Next Article in Journal
Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash–Slag Composite Cementitious Materials
Next Article in Special Issue
Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators
Previous Article in Journal
Hydrophobic, Sustainable, High-Barrier Regenerated Cellulose Film via a Simple One-Step Silylation Reaction
Previous Article in Special Issue
Electrospun Nanomaterials Based on Cellulose and Its Derivatives for Cell Cultures: Recent Developments and Challenges
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials

1
Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
2
Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
*
Author to whom correspondence should be addressed.
Polymers 2023, 15(8), 1902; https://doi.org/10.3390/polym15081902
Submission received: 26 December 2022 / Revised: 10 April 2023 / Accepted: 13 April 2023 / Published: 15 April 2023

Abstract

:
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.

1. Introduction

According to statistical data from the International Agency for Research on Cancer, the number of cancer deaths worldwide in 2020 was estimated at around 9.96 million, and new cancer cases were estimated at around 19.3 million [1]. The number of global cancer cases is projected to increase to 28.4 million by 2040, representing an increase of nearly 50% in the next 20 years [2], making the disease a great threat to human beings worldwide [3,4]. However, various treatment modalities such as hyperthermia, radiotherapy, chemotherapy, photodynamic therapy, hormone therapy, immunotherapy, stem cell transplantation, surgery, biomarker testing, etc., are currently being developed and tested to address this global issue [5,6,7,8]. Among these, chemotherapy, radiotherapy, and hyperthermia have proved to be successful treatment methods that can kill cancer cells [8,9,10]. Nevertheless, toxicity and side effects are very high in chemotherapy and radiotherapy methods [11,12]. For this reason, hyperthermia is the most attractive and effective recent treatment method that does not have toxicity to healthy tissues [13,14,15]. Specific hyperthermia therapy comprises three treatment modalities: whole-body hyperthermia, regional hyperthermia, and local hyperthermia. If cancer cells are detected in the initial stage, local hyperthermia is applied; if the affected area is larger than the tumor, regional hyperthermia is applied to a complete tissue or organ; if cancer is detected in the final stage, the affected cells are distributed throughout the body, and whole-body hyperthermia should be applied [16]. In the final case, the treatment process can be more complicated and harmful and can sometimes damage healthy tissue [17,18,19]. Therefore, it is very important to detect tumor cells in their early stages. During hyperthermia treatment, heat is generated in the tumor area to kill the affected cells by introducing external substances into the tumor [20]. Affected cancer cells die as soon as the temperature exceeds 42 °C because cancer cells are more sensitive than healthy cells [21,22,23]. Healthy cells, in contrast, can survive at this temperature [24]. Several methods for energy transfer with external devices are used to generate temperature in the target tissue [25]. For this process, laser, ultrasound, induction heating, electromagnetic waves, radio frequency, microwaves, infrared radiation, etc., are usually used to generate heat [26,27,28]. However, the traditional hyperthermia procedure has some limitations and challenges due to insufficient penetration of heat waves into tissues when using lasers, ultrasound, and microwaves, overheating of healthy cells, and severe side effects occurring as a result of combustion. Recently, medical scientists, in collaboration with materials scientists, have developed magnetic nanostructures to generate heat for this purpose using magnetic nanomaterials, especially iron oxide nanoparticles with superparamagnetic behavior, as these materials can generate heat under an alternating magnetic field [29,30,31]. In addition, magnetic hyperthermia is more effective and less harmful to healthy cells, and it can also help overcome the limitations of the traditional hyperthermia process. In contrast, therapeutic and diagnostic materials, such as theranostic devices, have recently become a very interesting research area in the medical field to enable faster and more effective cancer treatment, imaging, and diagnosis [32,33,34]. Figure 1 shows a graphical abstract of the production of electrospun magnetic nanofiber mats, which can also be conditionally loaded with drugs for use in therapeutic and diagnostic procedures for cancer treatment.
Moreover, the most suitable and recently developed materials, especially magnetic nanomaterials, are used for these purposes [35]. Electrospun nanofiber mats with magnetic additives are promising materials for biomedical applications [36,37] such as targeted drug release in tumors and theranostic devices for cancer treatment. They have great potential in this field due to the unique physical and chemical properties of electrospun nanofibers, including their networks of nanoporous and microporous structures, their large specific surface-to-volume ratio, tunable porosity, and flexible surface functionality [38,39,40,41,42,43]. Electrospinning is a very simple, cost-effective, and environmentally friendly process for producing nanofibers from various polymers [44] and even ceramics [45]. In addition, electrospun magnetic nanofiber mats can be produced from bio- or natural polymer solutions with magnetic additives [46]. Figure 2 shows the confocal laser scanning microscope (CLSM) images of a nanofiber mat with biopolymer lignin (10 wt% PEO and 1 wt% lignin) and a nanofiber mat with polyacrylonitrile (PAN)/magnetite (10 wt% PAN and 5 wt% Fe3O4).
Electrospun magnetic nanofiber mats show special characteristics with regard to materials, size and shape, and physical, chemical, and magnetic properties [47,48]. Therefore, these newly developed electrospun magnetic nanofiber mats are not only a promising material for magnetic hyperthermia in cancer treatment but can also be used for diagnostic purposes such as imaging to detect early cancer stages [49,50].
There have been several studies on the use of magnetic electrospun nanofibers for hyperthermia in cancer therapy, but there are only a few reviews. For instance, Vilas-Boas et al. conducted in vitro and in vivo studies to identify the parameters that affect magnetic hyperthermia [51], while Włodarczyk et al. focused on the challenges associated with the use of nanoparticles in magnetic hyperthermia [52]. Additionally, Govindan et al. explored the use of artificial intelligence in magnetic hyperthermia therapy [53]. However, these reviews mainly focused on hyperthermia therapy without the use of nanofibers. In contrast, the review by Soares and Borges centered on the use of magnetic nanofibers for cancer therapy; however, they mainly discussed the magnetic nanoparticles and polymers used in their production [54]. This particular review, on the other hand, focuses specifically on hyperthermia treatment using magnetic nanofibers and electrospinning technologies. It also discusses the materials used and the mechanism of magnetic hyperthermia for cancer therapy.
This review paper outlines some of the aspects of the current and upcoming advancement in magnetic nanostructures based on electrospun magnetic nanofiber mats and magnetic nanomaterials in cancer theranostics that are relevant to medicine and advanced materials science. In addition, it also provides a brief overview of electrospinning technology, the mechanism of magnetic hyperthermia, electrospun magnetic nanofiber mats used for hyperthermia, challenges and limitations, and the future perspective of cancer theranostics.

