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Abstract: Rubber concrete (RC) exhibits high durability due to the rubber admixture. It is widely used
in a large number of fatigue-resistant structures. Mesoscale studies are used to study the composition
of polymers, but there is no method for fatigue simulation of RC. Therefore, this paper presents
a finite element modeling approach to study the fatigue problem of RC on the mesoscale, which
includes the random generation of the main components of the RC mesoscale structure. We also
model the interfacial transition zone (ITZ) of aggregate mortar and the ITZ of rubber mortar. This
paper combines the theory of concrete damage to plastic with the method of zero-thickness cohesive
elements in the ITZ, and it is a new numerical approach. The results show that the model can simulate
reasonably well the random damage pattern after RC beam load damage. The damage occurred in
the middle of the beam span and tended to follow the ITZ. The model can predict the fatigue life of
RC under various loads.

Keywords: numerical simulation; rubber concrete; fatigue life; three-point bending; polymer;
mesoscale model

1. Introduction

With rapid economic development, the production of cars has increased, leading
to the pollution of many waste tires, which are the primary source of waste rubber [1].
The combination of rubber, an excellent elastic material, and concrete, a brittle material,
produces rubber concrete (RC), which has the advantages of low modulus of elasticity,
high resistance to deformation, good crack resistance, good flexibility, and good wear
resistance [2–4]. Liu et al. [2] found that RC improved concrete toughness and fatigue
properties. Wang et al. [5] used the sounding technique to study the development of the
fatigue damage process in RC at three stress levels—0.6, 0.7, and 0.8. It is a continuous
process of the cumulative increase in damage, and it is divided into three processes: crack
initiation, stable extension, and destabilization damage. With the rapid development of
finite element theory and computer technology, concrete research is no longer limited to
experimental studies. The method of finite element numerical simulation has become the
primary research tool. Liu et al. [2] studied a mesoscale model of RC and analyzed its
compressive properties. However, the model considered factors so simple that the results
were unconvincing. Many scholars [6,7] have analyzed RC on microscopic, mesoscopic, and
macroscopic scales, but no one has used a finite element model (FEM) to study RC fatigue.
For this reason, this paper propose a finite element fatigue model of RC on the mesoscale.
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Concrete mesoscale modeling studies have established aggregate, mortar, admixture,
and interface transition zones (ITZ) over the last two decades [8]. Each component inter-
acts with the others through mechanical relationships, thus influencing the strength of
the overall structure. At the stage of concrete modeling, there are two ways of dealing
with how to characterize concrete components. One technique is digital image technology
recognition [9]. Zheng et al. [10] built a 2D concrete mesoscale model based on image
recognition and investigated concrete’s compressive strength and dimensional effects. He
provided a reliable method for predicting compressive strength. Second, by analyzing
the concrete composition and using computer programming to create a random aggregate
model (RAM) [11] that meets the requirements, Sharif et al. [12] simulated samples of
biphasic cubic concrete containing spherical aggregates embedded in homogeneous mortar
and successfully demonstrated the failure modes of the pieces. After the characterization
of the mesoscale aggregate composition method is completed, there are two methods of
computational modeling: one is an FEM based on a RAM [11], and the other is a mechan-
ical model based on a discrete element model (DEM) [13]. P.S.M. et al. [14] successfully
modeled finite element RAM of ultrahigh-strength concrete fracture under uniaxial com-
pression. It was found that damage initiation may occur in any of the three phases on
the mesoscale, a degree that is difficult to achieve by experimental means and DEM. In
addition, Zhou et al. [15] built a three-point bending-notched concrete beam as a model
structure to discuss the mechanism of crack sprouting. However, realistic concrete beams
have no prefabricated cracks. This paper uses an FEM with RAM to model three-point bent
concrete without prefabricated cracks for fatigue simulation.

FEM calculations are primarily based on elasticity mechanics [16], plasticity mechan-
ics [17], damage mechanics [18], and fracture mechanics [19] theories. The elastic model
treats concrete as an elastomer and studies the mechanical properties of concrete in its
elastic range. The disadvantage of the elastic model is that it is challenging to study the
properties of concrete after large deformation or cracking. The concrete-smeared cracking
model [20] uses a linear elastic model, which makes it difficult to calculate non-linear forms
of damage. Kim et al. [21] presented a plasticity model that considers the form of concrete
damage and the area of damage. The mechanical model of concrete damage first evolved
through the study of metal fatigue [22], which considered a concrete failure as a process
of quantitative damage triggered by microcracks in mesoscale structures. Ray et al. [23]
found that the influencing factor for concrete fatigue is size through fracture mechanics
models analyzed on a macroscopic structure. Concrete damage form is not determined
by one mechanical behavior but by various mechanical methods. This paper used the
concrete damaged plasticity (CDP) model, which combined concrete elasticity, plasticity,
and damage. The CDP model was first proposed by J. et al. [24], and then B. Xu et al. [25]
presented a damage model for the cyclic loading of concrete structures. B. Xu et al. [25]
found that this model can simulate the inelastic behavior of RC beam–column members
very well. In this paper, plastic damage theory is used, and the model conforms to the
requirements by improvement.

