DTGA) curves of the two sets of biomass investigated. The main
thermal characteristics associated with them are included in Table 2.
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Table 2. The main thermal degradation characteristics of the investigated biomasses, resulting from
conventional TGA.

Sample

Main Degradation
T10

(3)

(◦C)
Residue (4)

(%)Tdeg onset
(1)

(◦C)
Tmax

(2)

(◦C)
Mass Loss

(%)

WS 231.0 364.8 65.4 258.3 25.0
PsS 257.4 357.7 70.8 275.4 22.4
AS 220.7 371.1 74.8 270.6 18.8
DS 223.6 319.3 71.1 261.9 22.6
PS 270.3 373.1 68.1 284.7 23.0

(1) The onset of degradation temperatures evaluated with the software TRIOS 5.0 (TA Instruments, New Castle,
DE, USA). (2) The temperature associated with the highest rate of the main degradation step (DTGA peak). (3) The
temperature associated with 10% of the mass loss. (4) The residual mass at 650 ◦C.

The evaporation of water traces and volatile compounds was responsible for the mass
loss observed from room temperature to 150 ◦C. The most significant mass loss occurred
within the temperature range of 200–450 ◦C (Figure 1a,b). The degradation pattern of the
lignocellulosic biomass was largely discussed in the literature [19,46,47,68,69]. Previous
reports have accounted for the complex degradation process that involved mainly three
overlapping degradation steps: hemicellulose started first (200–250 ◦C), but its degradation
ended after the pyrolysis onset of cellulose (around 350 ◦C). Lignin degraded over the
entire mentioned temperature interval, continuing beyond 450 ◦C. In this sense, the mass
loss curves had a gentle gradual decline until the end of the experiment (700 ◦C) (Figure 1).
Investigations of related systems supported this trend even until 950 ◦C, where the residue
weighed up to 20% [26].

According to the degradation temperatures (Tdeg onset, Tmax, and T10), the PS biomass
was the most stable. However, the WS biomass had the lowest mass loss during the main
degradation stage (200–450 ◦C) and the higher residual content at the end of the experiment
(Table 2). It was not excluded that the robust intimate structures of the walnuts made it less
liable to final degradation as compared to the other biomasses [59].

A closer look at the DTGA curves (Figure 1, dotted lines) revealed that WS and PsS
presented two maximums, while three maximums were noticed for AS, DS, and PS. The
first two peaks displayed in the main degradation stages could be associated with the
degradation of cellulose and hemicellulose. Additionally, the occurrence of the third DTGA
peak (around 450 ◦C) in the AS, DS, and PS biomasses could principally describe the
degradation of the lignin. As mentioned before, the decomposition of lignin is not easily
identified in a conventional TGA. A dynamic TGA investigation (HiRes TGA) can shed
some light on this aspect.

The results of the HiRes TGA and MTGA performed on the WS are displayed in
Figure 2a. Figure 2b exhibits a graphic representation of the time–temperature profile for
the three types of TGA experiments (conventional, sample-controlled, and modulated).

The main degradation peak of the WS shifted to lower values (308.4 ◦C, HiRes TGA;
324.8 ◦C, MTGA) as compared to the maximum obtained in conventional TGA (364.8 ◦C).
However, only the HiRes TGA led to better resolutions of the thermal events in a reasonable
time span: well-marked shoulders at 226.4 ◦C and 266.5 ◦C on derivative TGA and distinct
degradation steps on TGA. The drop of the heating rate to a very low value (1.5 ◦C/min)
during the mass loss periods could explain the better result obtained with the HiRes TGA.
Additionally, a shoulder displayed around 450 ◦C corresponding to lignin was separated
from the main peak. In a dynamic experiment, the time of investigation is longer than that
of the conventional one (Figure 2b), and some details of the process could be better put
in evidence.
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For all types of biomasses studied, the values of Ea were calculated according to the
Flynn–Wall–Ozawa equation at conversions between 0.1 and 0.6 (Figure 3a). All regression
coefficients (R2) were greater than 0.97. It was evident that the values of Ea were not
constant but had an increasing trend with the conversion. Torres-García et al. reported
that the lignocellulosic systems of peanut shells displayed analogous behavior, i.e., the Ea
values increased with conversion [70]. This fact confirmed the biomass complex multistep
degradation mechanism, consisting of different concurrent and consecutive reactions [71].
Moreover, particular features should be underlined for the investigated biomasses. In the
conversion interval of 0.1–0.5, the values of Ea corresponding to WS and PsS were lower
than those of AS, DS, and PS.
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The Flynn–Wall–Ozawa model free procedure has its limits. Performing the exper-
iments at different heating rates means to shift the balance of concurrent/consecutive
decomposition reactions of hemicellulose, cellulose, and lignin, which are defined by non-
identical mechanisms [72]. On the contrary, the MTGA approach provides the values of Ea
for the whole range of the experimental conversion in a sole experiment in an incomparably
less time than conventional TGA and with improved accuracy (Figure 3b). Accordingly, the
variation in Ea can be divided into two zones. The first one, which corresponds to the con-
version between 0.1 and 0.4, is characterized by values of Ea that decrease from 224 kJ/mol
(DS) to 161 kJ/mol (PS). The convex shapes of the WS, PsS, AS, and PS curves suggest the
association of the first stage with the end of hemicellulose degradation. The concave shape
of the DS curve denotes that the whole range of hemicellulose degradation is captured in
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the first step. The second stage, which marks the beginning of the cellulose decomposition,
is associated with small raise of Ea for the investigated biomasses (183–198 kJ/mol).