2. Fabrication Technique for Electrospun Magnetic Nanofiber Mats

Nanofiber and electrospun nanofiber mat fabrication technology is an interesting research area for scientists. Various methods for fabricating nanofiber mats have been described in the literature, such as melt electrospinning, self-bundling, multi-nozzle electrospinning, bubble electrospinning, electro-blowing, cylindrical porous hollow tube electrospinning, and electrospinning. Electrospinning is a very simple, easy, environmentally friendly, inexpensive, and popular method for fabricating nanofibers [55,56]. It can be used to produce very fine fibers or fiber mats with diameters in the nanometer range for both academic and industrial research purposes. Depending on their application, electrospun nanofiber mats can be made from a variety of materials, such as natural or biopolymers, polymer composites or melts, inorganic or inorganic–organic materials, metallic nanoparticles, particulates, carbon nanotubes, and even ceramics [57,58,59].
In general, there are two types of electrospinning processes: needle-based electrospinning and needle-free electrospinning (see Figure 3).
The standard needle-based electrospinning systems can be set up either vertically or horizontally, while needle-free electrospinning has either rotating or stationary spinnerets depending on the working conditions. The production of electrospun nanofiber mats in both types of electrospinning processes depends on some parameters, including solution, operating and environmental parameters, etc. Needle-based electrospinning requires a high-voltage supply and a dosing device for the spinning solution connected to the spinnerets, an adjustable control system, and a reservoir for the polymer solution (e.g., a small-diameter syringe) to facilitate the production of nanofibers [60,61] (see Figure 3a). Needle-free electrospinning, in contrast, is a self-organized process that enables the electrospinning of nanofibers directly from an open liquid platform (see Figure 3b). Throughout the process, a thin layer of a polymer solution is deposited on the surface of the spinneret and continuously rotated. This rotation creates conical peaks on the surface of the solution. At the same time, the electrical forces create Taylor cones and thus nanofibers. During the preparation of the electrospun solution, the polymers dissolve in a solvent and form a polymeric electrospun solution. Materials can be added to produce modified electrospun nanofiber mats depending on their application [62]. Most of the polymers used to fabricate nanofibers are dissolved in harmful to highly hazardous organic solvents such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethyl sulfone, tetramethyl sulfide, and aqueous solutions of ethylene carbonate and some mineral salts [63,64]. According to the scientific literature, most nanofibers are spun from toxic solvents. Some of them are highly flammable, toxic, harmful to the environment, require special disposal, can harm humans, and have high health and safety requirements [65], and only some papers report the use of the low-toxicity solvent dimethyl sulfoxide (DMSO). Therefore, there is a high demand and interest in “green electrospinning” and low-toxicity solvents, such as dimethyl sulfoxide (DMSO), that are easier to handle and do not cause disposal problems [66,67,68]. Electrospun nanofiber mats can be made from natural or synthetic polymers, including cellulose, gelatin, casein and alginate, chitosan, polysaccharides, collagen, keratin, silk, tubulin, actin, fibrin, poly(ethylene glycol) (PEG), polyacrylonitrile (PAN), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), acrylonitrile-butadiene-styrene (ABS), poly(lactic-co-glycolic acid) (PLGA), polyurethane (PU), polyvinyl alcohol (PVA), polycaprolactone (PCL), and polymethyl methacrylate (PMMA). These and many other polymers are known to be suitable for medical applications. In addition, magnetic additives, such as all ferrimagnetic iron oxides, Co, Ni, etc., can be processed into electrospun magnetic nanofiber mats by adding them into a polymer solution for magnetic hyperthermia [69,70,71,72,73,74].

3. Magnetic Hyperthermia Process and Materials

3.1. Hyperthermia

Hyperthermia is a procedure used in medical science to treat cancer by heating cancer cells, and thus killing them, using various techniques. Depending on the targeted cancer cells, temperatures range from 39 °C to 46 °C [75,76,77,78,79,80,81]. Some essential components to increase the temperature of tumor cells include ultrasound, radiofrequency (in the range from 100 kHz to 150 MHz), microwaves (wavelengths from 433 to 2450 MHz), hot water perfusion (pipes, ceilings), infrared emitters, nanoparticles, magnetic iron oxide nanoparticles, and resistive wire implants in a hyperthermia system [82,83,84,85,86,87,88,89,90,91].

3.2. Magnetic Hyperthermia

Research has found that magnetic hyperthermia is a novel procedure that offers a safe, powerful, and simple treatment method to meet these complicated challenges [92,93,94,95,96]. In this procedure, which has recently seen rapid development, magnetic nanomaterials can be used to improve hyperthermia efficiency compared to traditional hyperthermia methods for the erosion of tumors [97,98,99,100,101,102,103,104,105,106]. The most significant aspect of magnetic hyperthermia is that magnetic nanomaterials are distributed over very small areas so that the temperature behavior of healthy cells is not affected [107,108,109]. For this purpose, the highest possible saturation magnetization can be achieved with multifunctional iron oxide-based magnetic nanomaterials used on the specific therapeutic side of cancer cells. These magnetic nanomaterials are capable of generating thermal energy when an external magnetic field is applied. In magnetic hyperthermia, two types of external fields are applied: dynamic/oscillating and static [110,111,112,113,114,115,116]. In an oscillating field, an alternating current source is connected to the field, which fluctuates with frequency. It is referred to as an alternating magnetic field. Therefore, two different methods—switching the external magnetic field and changing the direction of the magnetic field—can be used to release this alternative magnetic field for magnetic hyperthermia [117]. Moreover, these low-frequency alternating magnetic fields (100 kHz–1 MHz) can deeply penetrate the body without causing significant attenuation losses [118,119,120,121]. Alternating magnetic fields with amplitudes of tens of kA/m and frequencies of 100 kHz and 1 MHz are applied in the target area so that the magnetic energy of the magnetic nanomaterials is directed toward the applied magnetic field [122,123,124,125,126]. The magnetic energy is transformed into thermal energy under different conditions, which can increase the temperature of cancerous tissue and consequently cause apoptosis or necrosis in the tumor [127,128,129,130,131]. It is known that iron-based magnetic nanomaterials can destroy the affected cells without being toxic, and the aggregated nanomaterials are excreted from the body after several weeks [132,133,134,135,136]. The main mechanisms of heat generation under an alternative magnetic field based on the properties of magnetic nanomaterials are as follows: i. hysteresis power loss of the magnetic nanoparticles, ii. Néel relaxation, and iii. frictional losses due to Brownian rotation in the magnetic particles. Applied gradually, these mechanisms lead to a saturation of thermal energy [137,138,139,140,141,142,143].

3.3. Magnetic Hyperthermia Involving Magnetic Nanomaterials

Due to the magnetic and superparamagnetic properties of nanomagnetic materials, they are becoming increasingly attractive nano-devices for medical science aiming to improve diagnostic precision and the treatment of diseases, especially cancer [144,145,146,147,148,149,150,151,152,153,154,155,156,157]. The main sources of magnetic nanoparticles are pure metals, their oxides, or metal alloys. Therefore, due to the high magnetization and oxidation properties of pure metal, as well as their high toxicity, metal oxide nanomaterials (such as magnetite, maghemite, and other ferrites, including Co, Mn, Ni, Zn, and others) are preferable for biomedical applications [158,159,160,161]. Their superparamagnetic properties, biocompatibility, and chemical stability are excellent characteristics for this purpose. In addition, magnetic nanomaterials respond to the alternative magnetic field by generating thermal energy, which is effective in magnetic hyperthermia. With a specific nanometer size of less than 20 nm, Fe3O4 is the most attractive magnetic nanomaterial due to its properties, which include superparamagnetic, high saturation magnetization, soft magnetic behavior, suitable particle shape and size, easy synthesis, and low density [162,163]. In addition, thermal efficiency depends on the main function of intermolecular interactions, dipolar interaction between particles, particle size and geometry, saturation magnetization, relaxation time (Néel and Brown), magnetic anisotropy, and superparamagnetic properties [164,165,166]. The generated heat is mainly due to the energy lost in overcoming the rotational energy barrier of the alternating magnetic field for a superparamagnetic nanomaterial smaller than the single-domain region (see Figure 4).
Consequently, such magnetic nanomaterials, possibly combined with polymeric materials, can be used in cancer treatment as a therapeutic device platform for drug release, as imaging probes for cancer diagnostics, and for magnetic hyperthermia [168,169,170,171,172].