In a 2D mesoscale study, the RC components are mortar, aggregate, rubber, aggregate-
mortar ITZ, and rubber-mortar ITZ. The ITZ is complicated, and its thickness is usually
10–50 µm [26], which exceeds the minimum size for numerical simulations. With the
development of research in recent years, a method called a cohesive element (CE) [27] for
dealing with damage to very small-thickness elements has been proposed. Wang et al. [28]
investigated the effect of cohesion models on the tensile behavior of concrete. Zhao et al. [29]
developed a crystal plasticity model combining an extended finite element approach with a
CE model. They analyzed fatigue cracking and found that the simulations were consistent
with previous experimental observations.

The purpose of this paper is to present a fatigue damage model applicable to RC. This
model uses a new numerical simulation method. Different RC peak loads of static pressure
and fatigue life were simulated using the CDP and CE models. Based on the model’s
feasibility, the fatigue life of RC was predicted for different admixtures and loads, which
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can provide a basis for experimental reference in advance. Subsequent work can vary the
load application methods, such as random and variable frequency loading, and can also
consider a 3D mesoscale model study, which is of great significance.

2. Modeling Methods

The mesoscale model’s modeling approach begins by considering the geometry of the
model generation, which includes aggregate content, size, and location. Subsequently, the
constitutive model of concrete and the ITZ model is considered to make the model feasible.

2.1. Mesoscale Model Geometry Generation

In mesoscale studies, concrete is usually considered a three-phase material consisting
of aggregate, mortar, and ITZ. The rubber particles in RC replace part of the fine aggregates.
Concrete is regarded as a homogeneous material in conventional macroscopic concrete
FEM. This visual modeling approach makes it difficult to investigate how the concrete’s
inhomogeneity affects the macroscopic properties. This assumption of the homogeneity of
concrete ignored several vital influences, such as aggregate size, particle size distribution,
aggregate shape, and the effect of the ITZ. Zhong et al. [30] investigated the effect of
aggregate shape (circular, elliptical, and polygonal) on the results of numerical analysis of
the mesoscale model. They compared the stress–strain curves under different conditions
with the experimental results. The results showed that the circular aggregate model is
optimal for the numerical simulations. In this paper, circular aggregates are used so
that meshing is easier and computer solutions are faster. In contrast, irregularly shaped
aggregates are very complex to mesh and increase the computational burden.

In this paper, the coarse aggregates in the RC mesoscale model are aggregates of 5
mm or more in diameter and the fine aggregates are included in the mortar. The geometry
of the mesoscale model needs to comply with three requirements: firstly, all the particles
generated must be within the specified boundaries; secondly, none of the particles can
overlap; and thirdly, there must be a gap between each particle, as the aggregates are
wrapped in a layer of mortar and have no contact. Fuller’s particle size [31] distribution
curves are used in this paper. The Fuller curve is widely regarded as the grading curve,
which provides an optimum particle size distribution for the working condition of the
concrete. The Fuller curve equation is as follows:

P = 100

√
D0

Dmax
(1)

where P represents the percentage of aggregate passing through sieve hole diameter D0,
D0 represents the diameter of the sieve hole, and Dmax represents the diameter of the
largest aggregate.

As this paper focuses on the 2D level, it is impossible to deal with the 2D problem
directly with the help of the 3D Fuller set matching formula. It was used to obtain the best
particle size distribution curve in 2D by applying the Walraven formula [32]. The formula
is as follows:

Pc(D < D0) = Pk

(
1.065D0.5

0 D−0.5
max − 0.053D4

0D4
max − 0.012D6

0D−6
max − 0.0045D8

0D−8
max − 0.0025D10

0 D−10
max

)
(2)

where Pc represents the percentage of the aggregate area, where size D is smaller than D0.
Pk represents the percentage of the aggregate area of the total area. In this paper, Pk is taken
to be 0.7. Dmax represents the diameter of the largest aggregate size, and the maximum
diameter is taken as 20 mm.

The area of aggregate size distribution in the 550 mm × 150 mm area is listed by
Formula (2) in Table 1.
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Table 1. Size in 550 mm×150 mm area occupied by different particle sizes.

Rubber Replacement
Rate (%) 5–10 mm (mm2) 10–15 mm (mm2) 15–20 mm (mm2) Rubber (mm2)

0 5612 8851 12,547 0
2.5 5612 8851 12,547 768
5 5612 8851 12,547 1537

7.5 5612 8851 12,547 2305
10 5612 8851 12,547 3074

The random generation is implemented in Python according to the aggregate area in
Table 1, and the generated flowchart is shown in Figure 1.
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Figure 1. Flowchart of aggregate generation.