3.2. Differential Scanning Calorimetry

Figure 4a,b illustrate the DSC curves (first heating–cooling–second heating) of the
two types of biomass wastes used: WS and PsS on one side and AS, DS, and PS, on the
other side. The very large endothermic peaks that appear in the high temperature region
on the first heating stage are associated with the vaporization of water traces and other
volatiles. The lignocellulosic biomasses without kernels (WS and PsS) do not display any
other thermal events during cooling and the subsequent second thermal heating. The AS,
DS, and PS biomasses evidently exhibit a secondary endothermic peak in both the first and
the second heating steps, centered at −18 ◦C (AS), −13 ◦C (PS), and 5 ◦C (DS). The DSC
experiment performed on the kernel of plum after removing the shell, in exactly the same
conditions as for seed, displays evident endothermic peaks in the first and second heating
steps and one exothermic peak during cooling (Figure 5).
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Similar results were obtained previously by other research groups who made exten-
sive investigations of date seeds [42]. They associated the phenomena occurring in the
temperature range −25–0 ◦C with the presence of kernel oils (order–disorder transition).
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3.3. Dynamic Mechanical Analysis

The viscoelastic properties of the biomass wastes were investigated in the oscillatory
compression mode. This approach was performed to confirm the DSC results and also
to achieve more insight into the phenomena occurring at a molecular level. The linear
viscoelastic region (LVR) was determined to establish the strain range, where the results
were not affected by the applied strain [73,74]. The storage modulus (E′) vs. the applied
strain is plotted in Figure 6. Usually, the superior limit of LVR is marked by the decrease
in E′ modulus. After this point, structural breakdown is possible, and the results of
measurements become erroneous. A strain of 0.03% was chosen to keep the behaviors of
all the biomass samples inside LVR.
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However, the E′ modulus did not maintain a decreasing trend. At some point (strain
values around 0.2%), an upward shift of E′ was noticed (Figure 6). This was an indication
that the rigidity of the sample increased from this value of strain onward, most likely due
to the cohesion between the tiny grains’ growth.

The final aim of our DMA study was to determine the viscoelastic behavior in an
isochronous temperature scanning DMA experiment. According to the onset temperatures
of degradation (Table 2), the DMA experiment could be performed until 200 ◦C. Given
the particular behavior of the biomass disks, it turned out that the stability of these disks
should be checked by applying a 0.03% oscillation deformation for 150 min. This time
interval represented the estimated duration of the isochronal DMA experiment conducted
between −100 ◦C and 200 ◦C, with 2 ◦C/min. For the same reason, the variations in the
viscoelastic properties of the biomass disks with frequencies were checked. This aspect
could also be important for the transporting, storing, or handling of biomass powders. The
variations in the viscoelastic parameters E′, E′′, and tan δ with time and frequency were
exemplified in Figure 7a,b for two types of biomass wastes (PsS and PS), without and with
kernel. The disks were quite stable all over the measured intervals. Only a small increase
in the loss modulus was noticed at frequencies higher than 50 Hz; the cohesiveness of the
disks could have lessened at frequencies higher than 50 Hz.