3.4. Mechanism of Thermal Energy Generation Using Magnetic Nanomaterials

Normally, magnetic hysteresis losses are observed in magnetic nanomaterials when an external magnetic field is applied [173,174]. These magnetic losses largely depend on the magnetic features of the magnetic nanomaterials based on their size [175]. For example, a multi-domain state is evident in bulk materials. However, the thermal energy generated using both single- and multi-domain magnetic nanomaterials is always a function of hysteresis losses, which depends on how fast the magnetization follows the alternating magnetic field (AMF) changes [176,177,178,179,180,181]. Moreover, the amount of magnetic energy transformed into heat during magnetization reversal follows the magnetic loss in the magnetic nanoparticles. Thus, the thermal energy generated using the magnetic nanomaterial is approximately equal to the area of the hysteresis loop formed during one cycle of the magnetic field (see Figure 5) [182,183,184].
In addition, movement is required to overcome the friction between the magnetization easy axis and the atomic lattices for the Néel relaxation or between magnetic nanomaterials and their surroundings for Brownian relaxation, leading to the loss of electromagnetic energy and the production of thermal energy [185,186,187].

3.5. Magnetic Hyperthermia with Electrospun Magnetic Nanofiber Mats

The potential biomedical applications of magnetic nanostructures can be enhanced by adding magnetic nanomaterials to composite polymers [188,189]. The large surface area of the nanomaterials, the irregular composition, and the shape of the magnetic nanomaterials lead to an imbalance in dipolar attraction and a strong interaction between the particles [190,191]. The temperature, concentration of nanomaterials, surface charge of nanoparticles, dielectric constant, ionic strength of the medium, presence of surfactants, magnetic attraction force, high surface energy, and van der Waals forces are the basic parameters that lead to the agglomeration of magnetic nanomaterials to the polymer matrix [192,193]. Magnetic particles generate heat when exposed to an external alternating magnetic field by various physical mechanisms such as relaxation loss or hysteresis loss [194,195,196]. All hysteresis losses occur in the hysteresis loop area of superparamagnetic or ferromagnetic/ferrimagnetic nanomaterials [197,198,199,200,201]. As the magnetic nanomaterials are fixed inside the electrospun magnetic nanofiber mats, they generally cannot rotate freely in the applied magnetic field. Typically, magnetic materials can experience heating through any of the four distinct mechanisms when subjected to high-frequency magnetic fields, namely eddy currents and hysteresis loss, as well as Brownian and Néel relaxation [202,203,204]. Zhong et al. have shown, for example, that for fixed magnetic nanomaterials in the polymer matrix, magnetic reversal losses are responsible for heat generation. Since the magnetic nanomaterials are incorporated into the fiber mats and thus fixed, the complete rotation of the nanomaterials (extrinsic relaxation) can be avoided. From the hysteresis curve of the nanomaterials, a coercivity of about 80 Oe and a relative remanence of 0.12 were determined. These values are a clear indication of a dominant ferrimagnetic behavior of the nanomaterials in the fibers, so hysteresis will be the main loss mechanism in magnetization reversal. Due to the size distribution of the magnetic nanomaterials, there will also be a fraction of very small superparamagnetic nanomaterials within the particle ensemble. Their magnetization will be reversed via Néel relaxation [205].
The magnetization dynamics of low-dimensional objects consist of many factors, e.g., the geometric shape, which determines the prevailing competition between demagnetization and exchange energy, as shown in the study by Steblinski et al. [206]. Using electrospinning techniques, magnetic nanoparticles can be embedded into electrospun nanofibers and other polymeric matrices to create defined magnetic and mechanical properties. The metal oxide nanoparticles have a strong tendency to form agglomerations—an effect that, as a consequence, changes the magnetic properties of the composites. The study by Blachowicz et al. investigated metal oxide nanoparticles such as magnetite or nickel ferrite and their embedding into a polymer to avoid oxidation. It also investigated the influence of agglomeration on the magnetic properties of metal oxide nanoparticles with different diameters in non-magnetic matrices [207].
Figure 6 shows the atomic force microscopy (AFM) image of a PAN nanofiber mat with 20 wt% Fe3O4. The nanofiber’s morphology shows bead-like shapes. A study by Trabesli et al. detected an agglomeration of magnetite nanoparticles in the beads using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS) spectra [208].
Figure 7 shows scanning electron micrograph (SEM) and confocal laser scanning (CLSM) images of the electrospun magnetic PAN nanofiber mats with 20 wt% Fe3O4. As shown in Figure 6 and Figure 7, different methods, such as AFM, SEM, CLSM, or a combination of SEM and EDS, can be used to study the surface morphology of nanofiber mats [208].
Hu et al. fabricated an electrospun magnetic nanostructure of poly(caprolactone) PCL/Fe3O4 with 5 wt%, 9 wt%, 13 wt%, 17 wt%, and 21 wt% Fe3O4 nanoparticles. They applied an alternating magnetic field to generate heat and reach approx. 45 °C, which could then be transferred to cancerous tissue and cause cancer cells to die [209]. Molcan et al. prepared electrospun magnetic nanofiber mats using polyvinyl butyral and a magnetic liquid solution. These electrospun magnetic nanofibers with different magnetic nanomaterials concentrations were tested under an alternating magnetic field for magnetic hyperthermia applications and showed a temperature rise immediately after field application [210]. In addition, Song described the effect of the thickness of the magnetic nanofiber membrane made of γ-Fe2O3/polyurethane (PU) at different spinning times of 5, 10, 15, and 20 min. The maximum magnetic field strength and magnetic field frequency were 12.5 Oe and 153 kHz, respectively, to generate heat for magnetic hyperthermia, and the temperature reached was about 44.3 °C. However, the thickness of the electrospun magnetic nanofiber mats had no significant effect on heat generation [211]. Sarier et al. fabricated electrospun nanofiber mats from magnetite nanomaterials and fatty acid incorporated-poly(methacrylic acid-ethyl acrylate) for magnetic hyperthermia application. The temperature of the targeted materials was at approximately 40–48 °C [212].
In contrast, Lee et al. fabricated an electrospun magnetic nanofiber mat from the superparamagnetic nanomaterials Fe3O4 (iron oxide)/PAN (polyacrylonitrile) and used it to kill cancer cells with magnetic hyperthermia. In the experiment, they used 20 wt%, 25 wt%, and 30 wt% magnetic nanomaterials in nanofiber mats to heat the tumor cells and achieved temperatures of up to 46.8 °C, 48.8 °C, and 49.5 °C, respectively. In addition, at temperatures above 42 °C, they observed the death of cancer cells [213]. Lin et al. investigated electrospun magnetic chitosan nanofiber composites for hyperthermia treatment of tumor cells under an alternating magnetic field at a frequency of 750 kHz and a magnetic intensity of 6.4 kW [213]. According to the study by Sasikala et al., the analyzed results showed that such magnetic electrospun mats have the potential for hyperthermia treatment with endoscopic/surgical delivery and serve as a complementary postoperative tumor removal debridement treatment [214]. Matos et al. reported on electrospun magnetic nanofiber mats produced from magnetic nanomaterials with cellulose acetate membranes for magnetic hyperthermia applications [215]. Park et al. produced magnetic nanofiber mats from polyurethane and Fe2O3 using electrospinning technology and applied high-frequency magnetic fields for magnetic hyperthermia. They concluded that such electrospun magnetic nanofiber mats have the potential to be used as a substrate for magnetic materials in localized hyperthermia applications [216]. Electrospun magnetic nanofiber mats could be promising nanomaterials in magnetic hyperthermia for cancer treatment in the near future.