2.2. Constitutive Model of Concrete

The finite element software ABAQUS (2021 Version, Dassault systemes, France) and
the programming language Python 3.8 are interconnected, and the code generated in
Section 2.1 can be imported directly into ABAQUS. Aggregates are developed according
to the program, and different property values are assigned to the different components to
achieve the actual state of the mesoscale RC aggregates.
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In this paper, coarse aggregate and rubber are considered homogeneous elastomers,
and mortar is modeled numerically as a homogeneous continuum with elasticity. The
mortar can be regarded as a lower-strength type of concrete, and its constitutive law uses
the concrete–damage–plasticity (CDP) model. The CDP is a continuous, plasticity-based
damage model that defines the concrete state by defining two mechanical behaviors: tensile
cracking and compression damage. This model assumes that the concrete’s uniaxial tensile
and compressive response is characterized by plastic damage. The evolution of the yield
surface is controlled by two hardening variables, the tensile equivalent plastic strain ε̃

pl
t and

the compressive equivalent plastic strain ε̃
pl
c , which are related to the damage mechanisms

under tensile and compressive loading. The uniaxial tensile and compressive stress–strain
response is shown in Figure 2.
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Where ε̃
pl
t and ε̃

pl
c represent the equivalent plastic strains in tension and compression,

εel
t and εel

c represent the elastic strains corresponding to tension and compression, dt and
dt represent the two damage variables for elastic stiffness degradation, with the damage
variables taking values from 0 to 1, and d = 0 means the material is undamaged, d = 1
means the material is completely damaged, and E0 represents the initial Young’s modulus
of the material.

In the case of uniaxial tension, the concrete stress–strain response obeys linear elastic
variation up to the time of failure stress σt0, which is used to distinguish between the
elastic and plastic phases of concrete. After σt0, the concrete enters the damage phase,
and microcracking occurs in the macrostructure. In the case of uniaxial compression, the
concrete stress–strain response obeys a linear elastic change to the compressive elastic
ultimate stress, and σc0, and σc0 used to distinguish the elastic phase from the plastic phase
under uniaxial compression. Unlike uniaxial tension, there is a hardening phase to the
ultimate compressive stress σcu after σcu where the concrete is softened and microcracked.

When a concrete specimen is unloaded from any point in the strain-softening branch
of the stress–strain curve, the elastic stiffness of the material appears to be damaged. The
stress–strain relationships for uniaxial tensile and compressive loading are (Equation (3)):

σt = (1 − dt) E0

(
εt − ε̃

pl
t

)
(3)

σc = (1 − dc) E0

(
εc − ε̃

pl
c

)
(4)

This paper deals with the numerical simulation of the three-point bending of concrete,
where the general form of damage is tensile damage. After being subjected to cyclic loading,
the tensile stiffness after damage needs to be redefined, as shown in Figure 3.
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Where εel
0t represents elastic strain and ε̃ck

t represents cracking strain.
In the event of damage to the concrete, the cracking strain ε̃ck

t is defined by the
following equation:

ε̃ck
t = εt − εel

0t (5)

εel
0t =

σt

E0
(6)

ABAQUS automatically converts cracking strain to plastic strain for use:

ε̃
pl
t = ε̃ck

t − dt

(1 − dt)

σt

E0
(7)

According to the Structural Design Code for Concrete [33], considering the tensile
and compressive damage variables of the material, the specific concrete intrinsic model
is determined by Young’s modulus E and Poisson’s ratio λ in the elastic phase and by the
non-linear stress–strain equation in the inelastic phase. When the concrete structure is
under pressure:

σc = (1 − dc) Eεc (8)

dc =

{
1 − ρc n

n − 1 + xn x ≤ 1
1 − ρc

αc(x − 1)2 + x
x > 1 (9)

ρc =
fc,r

Ecεc,r
(10)

x =
ε

εc,r
(11)

n =
Ecεc,r

Ecεc,r − fc,r
(12)

where αc is the parameter value of the falling section of the uniaxial compressive stress−strain
curve for concrete, fc,r is the representative value of the uniaxial compressive strength of
concrete, εc,r is the peak compressive strain corresponding to fc,r, and dc is the evolutionary
parameter for uniaxial compressive damage to concrete.
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When the concrete structure is in tension:

σt = (1 − dt)Eεt (13)

dt =

{
1 − ρt

[
1.2 − 0.2x5]x ≤ 1

1 − ρt

αt(x − 1)1.7 + x
x > 1 (14)

x =
ε

εt,r
(15)

ρt =
ft,r

Ecεt,r
(16)

where αt is the parameter value of the falling section of the uniaxial tension stress−strain
curve for concrete, ft,r is the representative value of the uniaxial tension strength of concrete,
εt,r is the peak tension strain corresponding to ft,r, and dt is the evolutionary parameter for
uniaxial tension damage to concrete.

In accordance with the Structural Design Code for Concrete [33], specific values are
shown in Table 2.

Table 2. Parameters of CDP.

fc,r (MPa) εc,r
(
×10−6) αc ft,r(MPa) εt,r

(
×10−6) αt

40.26 1790 1.947 3.01 84 2.831

In addition to this, the plasticity parameters for CDP are self-contained in ABAQUS,
as shown in Table 3.

Table 3. Parameters of ABAQUS itself.

Dilation Angle Eccentricity fb0/fc0 K

30 0.1 1.16 0.666

The values in Table 3 have been verified by many academics to be generally consistent.
This is a fixed value [10].

