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Abstract: This work aims to provide a comprehensive review of the continuum models of the phase
behaviors of liquid crystal networks (LCNs), novel materials with various engineering applications
thanks to their unique composition of polymer and liquid crystal. Two distinct behaviors are primarily
considered: soft elasticity and spontaneous deformation found in the material. First, we revisit these
characteristic phase behaviors, followed by an introduction of various constitutive models with
diverse techniques and fidelities in describing the phase behaviors. We also present finite element
models that predict these behaviors, emphasizing the importance of such models in predicting the
material’s behavior. By disseminating various models essential to understanding the underlying
physics of the behavior, we hope to help researchers and engineers harness the material’s full potential.
Finally, we discuss future research directions necessary to advance our understanding of LCNs further
and enable more sophisticated and precise control of their properties. Overall, this review provides
a comprehensive understanding of the state-of-the-art techniques and models used to analyze the
behavior of LCNs and their potential for various engineering applications.

Keywords: liquid crystal network; phase behavior; phase transition; spontaneous behavior;
soft elasticity

1. Introduction

A liquid crystal network (LCN) is a type of polymeric material that incorporates liquid
crystal (LC) molecules into the network. This is achieved through chemical crosslinking
between polymer chains and polymer-functionalized LC molecules. The LC molecules, also
known as mesogens, are typically non-spherical and can form various meso-scale phases
based on the interactions between themselves and their surroundings. The two most
common phases that LC molecules form are the isotropic and nematic phases. In the
nematic phase, the LC molecules align along a specific direction known as the nematic
director. As the orientation of the molecules becomes more uniform, the order of the LC
molecules increases. In the isotropic phase, the LC molecules are randomly distributed, and
this order is lost. The resulting phase of the LCN depends on the LC phase at which the
crosslinking occurs during polymerization. Flexible polymeric chains fill the gaps between
the crosslinking sites and the mesogens, connecting the LC molecules that would otherwise
flow freely.

Notably, crosslinking confers interesting behaviors to the material. Firstly, the LC
phases, characterized by the orientation and distribution of mesogens, which are found at
the crosslinking step, are imprinted within the polymeric network. LCN can be categorized
as main-chain or side-chain, depending on the location of LC units in the networks. In
main-chain architecture, for instance, LC units are incorporated into the polymer back-
bone, whereas in the side-chain, LC units are attached as pendant groups. The statistical
distribution of polymeric networks thus changes according to the LC phase, which is
otherwise completely isotropic as assumed in the classical Gaussian network model. Due
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to incorporation and increased crystallinity, LCNs demonstrate a substantial change in
material properties, including an increase in stiffness and anisotropy [1,2]. Similarly, LC
behaviors, such as phase transitions and shear flow, are strongly affected by the polymeric
constituents in the molecules’ vicinity.

In addition to changes in mechanical properties such as polymeric conformation
and fluidity of the mesogens, unique opto-mechanical coupling behaviors, commonly
referred to as phase behaviors, are also observed in the hybridized material even after
crosslinking. The coupling indicates the intertwined change in mechanical properties (e.g.,
stress) and the phase transition of the mesogenic constituents (e.g., opacity). To the best
of the authors’ knowledge, the majority of reports consider two types of opto-mechanical
coupling behaviors: (1) spontaneous deformation and (2) soft elasticity. Although the
literature commonly considers either one of the couplings, it is worth noting that recent
findings show that these distinctions are not always mutually exclusive [3].

The first coupling behavior is spontaneous deformation, which originates from the
fact that a phase shift between LC phases alternates the molecular shape of the polymer, as
shown in Figure 1:
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(Adapted with permission from Ref. [4]. 2018, Sabina W. Ula et al.).

The differences in the stress-free configuration induce deformation to accommodate a
change in the metric tensors, which is analogous to warpage caused by residual strain. The
term “spontaneous” originates from the fact that the stress state within the body does not
change when left unconstrained. As shown in Figure 1, the polymer conformation changes
its shape from a sphere (Figure 1a) to a prolate (uniaxial ellipsoid) shape (Figure 1b) as the
LC phase shifts from isotropic to nematic. Such polymeric conformation at the mesoscale
deforms the macroscopic shape.

Soft elasticity is another type of opto-mechanical coupling. When the LCN material
is stretched in a direction different from that of the nematic director (i.e., Rz in Figure 1),
distances between the crosslinking sites change. The rigid LC material rotates to the
stretched direction and effectively relieves the stress, as the increase in strain energy is
less energetically preferred to the rigid body rotation (i.e., soft mode) of the LC molecules.
When the material deforms by a soft mode, the principal direction of the local polymeric
conformation continuously changes, and so does the stress-free configuration. Hence,
the stress does not increase (i.e., soft elasticity) or increases only marginally (i.e., semi-
soft elasticity). Such opto-mechanical coupling is especially salient in lightly crosslinked
materials [5] and distinguishes LCN materials from other types of reinforced composites,
as both structural and fluid rheological properties are simultaneously expressed. LCN
materials have the property of being able to mechanically adjust their optical properties.
The polymeric chain can be altered based on the molecular configuration (main vs. side
chain). The monograph [5] disseminates the classical approaches to understanding the
underlying physics.
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The phase behaviors of LCN materials underpin their continued relevance and the
structures made from them. These materials have been of interest to researchers from a
broad range of disciplines due to the coupling between two dissimilar physics, making
LCNs not only theoretically mesmerizing but also promising multifunctional materials.
For instance, they can be used to create strong yet lightweight artificial muscles [6,7] and
tunable optical devices [8]. Additionally, thanks to reactive LC molecules, non-contact
and remotely controlled deformation can be realized without the need for pneumatic or
wired driving forces [9–11]. For instance, the mesogenic molecules containing the azo-dye
(-N=N-) that change to reactive LC molecules exhibit sensitivity to UV irradiation [10].

Such research directions are especially timely due to recent advances in material
development, such as reactive mesogens, and precision manufacturing techniques, such
as microscale additive manufacturing. These enable the interplay between the rigid LC
molecule and flexible polymer chain to be harnessed in more intricate ways. For instance,
the complex texture of LC distribution can be fabricated through 3D printing, facilitating
the viscoelasticity of the LC-containing fluid [12], modulation through magnetic fields [13],
or selective crosslinking [14], leading to nontrivial, often inelastic behaviors [15].

Fully leveraging such potentials of the material requires understanding and predict-
ing phase behaviors as well as the underlying mechanisms. However, understanding
the structural behavior of the material is not straightforward due to its multiphysics
(e.g., stimuli-responsive structural change) and multiscale (e.g., scale difference in LC
orientability between the macroscopic size of the structure) nature. Such modeling is
particularly essential in LCN solids since numerous microscopic parameters affect phase
transition [16,17], such as polymer chain length and network connectivity, and macro-
scopic parameters, including boundary conditions and the shape/topology of the structure,
determine overall behavior.

In this respect, several numerical methods have been presented to address these
problems by providing a predictive window for these interesting behaviors. Diverse as-
pects of LCNs ranging from the effect of different molecular compositions to structural
behavior [18] to the programming of bending curvatures induced by changing macroscopic
shapes of structures [19,20] have been investigated. Furthermore, multiscale methods
where one or two numerical methods are intertwined have also been proposed [21–23]. In-
terested readers are referred to recent reviews [24,25] on numerical methods and multiscale
methods, respectively.

This review primarily aims to disseminate continuum-based models regarding the
phase behavior of responsive materials. Although micro- and molecular-level information
is lost in these models, as they are included in the constitutive model in an averaged manner,
the continuum model is not only beneficial in terms of simplicity but also its applicability
in inverse design, as it can be incorporated within the existing design pipeline.

The following sections are organized as follows: First, we introduce the various
phase behaviors of LCN and how they can be understood from the perspective of the
Verwey– Warner–Terentjev energy (VWT). Second, we discuss material modeling, including
constitutive models that present stress–strain relationships or generalized eigenstrain
models. Third, we present the structural analysis of LCN-bearing structures, including
boundary conditions, complex fields, and structural instability. Finally, we summarize and
propose future research directions.

2. Nematic Rubber Elasticity and Opto-Mechanical Coupling

The orientation of the polymer chain segments becomes anisotropic due to the ex-
istence of the incorporated LC molecules. The long-range symmetry that characterizes
LC, i.e., rotational symmetry, is transcribed onto the LCN, making the material highly
anisotropic, which distinguishes the LC-bearing material from typical polymeric materials.
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Based on the assumption of the anisotropic Gaussian distribution, the neo-classical free
energy density w [26] of the LCN material is as follows:

w =
µ

2
tr
[
goFTg−1F + αF(I− nono)FTnn

]
(1)

where g and n denote the metric tensor and orientation vector, i.e., the director of LC,
respectively, by which the anisotropy of LCNs is defined. The subscript o indicates the
reference state of the material determined upon the crosslinking state, e.g., the initial
polymeric conformation, and the tensor without the subscript indicates the current state
of the material. One may easily notice that the energy density falls into the category
of hyperelastic materials, and the invariants found in Equation (1) are a function of the
deformation gradient F, metric tensors, and the orientation vector.