4. Drug Delivery and Electrospun Magnetic Nanofiber Mats for Cancer Treatment

The controlled release of targeted drugs is one of the most important research areas in cancer treatment, as it is one of the major challenges in medical science. Electrospinning opens new possibilities to load nanofiber mats with drugs, including thermolabile drugs, and release them in a controlled way. The excellent properties of nanofiber mats, e.g., their good mechanical stability, controlled loading and release of a variety of drugs, low toxicity, and the possibility of encapsulation, play a major role in therapy [217].
Figure 8 highlights four areas of electrospinning technology for use in drug delivery. The preparation of nanofiber mats loaded with drugs is a simple process and allows for the use of a variety of different polymers. For example, depending on the electrospinning parameters, the polymers used, and other parameters, defined on-demand drug release can be realized. Drug loading and delivery can be based on encapsulation, chemical immobilization, and physical adsorption methods. The drug-loaded nanofibers can be used in many fields of therapy such as gene therapy, immunotherapy or chemotherapy, wound healing, and implants [218].
However, magnetic nanomaterial-based drugs can also be applied in cancer treatment using electrospun magnetic nanofiber mats under an alternative magnetic field due to the magnetic response of electrospun magnetic nanofiber mats and some physical and chemical properties [219,220,221,222]. This function is based on some important parameters, including the ratio of polymer to magnetic nanomaterials, the concentration of magnetic nanomaterials, and the distribution of size and magnetic nanomaterials within the electrospun magnetic nanofiber mats [223]. Due to the porous structure of electrospun magnetic nanofiber mats, the original mechanism of drug delivery is diffusion. When an external magnetic field is applied to the electrospun nanofiber mats, the magnetic nanomaterials try to align and form a barrier within the nanostructure. Small drug molecules then come out of the porous structure because the magnetic barriers limit the capacity of drug molecules with a very low diffusion rate. When the external magnetic field is removed and the alignment of the magnetic nanomaterials is damaged, the small drug molecules in the target tissue are released again. Electrospun magnetic nanofiber mats can thus also be used as a drug trigger for tumor cells when needed for cancer treatment [224,225,226,227,228,229,230,231].
The study of Miyako and Yu deals with the alternating magnetic field-mediated wireless manipulations of liquid metal for use in therapeutic bioengineering. Therapeutic bioengineering applications of liquid metals (LMs) in vitro and in vivo demonstrated efficacy in magnetic cancer hyperthermia using a wireless alternating magnetic field (AMF) as well as remote manipulation of a pill-shaped microdevice based on an LM/hydrogel composite. In addition, AMFs were used effectively to eradicate tumors in vitro and in vivo with EGaIn by means of heat dissipation via eddy currents. The overview of AMF-guided spatiotemporal drug release from an LM agarose–hydrogel microdevice is shown in Figure 9 [226].
Bazzazzadeh et al. prepared poly(acrylic acid)-grafted chitosan/polyurethane/magnetic MIL-53 nanofibers with a metal–organic core–sheath for simultaneous administration of temozolomide and paclitaxel against glioblastoma cancer cells and for heat generation under an alternating magnetic field for mild hyperthermia of cells treated with magnetic MIL-53 fibers containing 5 wt% grafted-chitosan(GS)-g-poly(acrylic acid) (PAA)-paclitaxel (PTX)-temozolomide (TMZ)/polyurethane (PU) for 10 min. The study results suggest that the electrospun magnetic core–shell nanofiber mats could be used for the targeted delivery of anticancer drugs and magnetic hyperthermia applications in cancer treatment [232]. In addition, Nejad et al. described the preparation of magnetic nanofiber mats of iron oxide nanomaterials and the borate-containing anticancer drug Bortezomib (BTZ) using a catechol metal binding mechanism adapted from nature. These smart magnetic nanofiber mats show a unique conjugation of Bortezomib to their 1, 2-benzenediol (catechol) moieties for enabling pH-dependent drug delivery with simultaneous application of hyperthermia [233]. Moreover, Radmansouri et al. prepared doxorubicin hydrochloride-loaded electrospun chitosan/cobalt ferrite/titanium oxide magnetic nanofibers and investigated controlled drug release for hyperthermia tumor cell treatment. Their investigation results showed that these electrospun magnetic nanofiber mats can be used for localized cancer therapy [234]. Zhang et al. produced nanoscale materials based on the self-assembly of the mixed polymer with azo reductase-sensitive linkage (PEG-Azo-PLGA) and catechol-modified d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) (Cat-TPGS), respectively synthesized, which provided an effective strategy for oral delivery of anti-ulcerative colitis (UC) drugs [235]. Strategies to improve the efficacy of a drug delivery system for glioma using nanoparticles were reviewed by Li et al. [236]. Sun et al. analyzed how differentiated proteins and selenium-modified chitosan induce apoptosis in HepG2 cells for the food and drug industry [237]. He et al. investigated leukemia inhibitory factor (LIF), an imperative bioactive protein that maintains stem cell self-renewal and pluripotency and is essential for mouse embryonic stem cell (mESC) culture. MgFe-layered double hydroxide (MgFe-LDH) nanoparticles can be used as a cost-effective and efficient replacement for LIF in mESC culture, according to the study [238].