2.3. CE Model of the ITZ

After the aggregate model has been built, there are two approaches to the ITZ. One
is establishing a solid FEM of the ITZ [34]. The advantage of this is that it can reflect the
thickness relationship of the interface composed of concrete. However, the ITZ’s actual
thickness is 10–50 µm, which is difficult to achieve with FEM. Even if the thickness is
expanded by a factor of 10 to a range that FEM can calculate, this will result in a dense and
small mesh division and a significant increase in computational effort. Secondly, the ITZ
is considered a zero-thickness element (ZTE) [35], which retains the relevant mechanical
properties of the actual ITZ to achieve the accuracy of the simulation, and all ITZs in
concrete can be represented by ZTE. In summary, we selected the ZTE.

The ZTE has three ways of simulating the behavior of the ITZ. Firstly, a layer of the
ZTE can be inserted using a shared node, which can be used if the CE is on the same mesh
as the surrounding element. Secondly, if the elements of the CE are divided differently
from the surrounding mesh or if the CE uses a finer discretization than the adjacent parts,
the tie constraint can be used to connect the CE to other parts. Thirdly, in some special
cases where the requirements are met, a connected interaction can be added directly to the
CE in contact without adding additional elements. Figure 4 shows the three methods of
CE processing.
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Based on the random aggregates generated by the simulations in this paper, a cohesive
zone will be added to the contact surface of the aggregate and mortar. The first ZTE
(Figure 4a) is chosen to insert a layer of CE using a shared node. The size and location of
each aggregate are uncertain, so choosing inserted CE is difficult. A Python program finds
the node number of the aggregate place and copies the new node at the node number to
create a zero-thickness CE. This fits perfectly with the shared node insertion approach. The
ITZ generates CE, as shown in Figure 5.
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The CE damage is divided into four parts: the linear elastic phase, the damage
initiation phase, the damage evolution phase, and complete damage.

The online resilience phase of the damage response of the CE is as follows:

t =


tn
ts
tt

 =

Enn Ens Ent
Ens Ess Est
Ent Est Ett

 
εn
εs
εt

 = Eε (17)

where tn is the nominal stress in the normal direction, ts is the nominal stress in shear in
the first direction, tt is the nominal stress in shear in the second direction, Eij is Young’s
modulus in each direction, and εi is the strain in the corresponding direction.
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The quadratic stress criterion formula is used for damage initiation. Damage initiation
occurs when the contact-stress ratio involved reaches 1:{

tn

t0
n

}2
+

{
ts

t0
s

}2
+

{
tt

t0
t

}2
= 1 (18)

Damage evolution by way of traction separation is shown in Figure 6.
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Where δ0
m is the separation displacement value at the onset of damage and δ

f
m is the

separation displacement at the maximum damage.
The material enters the damage phase judged by the damage value D. When D is 1,

the material is completely damaged by the following equation:

D =
δ

f
m
(
δmax

m − δ0
m
)

δmax
m

(
δ

f
m − δ0

m

) (19)

where D is the damage value and δmax
m is the additional amount of maximum separation

displacement during loading.
In this paper, the fracture energy is calculated using the Benzeggagh–Kenane

(BK) criterion:

GC = GC
n +

(
GC

s − GC
n

) { Gs

GT

}η

(20)

where GC is the hybrid fracture energy, GC
n is the type I fracture energy of the cohesive ele-

ment, GC
s is the type II fracture energy of the cohesive element, Gs is the shear deformation

energy, and GT is the tensile deformation energy.
The performance of ITZ is difficult to test on the experimental scale, so the determina-

tion of simulation parameters for ITZ is difficult to determine. Usually, the performance of
ITZ is approximated by the weak mortar composition, and researchers use the percentage
of mortar to study and judge the performance of ITZ. Xiao et al. [36] considered the strength
of ITZ to be 80% of the mortar. Kim et al. [37] considered the fracture energy of ITZ to be
equivalent to 50% of the mortar. Li et al. [38] considered it to be 80%. It was obvious that dif-
ferent researchers have different opinions on determining the mechanical properties of ITZ.
The ultimate purpose is to achieve unity between numerical simulations and experiments,
so the performance parameters of the ITZ on numerical simulations are determined by trial
and error to determine the optimum values of these relevant parameters. The parameters
used in this paper are shown in Table 4.
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Table 4. Parameters of ITZ.

Normal Strength
(MPa)

Tangential Strength
(Mpa)

Normal Fracture
Energy (N/mm)

Shear Fracture Energy
(N/mm)

Aggregate-mortar ITZ 1 3.1 9 0.03 0.09
Rubber-mortar ITZ 2 2.8 8.4 0.028 0.084

1 Data from [28], 2 trial values.

3. Verification of the Model
3.1. Experiment

The data for this summary test were obtained from Liu et al. [39]. He investigated
the effect of rubber substitution rate and rubber particle size on the fatigue life of rubber
concrete. The object of study was an RC beam with dimensions of 150 mm × 150 mm ×
550 mm. A static load test was conducted under a three-point bending load, and a fatigue
test was conducted under a cyclic load. The fatigue life and related fatigue life curves were
obtained for different rubber substitution rates, particle sizes, and stress levels.

3.1.1. Experimental Materials

Material parameters are shown in Tables 5 and 6.

Table 5. Parameters of cement.

Type
Coagulation Time (min) Compressive Strength (MPa) Flexural Strength (MPa)

Initial
Condensation

Final
Condensation 3d 28d 3d 28d

P·O 42.5 180 270 26.9 50.1 5.62 8.3

Table 6. Parameters of aggregates.