The first term of the energy is the ideal part of the LCN energy, which is reduced to
the classical rubber elasticity of shear modulus µ when the metric tensors are isotropic
with the same step length a, i.e., go = g = aI. The second term accounts for the non-ideal
case [27,28], which describes the energy increase whenever the initial and current director
do not coincide. A contribution of the non-ideal energy increase to the overall energy is
weighted by α, which is typically derived from experiments.

Without loss of generality, we only consider the theory considering prolate LCN,
although the theory can be extended to the oblate case straightforwardly. It is also worth
noting that the present review considers these two behaviors independently, although these
two characteristic behaviors—the soft deformation and the spontaneous deformation—are
not always mutually exclusive from one to the other, as noted in [3], indicating that the
theory regarding LCN is not complete.

2.1. Soft Behavior of the Liquid Crystalline Network

The rotation of the mesogens that are independent of the polymeric network during
the transition is often referred to as the soft mode behavior. The neo-classical energy
(Equation (1)), containing comprehensive information regarding polymeric change coupled
with mechanical deformation, is widely used to address various phase behaviors found in
LCNs. Energetically, during the soft deformation, the strain energy increase is minimal,

as is clearly demonstrated in the case when the deformation gradient is Fs = g
1
2 Wg−

1
2

0 ,
where W is an arbitrary rotation matrix. The energy is invariant to the rigid body rotation
of the mesogen, despite the structural deformation Fs. Detailed energetical descriptions
regarding the soft behaviors can be found in the literature, including [26,29].

Ideally, the rotations of the mesogens of each domain are energetically free, and
the internal stress does not increase even with the large deformation of the LCN strip.
Therefore, the stress–strain curve exhibits a long plateau at the beginning of the stretch
that characterizes the soft elasticity. However, the actual soft mode of LC rotation often
manifests an increase in the strain energy to some extent, because the original director
imprinted on the polymer is preferred, and thus the rotation is penalized. The degree of
non-ideality is governed by the parameter α shown in Equation (1). The non-ideal case
is often referred to as semi-soft elasticity. A stress increase is observed throughout the
deformation, although the modulus during the phase transition is substantially lower
than the uniaxial nematic LCN. The semi-softness is considered as a result of the interplay
between mechanical strain and mesogen stiffness.

Such distinctive soft and semi-soft elasticity is well described in Figure 2, adapted
from Refs. [30,31]. The work of Urayama et al. [30] is especially notable as it demonstrates
that the degree of softness is dependent on the fabrication history.
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Figure 2. Polydomain–monodomain transition of LCN induced by stretch (a) X-ray scattering patterns
of the polydomain (left) and monodomain (right) texture (Adapted with permission from Ref. [31].
1998, S. M. Clarke); (b) stress–strain and order parameter–strain relationships in polydomain nematic
elastomers (PNE), illustrating semi-soft elasticity behavior and the correlation between stress, order
parameter (S), and strain (ε). (Adapted with permission from Ref. [30]. 2009, Kenji Urayama et al.).

When functionalized mesogens and monomers are crosslinked in the isotropic phase,
the mesogens do not exhibit any preferential orientation (the left of Figure 2a), and the
resulting LCN becomes polydomain, which is characterized by coexisting local, sub-micro
nematic phases of random orientation. Despite the existence of nematic phases, g0 remains
an identity matrix due to statistical randomness. Upon being stretched uniaxially, micro-
scopic rotations occur, and the orientational order S increases (Figure 2b) until local nematic
phases are formed within the body (the right of Figure 2b). Such a transition showcases the
optical–mechanical coupling found in LCNs. The transition alternates the opacity of the
liquid crystalline material; the polydomain LCN is opaque in the nematic state because of
light scattering randomly but becomes transparent after the transition. A driving force of
the polydomain–monodomain transition upon stretch can also be energetically described
by setting the step-length tensor at the reference condition; the energy is locally mini-
mized by any deformation gradient F = g

1
2 W and considering micro-rotation of directors n

(i.e., quasiconvexification).
On the other hand, when the crosslinking takes place in the deep nematic phase and is

tailored to have a uniaxial orientation to the initial director n0, using techniques such as
two-step crosslinking [32], monodomain LCNs having uniaxially oriented mesogens are
incorporated within the polymer. Such manipulation of the mesoscopic symmetries changes
the mechanical properties, such as the elasticity tensor, as well as the soft behaviors. When
stretched in the direction perpendicular to n0, the elongated polymer conformation induces
gradual rotation. As shown in the polydomain case, large displacement and minimal (i.e.,
semi-soft) or no increase (i.e., ideally soft) in stress are found. The optical property of the
stretched LCN, however, is saliently different as the stripe domain texture arises at the
plateau region, making the LCN opaque [29], while the material is transparent before and
after the plateau due to the uniaxially aligned LC molecules. According to Ref. [29], this
behavior is attributed to the fact that different local soft modes (i.e., rotation and shear)
and the macroscopic combination can realize the overall shift of mesogenic orientation to
the loading direction. As shown in Figure 3, these spatially varying microstructures are
aligned parallel to the loading direction and laminated in a way that prevents macroscopic
shear from accommodating the boundary condition.
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with permission from Ref. [29]. 1996, Kenji Urayama et al.).

2.2. Spontaneous Phase Behavior

Spontaneous deformation of the LCN is another type of phase behavior observed
in LCN structures. Such behavior is differentiated from the typical elastic or inelastic
deformations widely found in polymers in that the structural configurations before and
after deformations are both stress-free when the structure is unconstrained. Ordered
polymer conformation induced by crosslinked nematic mesogens is again behind the
scenes, as it is in soft mode deformation, but this time, the change in order instead of
rotation determines the deformation. The anisotropic, prolate polymeric conformation
becomes isotropic as the LC phase found in the LCN changes from nematic to isotropic, i.e.,
order collapse.

The primitive theoretical model of spontaneous behaviors is found in [33], where the
spontaneous behavior Fm is directly correlated with a change in the polymeric conformation
from g to g0 = I. The tensorial properties Fm are assumed to be coaxial with g, as evidenced
by experiments [5], since the coupling with the microscopic rotation of the LC molecules
(i.e., soft mode) is assumed to be negligible. Of course, there is a complex coupling between
these two dissimilar mechanisms, as reported in [34], but the model retains its validity at
least on a microscopic level.

By minimizing the VWT energy with respect to the uniaxial stretch deformation, the
spontaneous deformation λ is obtained as follows:

Fm = diag
(

λ−
1
2 , λ−

1
2 , λ
)

, λ =

( g‖
g⊥

) 1
3

(2)

g = diag
(

g‖, g⊥, g⊥
)

where the amount of spontaneous stretch λ is found to be a function of polymeric shape
parameters, parameterized by g(∗). The subscripts ‖ and ⊥ indicate that the property
corresponds to the uniaxial direction of the prolate conformation and the one in the per-
pendicular direction, respectively. Therefore, spontaneous deformation is governed by
the anisotropy of the polymeric shape, as shown in Figure 4, which is determined at the
moment of the crosslinking; the amount of deformation increases as the order of the LC
molecules at the crosslinking step gets higher.
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Figure 4. Spontaneous shrinkage of one-dimensional LCN strip: (a) strain induced by heating
(Adapted with permission from Ref. [35]. 2010, Antoni Sanchez et al.); (b) order–strain relationship
of LCN with flexible siloxane chain (SiF*) reported in [36]. The star and circle markers denote
the uniaxial length change, and change of LC orientational symmetry, respectively (Adapted with
permission from Ref. [36]. 2001, S. M. Clarke et al.).

The correlation between optical and mechanical components also explains the experi-
mental results very well, for instance, the change in the molecular compositions of LCNs,
including main-chain networks instead of the side-chain LCNs [36]. The reversibility of
the deformation, which also distinguishes LCN materials from other smart materials that
deform only in one way and cannot recover, can also be understood in view of λ, because
the shape parameters g∗ are determined by LC phases that alternate in response to the
changing surroundings. It is also worth noting that the material is assumed to be incom-
pressible in Equation (2), adapted from [33] following the experimental evidence found in
lightly crosslinked material [7,33,36], although there are also glassy nematic solids that are
compressible [37–39]; in such cases, a shrinkage in the perpendicular direction should be
additionally taken into account, but the order–strain correlation remains largely intact.