5. Diagnostics Technology and Electrospun Magnetic Nanofiber Mats and Magnetic Nanomaterials for Cancer Treatment

The detection technique with which cancer is diagnosed plays an important role in cancer treatment. There are various kinds of detection processes in medical imaging tools and techniques including photography, microscopy, ultrasound, X-rays, computed tomography (CT) scans, magnetic particle imaging (MPI), magnetic resonance imaging (MRI), positron emission tomography (PET), etc. All of them, especially MRI and MPI, are very important tools for cancer treatment. On the one hand, MRI is very promising due to the deep penetration ability and high spatial resolution achieved using contrast agents. However, the sensitivity of T1-weighted MRI agents is low, and in T2-weighted MRI, the agents are challenging to detect in biological tissues. For this reason, magnetic nanomaterials are considered more promising T2 MRI contrast agents, and iron-based magnetic nanomaterials in particular have a longer half-life than clinically used gadolinium-based contrast agents [239,240,241,242,243]. Electrospun magnetic nanofiber mats can be loaded with a precise number of magnetic nanoparticles and implanted directly into the tumor site to enhance diagnostics. Additionally, these nanofiber mats can be used to amplify biosensor signals and improve the accuracy and sensitivity of bioassays. They are also suitable for the isolation and detection of circulating tumor cells, which is a crucial diagnostic tool. Thus, electrospun magnetic nanofiber mats are an ideal material for various diagnostic applications [244].
For example, Illés et al. used superparamagnetic nanoparticles to develop image contrast for MRI diagnosis and showed the highest values of r2 relaxivity (451 mM−1s−1) for MRI tools [245]. In addition, Khizar et al. applied magnetic cobalt ferrite nanoparticles for the combined application of MRI and magnetic hyperthermia [246]. Moreover, Islam et al. used Mn Fe2O4 nanoparticles in MRI and hyperthermia studies [247]. Nevertheless, MPI, in which magnetic nanoparticles are used, has been widely used in cancer treatment in recent times. However, the localization and concentration of magnetic nanoparticles could provide real-time 3D imaging information and can be applied in multiple medical imaging applications. Currently, electrospun magnetic nanofiber mats are also being developed for detecting tumor cells using MPI [248,249,250]. For example, Yu et al. used superparamagnetic iron oxide to study the magnetic particle imaging (MPI) tracer imaging modality and showed that the superparamagnetic iron oxide nanoparticle tracer exhibited high image contrast [247]. However, functionalized electrospun magnetic nanofiber mats and nanomaterials are new development materials for magnetic hyperthermia, which are simultaneously proving to be imaging diagnostic materials in the field of medicine [251,252,253,254,255].

6. Challenges and Future Research Prospective

Magnetic hyperthermia raises the temperature in cancer cells to kill them using an external alternating magnetic field generated with magnetic nanomaterials without chemical agents or severe toxicity. Although magnetic hyperthermia is the most promising cancer treatment method in modern science, there are still some limitations [256,257,258,259]. An often-overlooked factor that hinders clinical use is the inability to monitor temperature accurately, leading to incorrect temperature control [260,261,262,263,264]. In addition, among all magnetic nanomaterials, superparamagnetic iron oxide nanomaterials are the most promising materials because of their magnetic and other properties. However, these nanomaterials show high Curie temperature, which could lead to uncontrollable and irregular thermal energy, as above Curie temperature, the material shows a disordered state and is no longer thermally active due to the external field. As a result, this can damage healthy body cells [265,266,267]. In addition, magnetization decreases to zero when the external magnetic field is removed, as there are no coercive forces or remanence in the superparamagnetic nanomaterials. This helps prevent aggregation and clot formation in the bloodstream, which could cause significant undesirable effects. The United States Food and Drug Administration (FDA) has already approved several natural or synthetic polymers for the production of magnetic nanofibers for other medical applications. The majority of research studies involve only in vitro or in vivo experiments. The most significant limitation of electrospun magnetic nanofibers is that they are still in the early stages of development to detect cancer cells [268,269,270,271,272]. Nevertheless, the magnetic properties of electrospun magnetic nanofiber mats depend on the morphological structure of the nanofiber mats, such as the number and distribution of magnetic particles, aggregation or agglomeration, or the formation of beads of magnetic nanomaterials inside the nanostructure and the formation of electrospun magnetic nanofiber mats. Thus, little can be found in the literature about the magnetic properties of beads and electrospun magnetic nanofibers, the aggregation and agglomeration of magnetic nanomaterials within the electrospun magnetic nanofiber mats, and the determination of the magnetic properties. The relationship between the morphological structure, magnetic properties, and application in theranostics needs to be studied in detail for a potential outcome. The reproduction of electrospun magnetic nanofiber mats with identical morphological structures or magnetic properties is also challenging due to the agglomeration or aggregation behavior of the nanomaterials described above. In addition, these magnetic nanostructures can be implemented into the tumor without side effects, which can improve the image contrast in magnetic resonance and can also be used for continuous drug release as well as magnetic hyperthermia therapy. If medical and material scientists work together, the above challenges and limitations can be overcome using further research in this field. Electrospun magnetic nanofiber mats have shown promise for use in magnetic hyperthermia for cancer treatment. However, several challenges remain to be overcome in this area. These include the need for improved materials, better control of heating properties, and optimization of the treatment protocol. Understanding the mechanisms behind magnetic hyperthermia and its interaction with biological systems is also an important challenge.

7. Conclusions

The recent literature shows that significant progress has been made in the development of theranostic approaches for the treatment of cancer. Among the developed types of magnetic hyperthermia nanomaterials, electrospun magnetic nanofiber mats with superparamagnetic nanomaterials are considered one of the most effective magnetic hyperthermia materials for the near future. In addition, they exhibit excellent properties including thermal efficiency, which depends on the main function of saturation magnetization, magnetic anisotropy, intermolecular interactions, relaxation time (Néel and Brown), particle size and shape, dipolar interaction between particles, and superparamagnetic properties. These properties of the magnetic nanomaterials are very effective in generating heat under an alternating magnetic field for the targeted tumor area and in controlling targeted delivery drug triggers as well as improving the contrast quality for diagonal imaging. Furthermore, various functionalization methods and nanomaterials can be used to improve the magnetic properties of electrospun magnetic nanofiber mats or to fabricate magnetic nanomaterials for cancer theranostics, e.g., by mixing electrospinnable polymers with superparamagnetic nanomaterials or by combining the thermally conductive properties of various polymers with superparamagnetic properties and other functions added in this way. Therefore, electrospun magnetic nanofiber mats can be considered the most promising candidates for an improved cancer theranostic platform, but further research is needed. In this review, we present the magnetic nanomaterials and electrospun magnetic nanofiber mats recently developed by materials scientists in collaboration with medical researchers for magnetic hyperthermia and diagnostic nanomaterials, as well as targeted drug delivery triggers for cancer treatment, which may represent a small contribution to future research in the biomedical and pharmaceutical sector.