Type Gradation
(mm)

Fineness
Modulus

Apparent
Density
(kg/m3)

Stacking
Density
(kg/m3)

Water
Absorption

(%)

Mud Content
(%)

Crushing
Value (%)

Crushed stone 5–20 – 2775 1648 1.0 0.35 8.9
Sand – 2.76 26.58 1736 1.3 1.9 –

Rubber: Crushed rubber granules from waste tyros 1–4 mm.

3.1.2. Experimental Test Methods

RC specimens with different rubber replacement rates are first tested by static loading
to obtain the corresponding peak loads. The fatigue tests are carried out using models of
the same material proportions. The maximum and minimum loads are applied to the RC
beams using a load-controlled mode, which is an equal amplitude and uniform load mode.

3.2. Building Mesoscale Models

A 150 mm × 550 mm rubber concrete beam element is built according to Table 1, with
different dosing of rubber concrete beams as shown in Figure 7, where gray means mortar,
red means aggregate, and black means rubber.
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Figure 7. RC beams with different dosing: (a) 0; (b) 2.5%; (c) 5%; (d) 7.5%; (e) 10%. 

The load loading point is in the middle of the upper part, with the bottom left con-
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in Figure 8. 

Figure 7. RC beams with different dosing: (a) 0; (b) 2.5%; (c) 5%; (d) 7.5%; (e) 10%.

The load loading point is in the middle of the upper part, with the bottom left constraint
100 mm from the left boundary and the right constraint 100 mm from the right, as in
Figure 8.
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The model is solved using the ABAQUS/Standard. First, apply a displacement
constraint of 2 mm at the upper load loading point, stop the calculation when the model
does not converge, and obtain the peak load Fmax for the model. Subsequently, the fatigue
life of the model is calculated at different stress levels, still using the same model with cyclic
concentrated force constraints applied at the upper load loading points. Load application
from minimum load Pmin to maximum load Pmax, where Pmin/Pmax = 0.1, fatigue load stress
levels S = Pmax/Fmax. In this paper, S takes the values 0.9, 0.85, 0.8, and 0.75. When S is too
high, the fatigue damage results are over in one go. When S is too small, the calculation
is too large in the numerical simulation phase. The Fourier series method controls the
equivalent mean amplitude load when fatigue loads are applied:

F(t) =
{

A0 + ∑N
n [An cos nω(t − t0) + Bn sin nω(t − t0)]t ≥ t0

A00 ≤ t ≤ t0
(21)

where the period is T, circle frequency ω = 2π/T, the loading initial time is A0, and the
number of steps parameters A1, B1, A2, B2, ···, A0, A0.

The parameters used for RC in this paper are shown in Table 7.

Table 7. Parameters of RC.

Type Young’s Modulus (GPa) Poisson’s Ratio

Mortar 36 0.2

Aggregate 72 0.16

Rubber 7 0.49

3.3. Experimental Versus Simulation

By comparing the results of this study with the three-point bending static load peak
load results and fatigue load results from the literature [39], the feasibility of the model
is verified.

3.3.1. Peak Load

The peak load tests and simulation results for this model under three-point bending
loads at different stress levels are summarized in Table 8. It can be seen that the magnitude
of the peak load decreases as the rubber content increases, which is in line with the
researchers’ judgment on the performance of RC. Comparing the test and simulation for
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peak loads at the same stress levels proved that the simulation and test results agree well.
The maximum absolute error is 3.6%. The new numerical model proved reliable for peak
loads under three-point bending loads.

Table 8. Experimental and simulated peak loads.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

Experimental peak loads (KN) 28.15 26.32 25.05 24.1 23.06
Simulated peak loads (KN) 28.62 25.94 25.52 24.44 22.23

Error (%) 1.67 −1.44 1.88 1.41 3.60

3.3.2. Fatigue Life

The results of tests and simulations with different dosing levels of rubber concrete
at stress levels S = 0.85 and S = 0.75 are summarized in Table 9. The increase in rubber
admixture can improve the fatigue resistance of RC and extend the fatigue life. Due to the
large dispersion of the fatigue life results, only the minimum and maximum lives are taken
as a reference in the test results. Moreover, the overall life trend improves with increasing
rubber doping. As shown in Figure 9, the results obtained from the numerical model of
rubber concrete in this paper are all between the maximum and minimum values of the
test results and meet the feasibility requirements of the model. This proves the reliability of
the new numerical model in fatigue life calculation. There are some differences between
the expected life and the experiment, but this is acceptable. Because the experiment phase
is a one-off for each test beam, the RC is already destroyed after the experiments with peak
load. Although each beam is made to the same size and aggregate content, the mechanical
properties are not the same. The different mechanical behaviors of the concrete beam can
be observed in [37].