Microscopically uniaxial spontaneous behavior is also a source of diverse macroscopic
deformations, as the parameters that are assumed to be uniform in Equation (2), namely
nematic director n and change of anisotropy g‖/g⊥, can vary both in temporal and spatial
scale. For instance, a planar composite LCN structure, in which each laminate constitutes a
different type of LCN and hence exhibits dissimilar spontaneous behavior, can deform in
the out-of-plane direction, such as bending and twisting by creating an inhomogeneous
gradient. On the other hand, the natural decay of the stimuli within the material can be
harnessed to create gradients within the material and induce nontrivial (i.e., nonuniaxial)
deformation [40].

In the same vein, there are numerous continuum models that are underpinned by
LC-elastic coupling, as shown by the VWT energy. For instance, anomalous inflation
behaviors of a nematic balloon, e.g., inflation-induced torsion, are described theoretically as
shown in [41,42]. Recently, Liang and Li [43] presented a theoretical model of LCN-based
metamaterials; by combining a molecular description of the soft elasticity and numerical
simulations, the study shows that LCN metamaterials have a compliant response to light-
induced bending, which leads to a transition between strain-softening and strain-stiffening
with different effective shear moduli. The authors also develop an analytical model to
predict the local stretch in a ligament and force in LCN metamaterials, relating the softening
and stiffening responses to the geometric and material parameters.

All the above spontaneous behaviors occur mainly due to collapse. The collapse of the
liquid crystalline order within LCNs can also be induced by various stimuli, depending on
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the type of reactive mesogens within the network. One of the most well-studied forms of
spontaneous deformation of an LCN is the thermally responsive one, which is caused by the
heating or cooling of the material. For instance, the monodomain LCN strip incorporating
thermotropic, prolate LC molecules get shortened in response to elevated temperature up
to the critical temperature that clears up all crystalline order. The popularity of this material
is partly due to the widespread use of thermotropic liquid crystals (LCs), but their ability
to smoothly change their molecular orientation in response to temperature changes and
the existence of a well-defined theoretical model of describing the phase transition also
makes thermotropic LCs a typical material [5]. In addition to temperature, LCNs can also
be influenced by other stimuli, such as light and electric fields, resulting in changes to their
mechanical and optical properties.

3. Constitutive Modeling of LCNs

This section aims to examine the role of constitutive modeling in the numerical analysis
of LCN materials, specifically through the use of the finite element method. This type
of analysis is crucial for understanding and predicting the structural behavior of LCN-
based continua. Unlike energetic models, which have limitations due to assuming specific
deformation models, the continuum-based finite element analysis of LCN is versatile
and can handle arbitrary conditions imposed on the structure; hence, it offers a more
comprehensive description of the material behavior:

First and foremost, the continuum modeling that yields the constitutive model in the
general tensorial form can handle multidimensional behaviors; this capability is pivotal,
not only because the geometries of LCN-bearing structures are two- or three-dimensional,
but also because the rich phase behaviors originate from anisotropy and spatial inhomo-
geneity. For instance, soft mode deformation is prevented at the edge of a biclamped
crosslinked LCN and decays near the boundary in order to maintain mechanical compati-
bility. Such interplay between soft elasticity and boundary condition is especially important
to understand experimental results [29,44]. In this regard, further research is required.

Secondly, incorporation of the multiple physics within the constitutive model is re-
quired to model LCN materials’ characteristic phase behaviors stimulated by various types
of stimuli. For instance, thermally induced LC order collapse is captured through the
addressing of potential phase transitions such as Landau–de Gennes potential energy; mod-
eling such thermally induced spontaneous behavior requires free energy considerations
with regard to multiphysics, including Landau–de Gennes potential energy and the VWT
energy. The variational approach is typically used to derive the governing equations and
constitutive models of a material, but the low-fidelity phenomenological model of stimuli
responsiveness is also widely employed as well.

3.1. Relaxation of the Neo-Classical Energy

A significant technical challenge in utilizing VWT energy in finite element (FE) analy-
sis is the non-convex nature of the material’s response to deformation gradients. This is
evidenced by the presence of the soft mode causing mesogens to rotate independently from
macroscopic deformations, which gives rise to complex optical textures due to the inho-
mogeneous distribution of rotation at macroscopic scales. As a result of nonconvexity, an
increase in the energy state of the structure is effectively mitigated, and the same stress state
can be achieved through different strain states (i.e., nonconvex). Moreover, the different
degrees of soft mode for each material point are also affected by the compatibility condition
within the structure. Being distinctive features of the LCN, the energetic nonconvexity, the
mechanisms of the soft modes, and their correlations have received a lot of interest in both
physical and engineering research communities by analyzing the energetic landscape of
the material response for the prescribed mode of deformation as described in Section 2.1.

However, the development of a constitutive model that accurately captures the multi-
dimensional behavior of the material is a complex task. As highlighted in the energetic
description of the energy [29], the elastic energy represented by Equation (1) is non-convex
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due to its dependence on microscopic liquid crystal orientations, which are independent
internal variables. The energy minima of the VWT free energy vary according to the
phase, making it unsuitable for use in its unmodified form within the standard variational
approach, which relies on the strict convexity of the free energy.

In order to address such an issue and propose the finite element model of LCNs, Conti
et al. [44] utilized the quasiconvexification technique, which is frequently used to model
metallic alloys experiencing binary phase transitions [45,46]. Such a mathematical technique
originates from Ball [47,48], who employed the idea of the scale separation of macro-(F)
and micro-deformation gradients (Fi) and allowing the macroscopic deformation gradient
to be modified in a way such that the affine deformation is superimposed by microscale
perturbation (F = (1− λ)F1 + λF2)) to attain convergence in the sense of averages (i.e.,
weak convergence), as shown in Figure 5:
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compatible gradients A and B with volume fractions λ, 1− λ, respectively (Adapted with permission
with permission from [47]. 2004, Ball, J.M). (b) Upper: demonstration of material continuity between
dissimilar deformations F1, F2 by rigid body rotation. Bottom: lamination leading to stripe domain
shown in nematic monodomains (Adapted with permission from [49]. 2009, Biggins, J.S. et al.).

The quasiconvexified model of the VWT free energy Wqc, defined as an infimum of
the energy considering all possible admissible microscopic states (i.e., internal variables
and deformation gradient), is thereby created [50]:

Wqc(F) =


0 (liquid phase)

W(F) (solid phase)
λ2

1 + 2a
1
2 λ1 − 3a

1
3 (smectic phase)

∞ (detF 6= 1)

(3)

where λ1 is the lowest eigenvalue of the deformation gradient F, and a is a degree of
stretch. Different phases denote the degree of possible soft modes; the liquid phase allows
energy-free rotation, the smectic phase allows rotation only within the plane, and the
solid phase indicates a situation where the load is applied parallel to the director, hence
preventing director rotation. It is worth noting that a similar phase diagram is obtained
through direct energy minimization of the VWT energy [51]. The idea of relaxation is also
explored by de Luca et al. [52], where small deformations and large director rotations are
considered, leading to the characteristic stretch-induced shear due to the superimposed
soft deformation.

Although these theories provide valuable insights into the overall behavior of the
system, they can be challenging to compute explicitly and may not fully capture the finer
details (i.e., microstructural evolution) because of the ad hoc assumption imposed on the
deformation gradient [53]. In that respect, several alternatives have been proposed to
address the non-uniqueness of the solution. Fried et al. [54] presents an alternative way
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to formulate the free energy by decomposing elastic and nematic energy instead of using
the molecular–statistical approach. By using a phenomenological description based on the
symmetry of the LC molecules, the nematic energy is found to regularize the energy profile
and alleviate the non-uniqueness of the solution.

3.2. Variational Modeling of the Constitutive Model

Development of the constitutive model using the variational modeling technique,
which is also known as the principle of virtual work, is necessary to extend the continuum
modeling of LCN structures. Through the variational technique, the equilibrium stress state
of a structure is determined by minimizing the potential energy of the system for the given
constraints. Modeling is especially required in modeling the structural behavior of LCN
structures since dissimilar materials of different governing physics constitute the LCN.

In this regard, various works have developed constitutive models of LCNs, aiming
to reveal the relationship between stress and strain and other internal variables such as
the microscopic characteristics of mesogens [34,55–58]. These models appear to differ
in their resulting models and governing equations due to differences in assumptions
regarding kinematics and types of energy. Nevertheless, behaviors explained by the model
are very similar since they concern similar multiphysical natures of the material, namely
polymer elasticity, first- and second- order phase transitions, and distortion energy of
the LC molecules, and the solution of the model should asymptotically converge to the
energetics solutions and experiments described in Section 2.