Author Contributions

Conceptualization, A.M. and L.S.; methodology, A.M.; formal analysis, A.M. and L.S.; writing—original draft preparation, A.M. and L.S.; writing—review and editing, all authors; visualization, A.M. and L.S.; supervision L.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank Ana-Katrina Büttner for language editing. The authors acknowledge personal funding from the internal PhD funds of Bielefeld University of Applied Sciences.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. International Agency for Research on Cancer, WHO. Breast Cancer, Latest Global Cancer Data: Cancer Burden Rises to 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020. 2020. Available online: https://www.iarc.who.int/faq/latest-global-cancer-data-2020-qa/ (accessed on 20 March 2023).
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
  3. Brero, F.; Albino, M.; Antoccia, A.; Arosio, P.; Avolio, M.; Berardinelli, F.; Bettega, D.; Calzolari, P.; Ciocca, M.; Corti, M.; et al. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials 2020, 10, 1919. [Google Scholar] [CrossRef]
  4. Osial, M.; Pregowska, A. The Application of Artificial Intelligence in Magnetic Hyperthermia Based Research. Future Internet 2022, 14, 356. [Google Scholar] [CrossRef]
  5. Nishikawa, A.; Suzuki, Y.; Kaneko, M.; Ito, A. Combination of magnetic hyperthermia and immunomodulators to drive complete tumor regression of poorly immunogenic melanoma. Cancer Immunol. Immunother. 2022, 1–12. [Google Scholar] [CrossRef]
  6. Stone, R.; Willi, T.; Rosen, Y.; Mefford, O.; Alexis, F. Targeted magnetic hyperthermia. Ther. Deliv. 2011, 2, 815–838. [Google Scholar] [CrossRef] [PubMed]
  7. Jeon, M.J.; Ahn, C.H.; Kim, H.; Chung, I.J.; Jung, S.; Kim, H.-J.; Youn, J.K.; Kim, Y. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J. Exp. Clin. Cancer Res. 2014, 33, 57. [Google Scholar] [CrossRef]
  8. Costa, L.A.A.; Mateus, M.; Borges, J.P.; Silva, J.C.; Barreiros, S.; Soares, P.I.P. Superparamagnetic Iron Oxide Nanozymes for Synergistic Cancer Treatment. Mater. Proc. 2022, 8, 3. [Google Scholar] [CrossRef]
  9. Orozco-Henao, J.M.; Coral, D.F.; Muraca, D.; Moscoso-Londoño, O.; Mendoza Zélis, P.; van Raap, M.B.F.; Sharma, S.K.; Pirota, K.R.; Knobel, M. Effects of Nanostructure and Dipolar Interactions on Magnetohyperthermia in Iron Oxide Nanoparticles. J. Phys. Chem. C 2016, 120, 12796–12809. [Google Scholar] [CrossRef]
  10. Santana, G.L.; Crovace, M.C.; Mazón, E.E.; de Oliveira, A.J.A.; Pavan, T.Z.; Zanotto, E.D. Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia. Materials 2022, 15, 3187. [Google Scholar] [CrossRef]
  11. Mokhosi, S.R.; Mdlalose, W.; Nhlapo, A.; Singh, M. Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022, 14, 937. [Google Scholar] [CrossRef]
  12. Caizer, I.S.; Caizer, C. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 4350. [Google Scholar] [CrossRef] [PubMed]
  13. Garanina, A.S.; Nikitin, A.A.; Abakumova, T.O.; Semkina, A.S.; Prelovskaya, A.O.; Naumenko, V.A.; Erofeev, A.S.; Gorelkin, P.V.; Majouga, A.G.; Abakumov, M.A.; et al. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. Nanomaterials 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
  14. Veres, T.; Voniatis, C.; Molnár, K.; Nesztor, D.; Fehér, D.; Ferencz, A.; Gresits, I.; Thuróczy, G.; Márkus, B.G.; Simon, F.; et al. An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. Nanomaterials 2022, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
  15. Minuti, A.E.; Stoian, G.; Herea, D.-D.; Radu, E.; Lupu, N.; Chiriac, H. Fe-Cr-Nb-B Ferrofluid for Biomedical Applications. Nanomaterials 2022, 12, 1488. [Google Scholar] [CrossRef]
  16. Qu, Y.; Wang, Z.; Sun, M.; Zhao, T.; Zhu, X.; Deng, X.; Zhang, M.; Xu, Y.; Liu, H. A Theranostic Nanocomplex Combining with Magnetic Hyperthermia for Enhanced Accumulation and Efficacy of pH-Triggering Polymeric Cisplatin (IV) Prodrugs. Pharmaceuticals 2022, 15, 480. [Google Scholar] [CrossRef] [PubMed]
  17. Proenca, M.P. Multifunctional Magnetic Nanowires and Nanotubes. Nanomaterials 2022, 12, 1308. [Google Scholar] [CrossRef]
  18. Yu, J.; Cao, C.; Fang, F.; Pan, Y. Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature. Int. J. Mol. Sci. 2022, 23, 4012. [Google Scholar] [CrossRef]
  19. Tsamos, D.; Krestou, A.; Papagiannaki, M.; Maropoulos, S. An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications. Metals 2022, 12, 605. [Google Scholar] [CrossRef]
  20. Songca, S.P.; Adjei, Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int. J. Mol. Sci. 2022, 23, 3209. [Google Scholar] [CrossRef]
  21. Perecin, C.J.; Gratens, X.P.M.; Chitta, V.A.; Leo, P.; de Oliveira, A.M.; Yoshioka, S.A.; Cerize, N.N.P. Synthesis and Characterization of Magnetic Composite Theragnostics by Nano Spray Drying. Materials 2022, 15, 1755. [Google Scholar] [CrossRef]
  22. Ribeiro, B.C.; Alvarez, C.A.R.; Alves, B.C.; Rodrigues, J.M.; Queiroz, M.J.R.P.; Almeida, B.G.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Coutinho, P.J.G.; et al. Development of Thermo- and pH-Sensitive Liposomal Magnetic Carriers for New Potential Antitumor Thienopyridine Derivatives. Materials 2022, 15, 1737. [Google Scholar] [CrossRef]
  23. Ferdows, M.; Alam, J.; Murtaza, G.; Tzirtzilakis, E.E.; Sun, S. Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder. Magnetochemistry 2022, 8, 27. [Google Scholar] [CrossRef]
  24. Alkahtani, M.; Zharkov, D.K.; Leontyev, A.V.; Shmelev, A.G.; Nikiforov, V.G.; Hemmer, P.R. Lightly Boron-Doped Nanodiamonds for Quantum Sensing Applications. Nanomaterials 2022, 12, 601. [Google Scholar] [CrossRef]
  25. Pefanis, G.; Maniotis, N.; Tsiapla, A.-R.; Makridis, A.; Samaras, T.; Angelakeris, M. Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia. Nanomaterials 2022, 12, 554. [Google Scholar] [CrossRef] [PubMed]
  26. Maffei, M.E. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int. J. Mol. Sci. 2022, 23, 1339. [Google Scholar] [CrossRef]
  27. Araujo, R.T.; Neta, M.S.B.; Coaquira, J.A.H.; Chaves, S.B.; Machado, F. A New Design for Magnetic Poly(vinyl pivalate) for Biomedical Applications: Synthesis, Characterization, and Evaluation of Cytotoxicity in Fibroblasts, Keratinocytes, and Human Melanoma Cells. Colloids Interfaces 2022, 6, 7. [Google Scholar] [CrossRef]
  28. Caizer, C.; Caizer-Gaitan, I.S.; Watz, C.G.; Dehelean, C.A.; Bratu, T.; Soica, C. High Efficacy on the Death of Breast Cancer Cells Using SPMHT with Magnetite Cyclodextrins Nanobioconjugates. Pharmaceutics 2023, 15, 1145. [Google Scholar] [CrossRef]