Table 9. Experimental and simulated fatigue life.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

S = 0.85
experiment min/max 1615/4236 2281/3459 1485/5883 2261/6781 3827/6832

simulation 1742 2678 3824 5018 6779

S = 0.75
experiment min/max 8654/15,432 9876/19,536 14,876/23,654 15,245/31,132 20,268/34,538

simulation 11,812 14,208 19,081 24,085 32,742
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4. Analysis of Variables

Finite element static pressure simulations of three-point bending were carried out for
RC rubber admixtures of 0, 2.5%, 5%, 7.5%, and 10% to obtain the corresponding peak
load and displacement relationships. Based on the stress levels S = 0.85 and S = 0.75 above,
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add stress levels S = 0.9 and S = 0.8 to the loading method for the RC fatigue simulation
to analyze the effect of different rubber doping and stress levels on damage form and
fatigue life.

4.1. Force–Deflection Curves

The force–deflection curves for RC at different admixtures were obtained from numer-
ical simulations, as shown in Figure 10. The concrete deflection increases as the rubber
admixture increases and the peak load tends to decrease significantly. The rising and falling
phases of the curve for ordinary concrete are steeper than the gentle curve for RC. The trend
becomes more subdued as the amount of rubber added increases. The comparison of the
trends of the two curves RC-0 and RC-10 in Figure 10 is exceptionally different. It confirmed
the effect of rubber particles on concrete in the mesoscale study. Rubber was able to reduce
the extension of concrete damage and increase the toughness of concrete, reducing the
brittleness of concrete. This reflects the actual validity of the new numerical model.
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4.2. Types of Damage

In this paper, the damage to the RC is shown through stiffness in the form of two
factors: one is static compression, and the other is fatigue. The visual form of the damage is
represented by the SDEG cloud map output by ABAQUS (SDEG = 0 means no damage to
the structure, and SDEG = 1 means complete damage to the structure). Figure 11 shows
the damage to an ordinary concrete beam of 150 mm × 550 mm without rubber admixture
after a three-point bending static load. As the beam damage occurs in the middle of the
span, for ease of observation, the structure is taken in the middle of the beam, as shown in
the black box in Figure 11, with a size of 150 mm × 150 mm. The following are screenshots
of the damage obtained by this method.

The SDEG damage clouds for 0, 2.5%, 5%, 7.5%, and 10% rubber doping after damage
are shown in Figure 12. A form of static pressure damage to rubber concrete was observed
in the mesoscale study. The damage was mainly at the mid-span of the beam, with an
irregular damage zone extending from the bottom to the top. The damage course follows
the edges of the aggregate and rubber and is consistent with existing fracture and damage
mechanics theories. The point of damage to the zero rubber-doped concrete is only at the
opening of the damage zone, with no damage to the surrounding concrete aggregate, as
shown in Figure 12a. Damage points occur not only at the opening of the damage zone but
also minor damage to the rubber around the opening, as shown in Figure 12b–e. On the
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mesoscale, it is observed that the rubber particles take up a small part of the load-bearing
capacity under load. Furthermore, with the increase of rubber admixture, the damage
point at the bottom of the concrete increases, and the damage zone is influenced by the
surrounding rubber particles in the middle of the extension. The 10% and 7.5% rubber-
doped concrete leads particularly well, with multiple damage points at the bottom and tiny
branches of the damage zone midway through, as shown in Figure 12d,e. Various forms of
damage indicate that adding rubber particles to concrete helps to retard concrete damage,
which also provides the basis for research into the fatigue resistance of RC.
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The fatigue simulation of the same RC beam at different stress levels is a unique
advantage of the fine-view simulation. The stress levels are guaranteed to be the same
peak load each time, something that cannot be achieved experimentally. This paper uses
fatigue simulations for four stress levels of 0.9, 0.85, 0.8, and 0.75, with each stress level
corresponding to five rubber doping levels. Shown in Figure 13 are four forms of stress level
fatigue damage for ordinary concrete. It can be observed that fatigue damage to ordinary
concrete at different stress levels takes the same form, with the damage zone starting at the
same point of failure at the bottom of the concrete. In ordinary concrete, from the start of
the damage to the end, only the weakest point within the concrete bears the load, regardless
of the force acting. Its fatigue damage is also essentially the same as static pressure damage
(Figures 12a and 13), proving that ordinary concrete is relatively homogeneous regarding
internal forces when damaged, with the same place bearing the load.
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Figures 14–17 show fatigue damage at four stress levels for four doped RC. Unlike
ordinary concrete, the fatigue loads do not take the same form of damage at different stress
levels when rubber is added. As shown in Figure 14, the damage zone for 2.5% admixture
stress levels of 0.85, 0.8, and 0.75 differ, and the damage point is also different at the bottom
of the concrete. As shown in Figure 15, the location of the damage zone is different for 5%
doping stress levels of 0.9, 0.85, and 0.8, but the location of the bottom damage point is the
same for stress levels of 0.85, 0.8, and 0.75. As shown in Figure 16, the 7.5% doping stress
level only differs in the damage zone and damage at a stress level of 0.9; the damage zone
and damage point are essentially the same at other stress levels. As shown in Figure 17, the
orientation of the damage zone and the location of the initial damage point at the bottom
stabilize and remain the same when the doping level reaches 10%. The rubber dosing
ranges from 0 to 10%, with the damage zone orientation and initial damage point location
stabilizing from the beginning, through the disorder of the intermediate dosing, and to
final stability. The fatigue damage of RC is different from hydrostatic damage, which is also
different from ordinary concrete. The addition of the rubber creates a fragile ITZ between
the rubber and the mortar, even weaker than the ITZ between the aggregate and the mortar.
The model successfully simulated the effect of rubber doping.
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4.3. Fatigue Life