Early attempts to describe the coupled behavior include the static continuum ap-
proach where small deformations and large rotations are considered and incorporated
within polynomial forms of energies assumed phenomenologically [59,60]. Anderson
et al. [59] developed a continuum model for nematic elastomers by employing the strain
energy proposed by Bladon et al. [61] as well as the Ossen–Frank energy. The model is
comprehensive, as the total potential energy incorporates not only the strain tensor but also
the orientation and the orientation gradient within its functional. Although limited to small
strain and large rotation kinematics due to the linearization, the model has been found to
be sufficiently descriptive of the various coupled behaviors; Petelin and Čopič [62] demon-
strated that the model is capable of reproducing the experiments that manifest the influence
of the relaxation rate on the soft modes. A more comprehensive behavior of the LCN is
described employing the ideal symmetry of LC mesogens by Lubensky et al. [60], where
the elastic energy, nematic–isotropic transition energy (i.e., Landau–de Gennes energy), and
the ad hoc coupling energy are considered. However, as noted by [57], these models focus
on specific types of soft elasticity and have limitations in describing mechanical behaviors
of LCNs, e.g., semi-soft elasticity as shown in [29,49] and an asymmetric stress tensor due
to internal coupling.

Jin et al. [57] first proposed a consistent thermomechanical approach in the constitutive
modeling of LCNs based on the variational technique. The free energy L is defined by the
VWT elastic free energy Lel , the phase transition energy LLdG, and two popular constraints
of volume preservation and orthogonality of the directors ei (i = 1, 2, 3):

L = Lel(F) + LLdG(Q) + p(detF− 1) + ξ
(
ei · ej − δij

)
(4)

where p and ξ indicate the Lagrange multipliers for the constraints. F and Q are the
deformation gradient and order tensor parameters, which are state variables of the system.
Using the Clausius–Duhem inequality and ignoring the inner couple for the sake of brevity,
the variationally consistent constitutive model, as well as the governing equations for the
nematic solids, is derived as shown:

σ = −pI + µ ∑3
i g−1

i Bi eiei − µ ∑3
i g−2

i Bi
∂gi
∂Q

+ 2
∂LLdG

∂Q
= 0 (5)
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where B = Fg0FT is the effective left Cauchy–Green tensor, and Q is a scalar order parameter.
Equation (5) indicates mechanical and LC order equilibrium. It is worth noting that the
coaxiality between g and Q is assumed to be preserved throughout the deformation due
to the absence of the inner couple, hence removing the necessity of the dynamic equation
describing the mesogenic directors’ rotation.

The comprehensive behavior of LCNs—phase behaviors and semi-soft elasticity—is
analyzed based on Equation (4) for the given boundary condition, normal deformation
λ, and shear deformation k with the initial director n0 (Figure 6a). The spontaneous
deformation describing the relationship between the obtained heat-induced order change
is also reproduced in the premise of stress-free or hydrostatic pressure applied to the body
and by changing the eigenvalues of Q (Figure 6b). Additionally, the soft behavior of the
order–mechanical coupling, i.e., stress–strain condition in two-dimensional LCN material,
is also predicted through the model (Figure 6c), where the stress and stretch correlation is
not monotonic.
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Figure 6. Phase behaviors predicted by Jin et al. (a) Uniaxial stretch λ of a LCN material of nematic
director E3; (b) spontaneous deformation λm induced by LC order collapse Qm; (c) the non-monotonic
correlation between normalized stress (σ/3µ ), in both stretched (σxx ) and transverse (σxz ) directions,
and the given stretch (λ) observed during the uniaxial stretch when ζ = 15◦ (Adapted with permission
from Ref. [57]. 2010, Jin, L.).

As a result, comprehensive parametric studies can be conducted over a wide range of
manufacturing conditions (e.g., initial director) and operating conditions (e.g., temperature)
using the model. These solutions not only agree well with the semi-analytic solution of soft
behavior found in [29], but also demonstrate the effect of nematic orientations and orders
on the stress–strain relation. Moreover, the authors identified the complex relationship
between the order parameter of LCNs and their mechanical behavior, revealing the potential
of phase behavior modulation using the LC properties (e.g., director field).

The comprehensive thermo-order-mechanical static model (Equation (5)) was later
applied to various LCN analysis models thanks to its comprehensiveness and capability to
explain multiphysics behavior. For instance, Lin et al. [63] derived a simple constitutive
model of the LCN by linearizing the general thermomechanical model. Nevertheless,
these models are limited to the static equilibrium of the LCN structure that assumes that
the LC order as well as polymeric conformation change is taking place instantaneously,
and it is not capable of explaining time-dependent behavior; this is a salient limitation
since time-dependence is widely observed in LCN experiments because of the viscoelastic
behavior and delayed transition of LC molecules owing to their polymeric constituents.

In this respect, the energy dissipation and dynamics of LC mesogens have been con-
sidered in the literature [55,58,64,65]. One notable work regarding the dynamic constitutive
model is by Oates and Wang [55]. The authors assume that the LC order change creates en-
tropy within the system, affecting the heat flux following Duhamel’s law. This is important
in modeling soft elasticity, as the model considers entropy creation and heat exchange as
energy-dissipating mechanisms. The pseudo-director n∗, which parameterizes the tensor
order parameter, is assumed to be a work conjugate to LC stress terms. The model also
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avoids the problem of a non-convex functional landscape [29,44], since the VWT energy is
replaced by a standard hyperelastic model.

The governing equations are thus:

∇ · P + B = ρ0
.
V

∇ξ+ γ+φ = 0 (6)

.
θ =

.
θ
(
∇θ,∇2θ, n∗, F

)
where P, B, F and V found in the first equation indicate the first Piola–Kirchoff stress,
body force, deformation gradient, and the velocity of the body, respectively. The coupled
equation is shown in the second equation where the coupled stress ξ, an order higher than
typical mechanical stress, is coupled with the nematic director body force, γ. The dynamic
correlation of the temperature θ and the mechanical and liquid crystalline variables are
readily solved through finite element software. As a result, the model is found to be capable
of simulating both monodomain and polydomain-to-monodomain LC texture evolution
under the condition of finite strain assumption.

As noted by the authors, however, the model is largely phenomenological as it does
not consider the inner coupling between LCs and polymeric constituents by using a typical
neo-Hookean energy model, although the results underpin that the model has reasonable
accountability in discussing the complex relationships found in LCNs, e.g., domain struc-
ture evolution for the given external loads and the nontrivial contribution of the Frank
elasticity. A similar idea has been investigated by Keip and Bhattacharya [66], where the in-
ner coupling is considered and evolution equations of the orientational order (Allen–Cahn
type) and nematic orientation (Landau–Lifshitz type) are formulated.

More recently, the dynamic constitutive model considering the inner couple of the
LCN was developed by Zhang et al. [58]. In the view of the virtual power principle, the
variation in the total working power W and the dissipation function R can be written for a
general continuum theory of LCN in isothermal conditions:

d
dt
(δK + δU) + δR = δW (7)

where K and U indicate kinetic and internal energy, respectively, and W is energy consider-
ing external agents (e.g., external load) and constraints, similar to Jin et al. [57]. Based on the
Ericksen–Leslie theory, the non-symmetric component of stress pinpointing the existence
of the inner couple is derived. A simple quadratic form of the Rayleigh dissipation model
R is used, which greatly simplifies the overall derivation:

R =
1
2

η0 tr
( .

ε
2
)
+

1
2

ηn

(
n∇
)2

(8)

where η0 and ηn are positive constants representing viscosity with respect to strain rate
.
ε

and nematic director’s objective rate n∇, respectively. The constitutive models regarding
stress and director for the given state variables are derived as:

σ = σb(u,
.
ε, n
)
+ σEL(∇n,

.
n, W

)
ηn

.
n× n = ηnW(n× n)− 2τb − Kn×∇2n− Ĝn

(9)

σb and σEL indicate the bulk and the LC stress, respectively, where the director–bulk stress
coupling is originated by the VWT energy model employed in the work. It is worth noting
that the W-σEL coupling and the evolution of the director found in the second equation
of Equation (8) are asymptotically reduced to the work of Jin et al. [57] when the dynamic
effects are ignored. The dynamic equation regarding mesogenic rotation, i.e.,

.
n, is solved

via the finite element software COMSOL.
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There are several research avenues that have been pioneered based on these constitu-
tive models. For instance, Wang et al. [56] extended the model by incorporating nonlinear
viscosity theory, by which the viscous behavior of mesogenic rotation is considered. A
constitutive relationship between the rate of deformation tensor of the elastic and viscoelas-
tic parts to the viscous stress is established. In order to do so, the authors first modify a
neo-Hookean free energy density to Gent’s model, which is also a hyperelastic strain energy
that captures different regimes observed experimentally. The non-equilibrium part of the
free energy density, of which material parameters represent viscous behavior originating
from network evolution, is then additively superposed to the total energy. This model can
simulate the finite instantaneous stress response as well as experimentally observed stress
relaxation, especially in lightly crosslinked LCNs. As a result, the material hysteresis as
well as the elastic strain stiffening behaviors that represent molecular re-orientation are
observed, which are more realistic rate-dependent stress responses. It is also worth noting
that the development of advanced models is still under investigation, e.g., the Föppl–von
Karman type of constitutive model [67].