  29. Simões, B.T.; Almeida, F.V.; Borges, J.P.; Soares, P.I.P. Extracellular Hyperthermia for the Treatment of Advanced Cutaneous Melanoma. Materals Proc. 2022, 8, 56. [Google Scholar] [CrossRef]
  30. García, J.; Gutiérrez, R.; González, A.S.; Jiménez-Ramirez, A.I.; Álvarez, Y.; Vega, V.; Reith, H.; Leistner, K.; Luna, C.; Nielsch, K.; et al. Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes. Int. J. Mol. Sci. 2023, 24, 7036. [Google Scholar] [CrossRef]
  31. Montiel Schneider, M.G.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
  32. Healy, S.; Bakuzis, A.F.; Goodwill, P.W.; Attaluri, A.; Bulte, J.W.M.; Ivkov, R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1779. [Google Scholar] [CrossRef]
  33. Narayanaswamy, V.; Al-Omari, I.A.; Kamzin, A.S.; Issa, B.; Obaidat, I.M. Tailoring Interfacial Exchange Anisotropy in Hard–Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications. Nanomaterials 2022, 12, 262. [Google Scholar] [CrossRef] [PubMed]
  34. Jiao, W.; Zhang, T.; Peng, M.; Yi, J.; He, Y.; Fan, H. Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors 2022, 12, 38. [Google Scholar] [CrossRef]
  35. Álvarez, E.; Estévez, M.; Gallo-Cordova, A.; González, B.; Castillo, R.R.; Morales, M.D.P.; Colilla, M.; Izquierdo-Barba, I.; Vallet-Regí, M. Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy. Pharmaceutics 2022, 14, 163. [Google Scholar] [CrossRef]
  36. Tran, H.-V.; Ngo, N.M.; Medhi, R.; Srinoi, P.; Liu, T.; Rittikulsittichai, S.; Lee, T.R. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. Materials 2022, 15, 503. [Google Scholar] [CrossRef]
  37. Blachowicz, T.; Hutten, A.; Ehrmann, A. Electromagnetic Interference Shielding with Electrospun Nanofiber Mats-A Review of Production, Physical Properties and Performance. Fibers 2022, 10, 47. [Google Scholar] [CrossRef]
  38. Blachowicz, T.; Ehrmann, A. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 2020, 15, 1558925019900843. [Google Scholar] [CrossRef]
  39. Storck, J.L.; Grothe, T.; Tuvshinbayar, K.; Diestelhorst, E.; Wehlage, D.; Brockhagen, B.; Wortmann, M.; Frese, N.; Ehrmann, A. Stabilization and Incipient Carbonization of Electrospun Polyacrylonitrile Nanofibers Fixated on Aluminum Substrates. Fibers 2020, 8, 55. [Google Scholar] [CrossRef]
  40. Döpke, C.; Grothe, T.; Steblinski, P.; Klöcker, M.; Sabantina, L.; Kosmalska, D.; Blachowicz, T.; Ehrmann, A. Magnetic Nanofiber Mats for Data Storage and Transfer. Nanomaterials 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
  41. Blachowicz, T.; Grzybowski, J.; Steblinski, P.; Ehrmann, A. Neuro-Inspired Signal Processing in Ferromagnetic Nanofibers. Biomimetics 2021, 6, 32. [Google Scholar] [CrossRef]
  42. Mu, Q.; Zhang, Q.; Yu, W.; Su, M.; Cai, Z.; Cui, K.; Ye, Y.; Liu, X.; Ding, L.; Chen, B.; et al. Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. ACS Appl. Mater. Interfaces 2020, 12, 33152–33162. [Google Scholar] [CrossRef]
  43. Mu, Q.; Zhang, Q.; Gao, L.; Chu, Z.; Cai, Z.; Zhang, X.; Wang, K.; Wei, Y. Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. Langmuir 2017, 33, 10291. [Google Scholar] [CrossRef] [PubMed]
  44. Trabelsi, M.; Mamun, A.; Klöcker, M.; Moulefera, I.; Pljonkin, A.; Elleuch, K.; Sabantina, L. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications. Sensors 2022, 21, 7873. [Google Scholar] [CrossRef] [PubMed]
  45. Fokin, N.; Grothe, T.; Mamun, A.; Trabelsi, M.; Klöcker, M.; Sabantina, L.; Döpke, C.; Blachowicz, T.; Hütten, A.; Ehrmann, A. Magnetic properties of electrospun magnetic nanofiber mats after stabilization and carbonization. Materials 2020, 13, 1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Blachowicz, T.; Grzybowski, J.; Ehrmann, A. Micromagnetic Simulations of Nanoparticles with Varying Amount of Agglomeration. Macromol. Symp. 2020, 402, 2100381. [Google Scholar] [CrossRef]
  47. Wortmann, M.; Layland, A.S.; Frese, N.; Kahmann, U.; Grothe, T.; Storck, J.K.; Blachowicz, T.; Grzybowski, J.; Hüsgen, B.; Ehrmann, A. On the Reliability of Highly Magnified Micrographs for Structural Analysis in Materials Science. Sci. Rep. 2020, 10, 14708. [Google Scholar] [CrossRef]
  48. Fizesan, I.; Iacovita, C.; Pop, A.; Kiss, B.; Dudric, R.; Stiufiuc, R.; Lucaciu, C.M.; Loghin, F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021, 13, 2148. [Google Scholar] [CrossRef] [PubMed]
  49. Ehrmann, A. Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine—A Review. Polymers 2021, 13, 1973. [Google Scholar] [CrossRef]
  50. Moacă, E.-A.; Socoliuc, V.; Stoian, D.; Watz, C.; Flondor, D.; Păcurariu, C.; Ianoș, R.; Rus, C.I.; Barbu-Tudoran, L.; Semenescu, A.; et al. Synthesis and Characterization of Bioactive Magnetic Nanoparticles from the Perspective of Hyperthermia Applications. Magnetochemistry 2022, 8, 145. [Google Scholar] [CrossRef]
  51. Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020, 25, 2874. [Google Scholar] [CrossRef] [PubMed]
  52. Włodarczyk, A.; Gorgoń, S.; Radoń, A.; Bajdak-Rusinek, K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials 2022, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
  53. Govindan, B.; Sabri, M.A.; Hai, A.; Banat, F.; Haija, M.A. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023, 15, 868. [Google Scholar] [CrossRef] [PubMed]
  54. Soares, P.I.P.; Borges, J.P. Recent advances in magnetic electrospun nanofibers for cancer theranostics application. Progress in Natural Science. Mater. Int. 2021, 31, 835–844. [Google Scholar] [CrossRef]
  55. Hellert, C.; Wortmann, M.; Frese, N.; Grötsch, G.; Cornelißen, C.; Ehrmann, A. Adhesion of Electrospun Poly(acrylonitrile) Nanofibers on Conductive and Isolating Foil Substrates. Coatings 2021, 11, 249. [Google Scholar] [CrossRef]
  56. Trabelsi, M.; Mamun, A.; Klöcker, M.; Sabantina, L.; Großerhode, C.; Blachowicz, T.; Ehrmann, A. Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applications. Fibers 2019, 7, 98. [Google Scholar] [CrossRef] [Green Version]
  57. Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023, 15, 1181. [Google Scholar] [CrossRef]
  58. Kozior, T.; Mamun, A.; Trabelsi, M.; Wortmann, M.; Lilia, S.; Ehrmann, A. Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites. Polymers 2019, 11, 2034. [Google Scholar] [CrossRef] [Green Version]