Table 10 shows the peak loads and the life of the fatigue loads at the corresponding
four stress levels for the five doped rubber concretes. At the same stress level, the fatigue
life increases as the rubber content increases, indicating that rubber concrete carries higher
cyclic loads than ordinary concrete for a given cyclic load. In the case of rubber concrete,
this result is because the rubber particles act as an energy absorber and load cushion in
the concrete. Rubber particles have better elastic properties on the mesoscale level than
concrete particles. In the case of concrete suffering from tension and compression, part of
the energy is converted into the elastic energy of the rubber particles. The fatigue life of
10% rubber is 7.3, 3.89, 4.45, and 2.77 times greater than that of ordinary concrete at four
stress levels.

Table 10. Fatigue life of different rubber doping at different stress levels.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

S = 0.9 135 243 581 792 986
S = 0.85 1742 2678 3824 5018 6779
S = 0.8 4212 5385 9821 12036 18735

S = 0.75 11,812 14,208 19,081 24,085 32,742

The relationship between rubber doping, stress level, and fatigue life is shown in
Figure 18. It is obvious that, within a specific range, an increase in rubber content and
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a decrease in stress level increase the fatigue life of RC. The increase in fatigue life is a
non-linear relationship, as shown in Figure 19.
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5. Discussion

This model simulation study generates the mesoscale structure of RC through random
aggregates, applies the improved properties of CDP to mortar, and combines modeling
of the aggregate-mortar ITZ and rubber-mortar ITZ to achieve the mesoscale structure
of actual RC. It is a new numerical approach. The model was subjected to a series of
three-point bending fatigue loads to analyze the causes of damage forms and fatigue life
from a mesoscale.

5.1. Causes of Damage Types

The structural form of the model after damage by static pressure and fatigue loading
is consistent with reality, and the appearance of concrete damage on the mesoscale can be
accurately observed from the mesoscale structure. Subsequent damage develops along
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the weakness of the ITZ around the aggregate and rubber particles. There are two main
reasons for producing an irregular damage band consistent with reality. First, the model
adds the damage theory in the CE model, setting a zero-thickness damage zone in the
aggregate-mortar and rubber-mortar layers. The material’s mechanical properties in the CE
are less than those of the mortar. When subjected to forces, the ITZ is more easily damaged
than the mortar aggregate. Secondly, the mesoscale model is randomly generated for
aggregate size and location, which aligns with the actual aggregate distribution of concrete
materials and better reflects the model’s realism. The rubber particles are smaller than the
coarse aggregate, and it is easier for damage to occur around the rubber than around the
coarse aggregate.

5.2. Factors Influencing Fatigue Life

The addition of rubber benefits the fatigue properties of rubber concrete. When the
model is damaged, there is some damage around the rubber particles not in the damage
zone. These share some of the fatigue load, confirming the effect of the rubber particles on
the mesoscale level. The mesoscale model can be applied to complex fatigue loads. The
model shows fatigue life agreement at stress levels of 0.75 to 0.9 and can simulate the effects
of fatigue life due to different doping levels of rubber. Rubber particles have better elastic
properties on the mesoscale level than concrete particles. When the concrete is loaded, part
of the energy is converted into the elastic energy of the rubber particles. RC life increases
with increasing rubber and decreases with increasing stress ratio. As a rule of thumb, the
magnitude of the stress ratio is related to the logarithm of the fatigue life [40]. After trying
various fitting formulae, the following relationship is assumed:

S = A + Bln(N) + Cln2(N)
(

N > e−
B

2C

)
(22)

where S is the concrete stress ratio, A, B, and C are constants whose magnitude is related to
the concrete admixture, and N is the concrete fatigue life.

According to Formula (22). for curve fitting, as shown in Figure 20, the specific
formula and correlation coefficient R results are shown in Table 11, and the fitted results
meet the requirements. It is found that the stress level is related to the quadratic function
of the logarithm of fatigue life. In addition, the results of this study allow for reasonable
extrapolation of the three-point bending fatigue life of rubber concrete at dosing levels
between 0.75 and 0.9. This provides a corresponding reference for the test, a model for
calculating fatigue life correctly on the mesoscale.

Polymers 2023, 15, x  20 of 23 
 

 

S =  A +  Bln(N)  +  Cln2(N) (N > 𝑒−
𝐵

2𝐶) (22) 

where S is the concrete stress ratio, A, B, and C are constants whose magnitude is related 

to the concrete admixture, and N is the concrete fatigue life. 

According to Formula (22). for curve fitting, as shown in Figure 20, the specific for-

mula and correlation coefficient R results are shown in Table 11, and the fitted results meet 

the requirements. It is found that the stress level is related to the quadratic function of the 

logarithm of fatigue life. In addition, the results of this study allow for reasonable extrap-

olation of the three-point bending fatigue life of rubber concrete at dosing levels between 

0.75 and 0.9. This provides a corresponding reference for the test, a model for calculating 

fatigue life correctly on the mesoscale. 