3.3. Eigenstrain Models

The eigenstrain modeling technique in the field of solid mechanics broadly refers to
the idea of modeling changes in the stress state induced by embedded inhomogeneity
within the material by internal reciprocal strain. Although it was first devised to represent
the effect of inclusions having diverse directions and shapes incorporated within composite
materials, the technique was later extended to diverse engineering applications where
internal strains evolve, for example, warpage due to residual stress and phase transition
leading to pseudo-elasticity [46,68], to name a few. Modeling the spontaneous behavior of
smart materials is not an exception, as the expansion or contraction of the material in specific
directions in response to an external stimulus can be accounted for by the eigenstrain. Being
a surrogate model correlating the deformation with the stimuli imposed upon the structure,
the eigenstrain model is a powerful tool for predicting and understanding the mechanical
behavior of multifunctional structures. It is also worth noting that the idea of using
eigenstrain to model macroscopic deformation should date back long before the emergence
of smart materials, as witnessed by the modeling of bending behavior of continua made of
bimetal [69].

In this review, we adopt the simplest eigenstrain model to describe the spontaneous
behavior by using the following equation:

ε = εe + ε∗ (10)

where ε∗ and εe indicate the eigenstrain and the elastic strain, respectively. The total strain
ε is assumed to be additively decomposed into these two terms based on the infinitesimal
strain assumption, and it describes widely known phenomena where a free-floating struc-
ture changes its shapes without changing the stress state within it. In a one-dimensional
problem, the eigenstrain ε∗ is equivalent to the gradient of stretch λ discussed in Equation (2).
Being a generalized model of internal stress, the eigenstrain is anisotropic and is there-
fore represents typical LCN spontaneous behaviors; microscopic change in the polymeric
conformation can be represented by [12,70–73]:

ε∗ = ε‖nn + ε⊥(I− nn) (11)

ε ⊥ = ν∗ ε⊥

where strain induced along the nematic orientation n is ε‖, while the perpendicular to the
director is ε⊥ t. It is worth noting that the orientation vector can either be a microscopic [19]
or macroscopic [57] description of the LC phases.

Although simple, various real-world experiments regarding LCNs can be addressed
by simply tailoring the model or proposing constitutive relations between ε∗ with stimuli
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(e.g., heat) and internal variables (e.g., mesogenic director). For instance, ν∗, which is the
Poisson ratio corresponding to the spontaneous deformation of the polydomain LCN, is
zero, while in the monodomain LCN, it has a negative value that describes experimental
results [74] originating from the different metric tensors evolved within the body [71].
Additionally, stimuli-dependent spontaneous behaviors, such as the different degrees of
LCN’s uniaxial shrinkages depending on the magnitude of heating [11], can be modeled by
simply representing ε∗ as a function of properties related to the stimuli; for instance, ε‖ is
proportional to the magnitude of the stimuli [40].

The flexibility of the model is widely employed to discuss and provide grounds for var-
ious nontrivial spontaneous behaviors, especially the reversible out-of-plane deformation
of LCN structures that notably distinguish LCNs from other types of smart materials. These
types of behaviors include patterned out-of-plane deformation [37] and the development
of anticlastic curvatures [75]. It is worth noting that such behaviors are not well addressed
through the energetics of the one-dimensional model (Section 2.2); although the energetic
description reveals well regarding the governing mechanisms of the spontaneous deforma-
tion, the model is incapable of modeling general behaviors because it assumes homogeneity
(e.g., uniform temperature change) and uniaxiality (e.g., same nematic directors).

Nevertheless, one may easily notice that the constitutive model regarding the eigen-
strain is typically determined through experiments. The resulting model is inevitably of
low fidelity because the complex physics intertwined within the LCN material are observed
in an averaged manner and thus lose many important microscopic details such as the types
of molecules [76] and stimulus–material interaction [77].

In order to increase the fidelity and predictability of the model, the multiscale/
multiphysics nature of the spontaneous behaviors has also been investigated. First of
all, the sequential multiscale model is employed in [23] (Figure 7a); by facilitating mi-
croscopic information being obtained using small scale simulations, e.g., the full-atom
molecular dynamics [18] regarding thermotropic LCN behavior, the eigenstrain is modeled
based on the observed correlation between simulated LC order collapse and the shrinkage
of the cell [78]. Such behavior is analogous to an experiment, yet easily extended to under-
stand the effect of long- and short-ranged interaction at a molecular scale, as the small-scale
modulation is easily realized through the simulation framework (Figure 7b) [79]. This
method was later extended by Moon et al. [21]; they described a smectic LCN, where trans-
lational symmetry is addressed by considering the longer-ranged molecular interactions
through the coarse-grained molecular model, which is another layer of multi-scaling.
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Figure 7. Heat-induced order collapse and the phase behavior of LCNs observed through molecular
dynamics simulations: (a) correlations of the orientational order S and uniaxial shrinkage λ for the
given temperature that are modulated via changing isomerization percentage (Adapted permission
from Ref. [23]. 2016, Chung, H. et al.); (b) effect of incorporated metallic (Au) nanoparticle to the
order collapse, and its dependence on the size of the particle (Adapted with permission from Ref. [79].
2016, Choi, J. et al.).

Mehnert et al. [80] also presented another type of constitutive model describing photo-
mechanical behavior by decoupling energies into an elastic model and one related to the
electric field (i.e., the Maxwell model), with the order parameter coupled to the field. In
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this model, light is described by a time-averaged electric field. Although this model lacks
the statistical description of the polymer distribution found in the VWT energy model, it is
able to accurately capture light–solid interactions by incorporating the Maxwell equations
into the model.

Furthermore, a micromechanical approach toward spontaneous behavior is presented
by Brighenti et al. [19,81]. The statistical changes in the polymeric chains are correlated
with the stimuli-induced shift in chain length (Figure 8), which is similar to the descriptive
model using molecular dynamics simulation [18] and statistical polymer physics [82]. The
resulting micromechanical model was found to predict several spontaneous behaviors of
the network induced by external stimuli, e.g., temperature and electric field, by modeling
changes in network anisotropy.
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Figure 8. Micromechanical model of polymer network incorporating phase-changing molecules
(Adapted with permission from [81]. 2019, Brighenti, R. et al.).

Nevertheless, one may easily notice that the aforementioned eigenstrain models lack
consistency with the energetic models and the thermomechanical models, as they focus
on either reproducing the structural deformation of LCNs or incorporating microscopic
aspects of the polymer. Typically, the model assumes that the principal direction of the
spontaneous deformation remains coaxial to the original nematic direction. Although
the stationarity of the LC orientation is widely observed in LCN experiments, it is still
true that the soft behavior cannot be modeled comprehensively as the mechanical–order
coupling [57] is ignored.

Motivated by this, there are works that consider bridging these two seemingly different
constitutive models. Based on the thermomechanical constitutive model of Jin et al. [57], Lin
et al. [63] derived the quasi-soft linearized beam model, which includes both the linearized
constitutive equation and the eigenstrain model. The derived eigenstrain is a function of
the shape parameter, such as the deformation induced by an order collapse in Equation (2),
as well as a director that undergoes an infinitesimally small rotation when shear stress
is given. This model is adopted by Chung et al. [83], in which the quasi-soft constitutive
model and eigenstrain formulation are used in the two-dimensional plate model.

4. Structural Analysis of Nematic Solids

Structures bearing LCNs fully or partially demonstrate several phase behaviors. Un-
derstanding these behaviors requires not only knowledge of unique material properties,
such as anisotropy and the alignment of the LC molecules affecting the microscopic me-
chanical and optical behaviors, but also knowledge of the macroscopic configuration of
the structure including assumed kinematics, boundary conditions, external fields, and the
geometry and topology of the structure, as well as spatial and temporal changes in the
constituents considered in Section 3. These models can be used to predict the behavior of
LCNs under various conditions, such as different temperatures and external fields, and can
be useful in designing and optimizing products made from LCNs.



Polymers 2023, 15, 1904 16 of 26

4.1. Soft Elasticity of LCN Structures

The soft behaviors of LCN structures are widely studied, as they exhibit the pecu-
liarities of LC-mechanical coupling and are observed through changing optical texture.
Modeling these behaviors requires constitutive models that determine the stress state
and mesogenic rotation for a given strain and instantaneous internal variables such as
temperature and polymer shapes.