The dependence on viscoelastic behaviors with the temperatures of the two groups
of biomass wastes is represented separately in Figure 8 (WS and PsS) and 9 (AS, DS, PS).
The E′ modulus of the samples at room temperature was around 106 Pa, a value that
was confirmed by the previous time and frequency sweep tests (Figure 7). The elastic
component was dominant all over the temperature range investigated. A preliminary
examination of the results did not reveal a certain glass transition region. However, two
phenomena were more prominent, which occurred in the temperature ranges −50–0 ◦C
and 50–100 ◦C. In the first case, there was a decrease in the E′ modulus, which was more
intense for the biomass powders that also contained kernels (Figure 9). In the second case,
the E′ modulus rose as the temperature became higher. Both the decreases and the increases
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in the elastic responses had associated E′′ and tan δ peaks. Evidently, the increase in E′

meant a gain in rigidity that was principally associated with the elimination of volatile
compounds [75]. The origin of the large DSC endothermic peak that appeared in the first
heating (Figure 4b) was reconfirmed. The main question was the origin of the events
emphasized close to the freezing temperature, which will be discussed further down.
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The inset includes the tan δ pattern associated with the increase in E′ modulus, resulting from a
multifrequency experiment.

The issue with interpreting the DMA results is the fact that not any E′′ or tan δ peaks
could be associated with relaxation. Relaxation is the process of going from a state where
the experimental frequency is too fast for a certain mode of molecular motion to a state
where it is too slow [76]. Practically, the evolution of the tan δ peak in the multifrequency
experiment confirms whether a tan δ peak is evidence for the relaxation process [77,78]. The
inset of Figure 8 shows that the tan δ peak associated with loss of volatile compounds (E′

raise) does not depend on the frequency, and it is not a relaxation. However, the frequency
dependence of the first tan δ peak has the characteristics of relaxation (inset of Figure 9). It
turns out that the presence of oil in the powders (AS, DS and PS) generates relaxation due
to the order–disorder transition. The viscoelastic behaviors of WS and PsS (Figure 8) are
devoid of this feature.
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The difficulties in the pyrolysis of biomass wastes stem from the presence of water
traces. It was reported that the water content in a biomass suitable for pyrolysis should
not be higher than 30% [79]. The DMA behavior is very sensitive to the presence of water
associated with the polymer chains [78,80,81]. For example, a disk of PsS was maintained
in a humid atmosphere, and the absorption of water was very evident. The DMA behavior
of this disk is represented in Figure 10.
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Figure 10. The variation in E′, E′′, and tan δ with temperature, at 1 Hz, for wet PsS.

A succession of overlapping relaxations was detected due to the association of water
with the polymeric biomasses. The antiplasticizing effect of water, defined by the increase
in the E′ modulus of a polymer in the presence of water, is a phenomenon characteristic
to biopolymers. It had been recounted and put in evidence previously by DMA [82,83].
The viscoelastic behavior of wet PsS reflected a broadening of the relaxations and their
evident shifts to higher temperatures when compared to the dry PsS (Figure 8). Moreover,
the E′ modulus at −50 ◦C increased considerably as a result of the increased rigidity in the
presence of water (dry PsS: 106 Pa; wet PsS: 4.5 × 106 Pa).

4. Conclusions

Thermo-mechanical characteristics are very important for the controlled pyrolysis of
biomass wastes. Advanced thermogravimetric techniques (HiRes TGA and modulated
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TGA) were applied to a series of woody biomass wastes, shells, and seeds with kernels (WS,
PsS and AS, DS, PS). HiRes TGA proved useful to better separate the degradation stages of
lignocellulose originating from walnuts. The presence of kernels in biomass wastes was
found to increase the Ea of thermal degradation, calculated using the Flynn–Wall–Ozawa
method. This study furthered the understanding of the complex mechanisms of lignocel-
lulose thermal degradations resulting from MTGA, which provides Ea values in a single
experiment at each conversion degree. The large DSC endothermic peak and the increasing
trend in storage modulus resulting from the DMA, exhibited after 50 ◦C, confirmed the
elimination of volatiles. The presence of the complex DSC endothermic and tan δ peaks
(DMA) with relaxation features, in the freezing temperature range, supported the occur-
rence of the order–disorder transition in the seeds with kernels. The traces of water could
have antiplasticizing effects.
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