Table 11. Fitting formulae for different rubber doping. 

Type Fitting Formula R2 

RC-0 S = 0.865 + 0.028 ln(N) − 0.0043ln2(N) (N > 26) 0.999 

RC-2.5 S = 0.671 + 0.087 ln(N) − 0.0083ln2(N) (N > 189) 0.989 

RC-5 S = 0.519 + 0.126 ln(N) − 0.0104ln2(N) (N > 361) 0.997 

RC-7.5 S = 0.475 + 0.135 ln(N) − 0.0107ln2(N) (N > 550) 0.999 

RC-10 S = 0.384 + 0.152 ln(N) − 0.0112ln2(N) (N > 886) 0.996 

0 5 10 15 20 25 30 35

0.75

0.80

0.85

0.90

 RC-0
 RC-2.5
 RC-5
 RC-7.5
 RC-10

S
tr

es
s 

ra
ti

o

Fatigue life(×103)

 

Figure 20. Fitting relationship between different rubber doping stress levels and fatigue life. 

5.3. Potential Applications and Developments 

The mesoscale model proposed in this study can accurately represent the fatigue life 

of rubber concrete under three-point bending fatigue loading. In addition, analysis of the 

static pressure load’s damage form and the RC’s ultimate load reveals that the model is 

also accurately represented. The study of RC is equally informative for ordinary concrete 

and other polymer admixture concrete. The difference lies in the polymer’s shape, size, 

location, and properties. Shape, size, and position are solved by Python code, and perfor-

mance could be solved by setting properties on the polymer. However, it is often difficult 

to achieve the desired effect, and an interface layer is needed to change the mechanical 

relationship between the different substances. This study could also be applied to rein-

forced RC to simulate the location of damage and structural life of specific damaged struc-

tures in macrostructures to provide an initial structural performance judgment for actual 

structures. 

Figure 20. Fitting relationship between different rubber doping stress levels and fatigue life.



Polymers 2023, 15, 2048 20 of 22

Table 11. Fitting formulae for different rubber doping.

Type Fitting Formula R2

RC-0 S = 0.865 + 0.028 ln(N)− 0.0043 ln2(N) (N > 26) 0.999
RC-2.5 S = 0.671 + 0.087 ln(N)− 0.0083 ln2(N) (N > 189) 0.989
RC-5 S = 0.519 + 0.126 ln(N)− 0.0104 ln2(N) (N > 361) 0.997

RC-7.5 S = 0.475 + 0.135 ln(N)− 0.0107 ln2(N) (N > 550) 0.999
RC-10 S = 0.384 + 0.152 ln(N)− 0.0112 ln2(N) (N > 886) 0.996

5.3. Potential Applications and Developments

The mesoscale model proposed in this study can accurately represent the fatigue
life of rubber concrete under three-point bending fatigue loading. In addition, analysis
of the static pressure load’s damage form and the RC’s ultimate load reveals that the
model is also accurately represented. The study of RC is equally informative for ordinary
concrete and other polymer admixture concrete. The difference lies in the polymer’s
shape, size, location, and properties. Shape, size, and position are solved by Python code,
and performance could be solved by setting properties on the polymer. However, it is
often difficult to achieve the desired effect, and an interface layer is needed to change the
mechanical relationship between the different substances. This study could also be applied
to reinforced RC to simulate the location of damage and structural life of specific damaged
structures in macrostructures to provide an initial structural performance judgment for
actual structures.

The limitations of this research method lie in the 2D structure. When considering the
mesoscale design in the 3D structure, the lack of computer performance is challenging to
resolve, and the vast number of calculations leads to increased calculation time. Future
work could be improved to develop a 3D mesoscale concrete model to calculate fatigue life,
achieving the desired accuracy and computational efficiency requirements.

6. Conclusions

This paper proposed an RAM on the scope of a mesoscale study. The model used
plastic damage theory and the insertion of cohesive elements in the ITZ, and is a new
numerical model. This paper verifies the model’s correctness in peak load and fatigue life.
Peak loads were verified for five doping levels of 0, 2.5%, 5%, 7.5%, and 10%, and fatigue
life was verified for stress levels of 0.75 and 0.85. After this, the results for stress levels of 0.8
and 0.9 were simulated and analyzed. The peak static pressure load in three-point bending
was successfully modeled on a mesoscale as decreasing with increasing rubber doping,
and the resulting deflection increased with increasing rubber doping. Static pressure and
fatigue forms of damage could be observed in the mesoscale, where the point of damage
produced by RC damage is not unique and increases with the amount of rubber admixture.
The damage element produced by RC damage shows an order–disorder–order process
as the rubber dosing increases. It was observed from the model that when the damage
occurred to the RC, the internal rubber took the load. In addition, the model could simulate
the three-point bending fatigue life at different stress levels for various rubber doping on
a mesoscale. A quadratic function relating stress levels with different rubber doping to
fatigue life was fitted, which can predict fatigue life for stress levels between 0.75 and 0.9,
providing some reference value for the test. The mesoscale model in this paper satisfied
the fatigue life simulation requirements perfectly. The method, with model improvements,
could be applied to all RC fatigue structures in the future.
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