One of the early successes in this area includes the work of Conti and Dolzmann [84],
who implemented the quasi-convexation technique into a standard static finite element
model. In this model, the deformation gradient at the material point is considered as a
rank-one composite of microscopic behaviors following [44]. Based on the relaxation of
the non-convex energy [44], the model determines the optimal configuration of rotations
(i.e., relative portion and configuration of deformation gradients of which differences
are rank-1 matrix [44]) and stress distribution of the bi-clamped LCN strip under uniaxial
loading. As shown in Figure 9a, this method addresses the local oscillation of the director as
well as the mechanical behavior of the stretched monodomain, as the evolutions of the stress
and mesogenic rotation field, which are intertwined, are obtained, and are illustrated with
FE modeling in which we can see that the wrinkling in nematic state (r > 1) is decreased,
while wrinkling occurs in a pure elastic sheet (r = 1) Figure 9b. This method is particularly
interesting, as the effect of the boundary condition was saliently demonstrated near the
clamped region.
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Figure 9. Tension-induced instability of the nematic solid: (a) uniaxial tension-induced evolution of
the von Mises stress (left) and texture (right), where darker colors denote higher stress concentration
and higher index number (Adapted with permission from Ref. [84]. 2002, Conti, S. et al.) (b) under
various order parameters (r); changes in the scaled out-of-plane displacement (umax

3 /h) occur with in-
creased stretch (εeng). The higher the order parameters, the fewer micro-wrinkles observed (Adapted
with permission from Ref. [53]. 2017, Plucinsky, P. et al.).

Although this method is preliminarily based on assumptions about the deformation
gradient and therefore not readily applicable to three-dimensional cases, it is still widely
employed and has been extended to the different types of transition [85,86] and polymer
elasticity [42]. Furthermore, these numerical models provide valuable insights into the
tunability of wrinkling [53,87].

In addition, other aspects of soft elasticity are also addressed by the finite element
models incorporating variationally consistent constitutive models found in Section 3.2.
These include the dynamic behavior of LCNs, e.g., strain rate, hysteresis, and viscosity, as
well as the modulation of soft behavior by changing the material parameters such as the
nematic alignment and environmental factors such as temperature upon stretch.

Early studies of dynamic LC-mechanical coupling behaviors, such as [55], proposed
the coupled governing Equation (6). In contrast to relaxation methods, the work introduced
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the idea of an element-wise pseudo-director that corresponds to local mesogenic orientation.
This assumption greatly alleviates difficulties in modeling the structure, as the nematic
directors can be explicitly distributed. As a result, the phase behaviors of LCN structures,
both initially monodomain and polydomain, can possibly be investigated.

First, an ideal monodomain structure is assumed to have a uniform mesogenic ori-
entation n and to stretch perpendicular to its direction. As shown in Figure 10a, distribu-
tion of the pseudo-director is represented. A domain where directors align horizontally
(n in Figure 10a) is colored green, while the one having directors rotated counterclockwise
(i.e., positive) within 90 degrees is marked by red color, and otherwise is marked as blue.
Without eigenvalue analysis to determine the mixture phase (e.g., smectic, solid, nematic
found in Equation (3)), the change in local directions captured through the numerical
analysis agrees well with [44], where mesogens first start to rotate where the stress is high.
However, it is worth noting that small-wavelength stripe textures are not observed in the
model. Second, the polydomain structure is generated by randomly distributing director
n throughout the domain, as shown in the left of Figure 10b similarly to Figure 10a. The
structure is thus isotropic in the averaged sense and corresponds to the case where the LCN
material is crosslinked in a heated environment (i.e., isotropic) by executing a quenching
simulation; the aggregation of the pseudo-directors is observed, and an increase of the
monodomain region is observed. Such numerical results agree with the fact that, without
two-step crosslinking [11], a single crystalline monodomain structure is hard to obtain,
thus shedding important light onto LCN behaviors.

Polymers 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

well as the modulation of soft behavior by changing the material parameters such as the 

nematic alignment and environmental factors such as temperature upon stretch. 

Early studies of dynamic LC-mechanical coupling behaviors, such as [55], proposed 

the coupled governing Equation (6). In contrast to relaxation methods, the work intro-

duced the idea of an element-wise pseudo-director that corresponds to local mesogenic 

orientation. This assumption greatly alleviates difficulties in modeling the structure, as 

the nematic directors can be explicitly distributed. As a result, the phase behaviors of LCN 

structures, both initially monodomain and polydomain, can possibly be investigated. 

First, an ideal monodomain structure is assumed to have a uniform mesogenic ori-

entation n and to stretch perpendicular to its direction. As shown in Figure 10a, distribu-

tion of the pseudo-director is represented. A domain where directors align horizontally 

(n in Figure 10a) is colored green, while the one having directors rotated counterclockwise 

(i.e., positive) within 90 degrees is marked by red color, and otherwise is marked as blue. 

Without eigenvalue analysis to determine the mixture phase (e.g., smectic, solid, nematic 

found in Equation (3)), the change in local directions captured through the numerical anal-

ysis agrees well with [44], where mesogens first start to rotate where the stress is high. 

However, it is worth noting that small-wavelength stripe textures are not observed in the 

model. Second, the polydomain structure is generated by randomly distributing director 

𝒏 throughout the domain, as shown in the left of Figure 10b similarly to Figure 10a. The 

structure is thus isotropic in the averaged sense and corresponds to the case where the 

LCN material is crosslinked in a heated environment (i.e., isotropic) by executing a 

quenching simulation; the aggregation of the pseudo-directors is observed, and an in-

crease of the monodomain region is observed. Such numerical results agree with the fact 

that, without two-step crosslinking [11], a single crystalline monodomain structure is hard 

to obtain, thus shedding important light onto LCN behaviors. 

 

Figure 10. Dynamic texture evolution represented by pseudo-director with colorbar and arrow 

model, which are expressed according to the local direction. (a) Monodomain to stripe texture due 

to tension; (b) quenching simulation of heated LCN (left) to cooled LCN (right) (Adapted with per-

mission from Ref. [55]. 1992, Oates, W. S et al.). 

Explicit representation of mesogen orientations has been widely adopted in investi-

gating more intricate soft behaviors. Zhang et al. [58] presented simulations employing 

element-wise orientation into the FE model where the variationally consistent thermome-

chanical constitutive model and governing equation of Equation (8) are implemented. 

Variables found in a rotational momentum balance equation, namely the mesogen direc-

tors, shear stress, and rigid body rotation, are evaluated at the material point. The study 

finds that LC reorientation is indeed a rate-dependent process, while stronger rate de-

pendence is observed as the angles between the director and the loading axis increase. 

Additionally, the appearance of stripe domains and their configurations are found to de-

pend on the aspect ratio and initial director orientation. The finite element model employ-

ing a dissipative constitutive model is further exploited in [64,88]. These works demon-

strated highly anisotropic loading–unloading behaviors that are dependent on the loading 

axis different from the nematic alignment direction; morphology generation as well as 

behavior and dissipation of energy increases as the angle between two directions 

1 × 10  1  5 × 10 11

2 32 × 10  

     0  5 

    0   0

     0 53 

    0 53 

 0 2 0 0 2 0  0  0  1 1 2  0 2 0 0 2 0  0  0  1 1 2 1   0  
 0  

 0  

 0 3

 0 2

 0 1

0

0 1

0 2

0 3

0  

0 5

 0  

 0  

 0 2

0

0 2

0  

0  

 0 2 0 0 2 0  0  0  1

× 10  

0

0 2

0  

0  

0  

1

0

0 2

0  

0  

0  

1

1 2

0  

1

0 2

0

 0 2  0 1 0 0 1 0 2 0 3 0  0 5 0  0  0  0  1 1 1 1 2

Figure 10. Dynamic texture evolution represented by pseudo-director with colorbar and arrow model,
which are expressed according to the local direction. (a) Monodomain to stripe texture due to tension;
(b) quenching simulation of heated LCN (left) to cooled LCN (right) (Adapted with permission from
Ref. [55]. 1992, Oates, W. S et al.).

Explicit representation of mesogen orientations has been widely adopted in investi-
gating more intricate soft behaviors. Zhang et al. [58] presented simulations employing
element-wise orientation into the FE model where the variationally consistent thermo-
mechanical constitutive model and governing equation of Equation (8) are implemented.
Variables found in a rotational momentum balance equation, namely the mesogen directors,
shear stress, and rigid body rotation, are evaluated at the material point. The study finds
that LC reorientation is indeed a rate-dependent process, while stronger rate dependence is
observed as the angles between the director and the loading axis increase. Additionally, the
appearance of stripe domains and their configurations are found to depend on the aspect
ratio and initial director orientation. The finite element model employing a dissipative con-
stitutive model is further exploited in [64,88]. These works demonstrated highly anisotropic
loading–unloading behaviors that are dependent on the loading axis different from the
nematic alignment direction; morphology generation as well as behavior and dissipation of
energy increases as the angle between two directions increases. These simulated behaviors
were not only consistent with the experimental observations but also deepened insight on
the potential of programming the instability found in the LCN materials.

It is notable that there are types of finite element methods that do not rely on con-
stitutive models. Instead, the equations of motion are built upon Hamiltonian dynamics,
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and the total free energy is minimized through numerical dissipation. Although similar to
the continuum theory of LCN [59], as the relaxation technique is not utilized, these finite
element models are easily scaled to multi-dimensional structures. Based on the assumption
of small deformation, Mbanga et al. [89] presented total Hamiltonian H as a function of
strain εp, velocity vi, and the Q-tensor Qp:

H = He + Hn

He = ∑p
1
2

εp : C : εpVp + ∑i
1
2

miv2
i (12)

Hn = ∑p Vp

(
−αεp :

(
Qp −Qp

0

)
+ β

∣∣∣∣∣∣Qp −Qp
0

∣∣∣∣∣∣)+ γ ∑p 6=q||Q
p −Qq||

where He and Hn refer to the Hamiltonians of an isotropic elastic solid, which is a function
of infinitesimal strain ε, and the nematic potential, respectively. Superscript p and subscript
i denote element- and node-wise variables, and Vp is the volume of the element. The
first term of Hn comprises the terms considering strain–order coupling and the crosslink
memory of the order parameters, which are non-typical energies. The second term of the
Hn penalizes long-range distortion of the energy. The resulting elastodynamics equation
updates nodal positions and velocities using explicit multistep time integration. Numerical
damping is assumed as the particle-wise force. Although many of the parameters as well as
damping coefficients are not strictly defined and the results are rather phenomenological,
these models are widely used to describe the behavior of LCNs to describe the effect of
strain rate and the angle between tension and nematic director [89], as the governing
equation is embarrassingly parallel [90].

4.2. Spontaneous Behaviors

The use of constitutive models that account for stimuli responsiveness in finite element
methods enables the prediction of spontaneous behaviors exhibited by LCN materials
and structures. Valuable insights into mechanical behavior are drawn from the in silico
experiments, which are crucial for understanding the structural responses under different
conditions. In this short review, we mainly focus on the out-of-plane deformation of
thin sheet nematic solids for two reasons. Firstly, in-plane deformations such as uniaxial
contraction and swelling behaviors can be relatively straightforwardly predicted via simple
eigenvalue models of lower dimension (i.e., 1D), and so we will not discuss FE models
when they can be reduced to simple 1D models, although such stimuli responsiveness is
still an active area of research. In addition, thin LCN structures are typically fabricated, as
such a shape facilitates the control of the nematic orientations. Having a high aspect ratio
and low bending rigidity, the structure is prone to deform out-of-plane for several accounts,
including eigenstrain of thickness gradient and mechanical frustration, to name a few.

The bending behavior of the LCN strip is first analyzed in [40], where the simple
eigenstrain model is introduced to the classical Euler–Bernoulli beam. The eigenstrain is
assumed to be continuously changing through the thickness, following a nature of the
light as a stimulus and its decay. The eigenstrain therefore varies in the thickness direction
and uniform to the axial direction; moreover, by changing the gradient of the eigenstrain,
experimentally observed variations of bending behaviors are reproduced. Employing the
Rayleigh–Ritz method and an assumed polynomial displacement field with von Karman
nonlinearity [91], Dunn [70] represented the bending of the LCN thin shell and curvature
evolutions for the given magnitude of stimuli. In his work, the eigenstrain model is
extended to a two-dimensional tensor embedded onto the neutral plane as a metric tensor
that reads:

εmono = {ε∗, νε∗, νε∗}; εpoly = {ε∗, 0, 0}T (13)

where ν denotes the Poisson ratio that applies to the type of eigenstrain and mesogenic
configuration (either monodomain or polydomain). As shown in Equations (8) and (10),
the principal axis of the eigenstrain strongly influences the behavior of the structure. When
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the eigenstrain, either εmono or εpoly, is uniform on the domain, simple bending behaviors
are confirmed by experiments [70], as shown in Figure 11a. This model shows cases of the
enhanced modeling capability of the eigenstrain when it is extended to two-dimensions.
The simple analytic model constructed using the Ritz method was later compared with
the nonlinear finite element model and found to agree for the moderate magnitude of
eigenstrain [71].
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Figure 11. Eigenstrain-based modeling of bending deformation: (a) Gaussian curvatures depending
on the LC states (Adapted with permission from Ref. [70]. 1992, Dunn. M. L.); (b) prediction of
light-induced bending (Adapted with permission from Ref. [83]. 2015, Chung, H. et al.) consid-
ering photobleaching effect depending on different thickness of element; (c) numerical model of
temperature-induced bending of LCN numerical and comparison with the experiment (Adapted
with permission from Ref. [19]. 2021, Brighenti, R et al.).

As noted in Section 3.3, eigenstrain models are not unique and are dependent on their
constitutive models. For instance, the order-thermo-mechanical coupling model suggested
in [57] is utilized to study the light-induced deformation of LCN structures bearing active
mesogens in [63]. The decaying intensity of the stimulus changes the overall constitutive
relation, namely modulus and eigenstrain. The model explains the quasi-soft behavior as
well as the phase behavior and is readily implemented in the commercial software ABAQUS.
The model is later extended to large-deforming thin sheets [83], where diverse out-of-plane
behaviors ranging from bending, twisting, and the evolution of anticlastic curvature are
observed using the corotational shell element. The graphs in Figure 11b show that the
specimen using light-induced bending has certain characteristics; the thin sheet specimen
has more deflection, which was expressed using jet color by experimenting with different
thicknesses of the sample. Recently, Brighenti et al. [19] also addressed several aspects of
the multiphysical nature found in LCNs by incorporating a micromechanical constitutive
model [82] and a dissipative model of nematic transition [58]. The mesoscale descriptions
of these mechanical responses were compared to prior experimental observations. The
graph shows that the FEM model, which is represented by the blue line, has an agreement
with the theoretical model, which is represented by the red line as shown in Figure 11c.
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As shown in Figure 11a, the bent surface of the LCN structure can be characterized
by a single global Gaussian curvature when uniform eigenstrain is assumed. Conversely,
complex out-of-plane deformations can be simulated by varying the eigenstrain spatially
and temporarily.

First of all, the deformation of the structure was found to be controlled by changing
optical patterns, for instance, by selective crosslinking using polarized light [92]. A complex
topography is generated by carefully distributing the eigenstrain and a local metric tensor
within the LCN domain. These experimental observations demonstrate the potential
of guided spontaneous behavior; a thin sheet of LCN may generate substantial out-of-
plane deformation in an abrupt manner (e.g., snap-through) to accommodate mechanical
frustration, which is a large blocking force that scales with thickness by finding a director
arrangement [72]. This approach differs from designs involving bending, which typically
result in small blocking forces proportional to the third power of thickness. The early
works studying the incompatible strain and its relation to deformation include [39], where
the authors investigated the formation of large changes induced by disclination defects
(e.g., +1 defect), which were later correlated with Gaussian curvature and reversibility
between flat elastica and non-developable surfaces [93]. The shift between surfaces with
different Gaussian curvatures is also studied by [94], where the overall energy cost of the
LCN structure is far smaller than conventional materials, as the in-plane stretch energy
is minimized via the stress-driven reorientation of the director (i.e., soft modes). Modes
et al. [95] also presented that the polygonal shapes caused by the incompatible strain are a
result of the interplay between the elasticity, activity, and geometry of the material.

Finite element models regarding complex topography were studied by Chung et al. [96];
inspired by the texture-induced nondevelopable surface [38], the model studied the bi-
furcation of the structure for the given light-induced bending moments and the in-plane
stress resultant in the direction of the LC texture. This work is similar to the out-of-plane
deformation found in [12] (Figure 12a), which is modeled by imposing differential strain
that is found to mitigate the model complexity of incompatible strain. The bifurcation
behaviors were also investigated via the asymptotic numerical method (ANM) by Zhao
et al. [97]. In the work, the authors discussed the emergence of thermally induced wrinkles
on the surface of a cylinder-shaped LCN structure with different angles of θ, which is
an angle that affects the shear strain of a structure, and showed different results of the
oblique angle α, the angle between the x-axis and wrinkles (Figure 12b) that alleviates
the mechanical frustration in the circumferential direction of the shell depending on θ.
The effect of nematic orientation and the geometric configurations of the structure to the
wrinkling was thereby revealed.

Temporal nonuniformity of the eigenstrain is also widely studied. For instance, the
non-linear photomechanical behavior exhibited by thin-shell LCN was investigated via a
population dynamics model by Cheng et al. [98]. This showcases that the experimental
observation of photomechanics can be considered from the perspective of eigenstrain,
thanks to its versatility. Later, the work was extended by Yun et al. [22], where an ad
hoc population dynamics model is replaced by the hybridized model in which ab initio
calculation and light penetration model are coupled. A similar idea has been explored
to investigate the anomalous self-excited oscillation that LCN exhibits. Li et al. [99] first
utilized a linear beam model with the minimalistic eigenstrain model that is assumed to be
proportional to the amount of exposure to stimuli, which changes due to the oscillation
itself. The model is found to be capable of reproducing vibration behaviors, and later
extended to the Timoshenko beam [100] and nonlinear dynamical model [101]. It is also
worth noting that the idea of time-dependent eigenstrain is also employed in the self-driven
pendulum [9] and pulsating disk [102].
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from Ref. [12]. 2020, Wang, Z et al.) and (b) oblique angle (α) oriented LCN cylinder depending on
different θ, which affects shear stress (Adapted with permission from Ref. [97]. 2021, Zhao, S et al.).

FE models that are not based on the Galerkin method are also presented to understand
these intriguing time-dependent behaviors. Zhu et al. [103] considered the Helmholtz free
energy of the LCN as well as Rayleigh dissipation, which is solved via an implicit–explicit
scheme and the spectral method (Figure 13a). Hamiltonian-based simulation, namely
the elasto-nemato-dynamics model [89], is also widely employed to simulate dynamic
evolution of complex topography [37,104], thanks to the model’s simplicity and scalability
(Figure 13b).
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5. Discussion and Future Research Avenues

Throughout this work, our aim has been to provide a comprehensive review of contin-
uum models used to describe the phase behaviors of liquid crystal networks (LCNs), which
are promising candidates for various engineering applications due to their unique phase
behaviors. We discuss two primary phase behaviors: soft elastic behavior and spontaneous
deformation, which originate from the rotation of LC molecules due to the statistical change
in spatial distributions of crosslinking sites and the change in microscopic polymer shapes
corresponding to the LC orders, respectively. We start by presenting a classical model based
on the energetics of free energy, where the issue of non-convexity is discussed in depth. The
energetic description is followed by constitutive models regarding these phenomena, which
vary depending on modeling techniques and fidelities in describing the phase behaviors.
Lastly, we describe finite element models that incorporate these constitutive models, em-
phasizing the importance of these continuum models in predicting the materials’ behavior.
Through these models, these continuum-theory-based approaches are shown to have a
predictive power to the peculiar behavior of the LCNs and enables deeper understanding
of the underlying physics behind the complex interplay.

Nevertheless, there are still limitations in the existing models despite existing endeav-
ors. First, existing constitutive models are limited in considering internal parameters of the
LCN, which are determined by manufacturing conditions such as temperature history for
each synthesis step, including crosslinking, alignment, and operation, even though these
internal parameters substantially affect the phase behaviors. In addition, two important
phase behaviors—soft elasticity and spontaneous deformation—are typically considered
separately, based on the experimental observation that the LC directors do not reorient
significantly because the dominance of one type of phase behavior over the other is typically
determined by the crosslink density of an LCN. However, such an assumption is often
violated and cannot explain recent experiments regarding chemically different polymeric
chains, where the LC order can be disturbed by tension. Furthermore, the eigenstrain
found in Equation (9) assumes that the eigenstrain and elastic strain can be additively
decomposed, which might not be suitable to describe large-deforming structures. In re-
alistic conditions where the uniaxial stretch is 42%, the formulation should be modified
accordingly, e.g., multiplicative decomposition.

In this regard, there are few future research directions, at least from the view of
the authors. First of all, a comprehensive multiscale and multiphysics model should be
established not only to increase the model accuracy but also facilitate the material’s design
by understanding the complex process–property relationship of this novel material. For
this aim, a novel material modeling technique that comprehensively requires a data-driven
modeling approach combined with theoretical analysis, as well as advances in experimental
techniques, would be necessary. In the same vein, a consistent design method that can
encompass the multiscale properties of LCN structures altered during the actual fabrication
process, including LC texture generations via polarized light and 4D printing, should be
established. Lastly, the model can be improved by considering multiphysics, which can also
be verified through experiments [105]. We hope that this review inspires further research
in this exciting and rapidly evolving field.
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52. Luca, M.; DeSimone, A.; Petelin, A.; Čopič, M. Sub-Stripe Pattern Formation in Liquid Crystal Elastomers: Experimental

Observations and Numerical Simulations. J. Mech. Phys. Solids 2013, 61, 2161–2177. [CrossRef]
53. Plucinsky, P.; Bhattacharya, K. Microstructure-Enabled Control of Wrinkling in Nematic Elastomer Sheets. J. Mech. Phys. Solids

2017, 102, 125–150. [CrossRef]
54. Fried, E.; Sellers, S. Free-Energy Density Functions for Nematic Elastomers. J. Mech. Phys. Solids 2004, 52, 1671–1689. [CrossRef]
55. Oates, W.S.; Wang, H. A New Approach to Modeling Liquid Crystal Elastomers Using Phase Field Methods. Model. Simul. Mater.

Sci. Eng. 2009, 17, 64004. [CrossRef]
56. Wang, Z.; Chehade, A.E.H.; Govindjee, S.; Nguyen, T.D. A Nonlinear Viscoelasticity Theory for Nematic Liquid Crystal Elastomers.

J. Mech. Phys. Solids 2022, 163, 104829. [CrossRef]
57. Jin, L.; Zeng, Z.; Huo, Y. Thermomechanical Modeling of the Thermo-Order–Mechanical Coupling Behaviors in Liquid Crystal

Elastomers. J. Mech. Phys. Solids 2010, 58, 1907–1927. [CrossRef]
58. Zhang, Y.; Xuan, C.; Jiang, Y.; Huo, Y. Continuum Mechanical Modeling of Liquid Crystal Elastomers as Dissipative Ordered

Solids. J. Mech. Phys. Solids 2019, 126, 285–303. [CrossRef]

https://doi.org/10.1021/ma961801i
https://doi.org/10.1007/s100510050547
https://doi.org/10.1051/jp2:1996130
https://doi.org/10.1021/ma9004692
https://doi.org/10.1021/ma980195j
https://doi.org/10.1002/marc.1995.030160908
https://doi.org/10.1016/S0079-6700(96)00013-5
https://doi.org/10.1016/j.jmps.2020.104115
https://doi.org/10.1080/15421400903065861
https://doi.org/10.1103/PhysRevE.64.061702
https://doi.org/10.1002/adfm.201302568
https://doi.org/10.1002/adma.201301891
https://doi.org/10.1103/PhysRevE.81.060701
https://doi.org/10.1103/PhysRevLett.92.134302
https://doi.org/10.1016/j.tws.2021.108621
https://doi.org/10.1063/5.0041288
https://doi.org/10.3389/frobt.2022.849516
https://www.ncbi.nlm.nih.gov/pubmed/35280962
https://doi.org/10.1103/PhysRevE.66.061710
https://www.ncbi.nlm.nih.gov/pubmed/12513308
https://doi.org/10.1016/j.mechmat.2015.10.014
https://doi.org/10.1016/j.ijplas.2011.10.009
https://doi.org/10.1016/j.msea.2003.11.055
https://doi.org/10.1080/15421406.2017.1289425
https://doi.org/10.1103/PhysRevLett.103.037802
https://doi.org/10.1007/s002050100174
https://doi.org/10.1016/j.jmps.2018.02.001
https://doi.org/10.1016/j.jmps.2013.07.002
https://doi.org/10.1016/j.jmps.2017.02.009
https://doi.org/10.1016/j.jmps.2003.12.005
https://doi.org/10.1088/0965-0393/17/6/064004
https://doi.org/10.1016/j.jmps.2022.104829
https://doi.org/10.1016/j.jmps.2010.07.019
https://doi.org/10.1016/j.jmps.2019.02.018


Polymers 2023, 15, 1904 25 of 26

59. Anderson, D.R.; Carlson, D.E.; Fried, E. A Continuum-Mechanical Theory for Nematic Elastomers. J. Elast. 1999, 56, 33–58.
[CrossRef]

60. Lubensky, T.C.; Mukhopadhyay, R.; Radzihovsky, L.; Xing, X. Symmetries and Elasticity of Nematic Gels. Phys. Rev. E 2002,
66, 11702. [CrossRef]

61. Bladon, P.; Terentjev, E.M.; Warner, M. Transitions and Instabilities in Liquid Crystal Elastomers. Phys. Rev. E 1993, 47, R3838.
[CrossRef]
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