  59. Kozior, T.; Trabelsi, M.; Mamun, A.; Sabantina, L.; Ehrmann, A. Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing. Polymers 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
  60. Mamun, A.; Blachowicz, T.; Sabantina, L. Electrospun Nanofiber Mats for Filtering Applications—Technology, Structure and Materials. Polymers 2021, 13, 1368. [Google Scholar] [CrossRef]
  61. Storck, J.L.; Hellert, C.; Brockhagen, B.; Wortmann, M.; Diestelhorst, E.; Frese, N.; Grothe, T.; Ehrmann, A. Metallic Supports Accelerate Carbonization and Improve Morphological Stability of Polyacrylonitrile Nanofibers during Heat Treatment. Materials 2021, 14, 4686. [Google Scholar] [CrossRef]
  62. Martin, A.; Nyman, J.N.; Reinholdt, R.; Cai, J.; Schaedel, A.-L.; van der Plas, M.J.A.; Malmsten, M.; Rades, T.; Heinz, A. In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels. Nanomaterials 2022, 12, 2437. [Google Scholar] [CrossRef]
  63. Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Textile-Based Sensors for Biosignal Detection and Monitoring. Sensors 2021, 18, 6042. [Google Scholar] [CrossRef] [PubMed]
  64. Moulefera, I.; Trabelsi, M.; Mamun, A.; Sabantina, L. Electrospun Carbon Nanofibers from Biomass and Biomass Blends—Current Trends. Polymers 2021, 13, 1071. [Google Scholar] [CrossRef]
  65. Blachowicz, T.; Ehrmann, A. Shielding of Cosmic Radiation by Fibrous Materials. Fibers 2021, 9, 60. [Google Scholar] [CrossRef]
  66. Trabelsi, M.; Mamun, A.; Klöcker, M.; Sabantina, L. Investigation of metallic nanoparticle distribution in PAN/magnetic nanocomposites fabricated with needleless electrospinning technique. Commun. Dev. Assem. Text. Prod. (CDATP) 2021, 2, 8–17. [Google Scholar] [CrossRef]
  67. Sabantina, L.; Hes, L.; Rodríguez-Mirasol, J.; Cordero, T.; Ehrmann, A. Water vapor permeability through PAN nanofiber matwith varying membrane-like areas. Fibres Text. East. Eur. 2019, 27, 12–15. [Google Scholar] [CrossRef]
  68. Sabantina, L.; Rodríguez-Mirasol, J.; Cordero, T.; Finsterbusch, K.; Ehrmann, A. Investigation of needleless electrospun PAN nanofiber mats. AIP Conf. Proc. 2018, 1952, 020085. [Google Scholar] [CrossRef]
  69. Mamun, A. Review of Possible Applications of Nanofibrous Mats for Wound Dressings. Tekstilec 2019, 62, 89–100. [Google Scholar] [CrossRef]
  70. Cui, W.; Zheng, Y.; Zhu, R.; Mu, Q.; Wang, X.; Wang, Z.; Liu, S.; Li, M.; Ran, R. Strong Tough Conductive Hydrogels via the Synergy of Ion-Induced Cross- Linking and Salting-Out. Adv. Funct. Mater. 2022, 32, 2204823. [Google Scholar] [CrossRef]
  71. Mu, Q.; Cui, K.; Wang, Z.; Matsuda, T.; Cui, W.; Kato, H.; Namiki, S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T.; et al. Force-Triggered Rapid Microstructure Growth on Hydrogel Surface for On-Demand Functions. Nat. Commun. 2022, 13, 6213. [Google Scholar] [CrossRef] [PubMed]
  72. Zhang, M.; Song, W.; Tang, Y.; Xu, X.; Huang, Y.; Yu, D. Polymer- Based Nanofiber–Nanoparticle Hybrids and Their Medical Applications. Polymers 2022, 14, 351. [Google Scholar] [CrossRef] [PubMed]
  73. Chen, B.; Zhang, S.; Zhang, Q.; Mu, Q.; Deng, L.; Chen, L.; Wei, Y.; Tao, L.; Zhang, X.; Wang, K. Microorganism inspired hydrogels: Fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. RSC Adv. 2015, 5, 91937. [Google Scholar] [CrossRef]
  74. Quarta, E.; Chiappi, M.; Adamiano, A.; Tampieri, A.; Wang, W.; Tetley, T.D.; Buttini, F.; Sonvico, F.; Catalucci, D.; Colombo, P.; et al. Inhalable Microparticles Embedding Biocompatible Magnetic Iron-Doped Hydroxyapatite Nanoparticles. J. Funct. Biomater. 2023, 14, 189. [Google Scholar] [CrossRef]
  75. Carvalho, A.; Gallo, J.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Hilliou, L.; Ferreira, P.M.T.; Bañobre-López, M.; Martins, J.A. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials 2019, 9, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Peiravi, M.; Eslami, H.; Ansari, M.; Zare-Zardini, H. Magnetic hyperthermia: Potentials and limitations. J. Indian Chem. Soc. 2022, 99, 100269. [Google Scholar] [CrossRef]
  77. Ji, Y.; Winter, L.; Navarro, L.; Ku, M.-C.; Periquito, J.S.; Pham, M.; Hoffmann, W.; Theune, L.E.; Calderón, M.; Niendorf, T. Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers 2020, 12, 1380. [Google Scholar] [CrossRef]
  78. Ganapathe, L.S.; Kazmi, J.; Mohamed, M.A.; Berhanuddin, D.D. Molarity Effects of Fe and NaOH on Synthesis and Characterisation of Magnetite (Fe3O4) Nanoparticles for Potential Application in Magnetic Hyperthermia Therapy. Magnetochemistry 2022, 8, 161. [Google Scholar] [CrossRef]
  79. Salvador, M.; Marqués-Fernández, J.L.; Martínez-García, J.C.; Fiorani, D.; Arosio, P.; Avolio, M.; Brero, F.; Balanean, F.; Guerrini, A.; Sangregorio, C.; et al. Double-Layer Fatty Acid Nanoparticles as a Multiplatform for Diagnostics and Therapy. Nanomaterials 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
  80. Chan, M.-H.; Li, C.-H.; Chang, Y.-C.; Hsiao, M. Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery. Pharmaceutics 2022, 14, 2584. [Google Scholar] [CrossRef]
  81. Caizer, C. Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. Nanomaterials 2021, 11, 3294. [Google Scholar] [CrossRef]
  82. Nazarova, A.; Kozlovskiy, A.L.; Rusakov, V.S.; Egizbek, K.B.; Fadeev, M.S.; Prmantayeva, B.A.; Chudoba, D.; Zdorovets, M.V.; Kadyrzhanov, K.K. Study of the Applicability of Magnetic Iron-Containing Nanoparticles in Hyperthermia and Determination of Their Resistance to Degradation Processes. Crystals 2022, 12, 1816. [Google Scholar] [CrossRef]
  83. Andrade, R.G.D.; Ferreira, D.; Veloso, S.R.S.; Santos-Pereira, C.; Castanheira, E.M.S.; Côrte-Real, M.; Rodrigues, L.R. Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Pharmaceutics 2022, 14, 2694. [Google Scholar] [CrossRef]
  84. Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D.; et al. Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 881. [Google Scholar] [CrossRef] [Green Version]
  85. Sadat, M.E.; Bud’ko, S.L.; Ewing, R.C.; Xu, H.; Pauletti, G.M.; Mast, D.B.; Shi, D. Effect of Dipole Interactions on Blocking Temperature and Relaxation Dynamics of Superparamagnetic Iron-Oxide (Fe3O4) Nanoparticle Systems. Materials 2023, 16, 496. [Google Scholar] [CrossRef] [PubMed]
  86. Oltolina, F.; Peigneux, A.; Colangelo, D.; Clemente, N.; D’Urso, A.; Valente, G.; Iglesias, G.R.; Jiménez-Lopez, C.; Prat, M. Biomimetic Magnetite Nanoparticles as Targeted Drug Nanocarriers and Mediators of Hyperthermia in an Experimental Cancer Model. Cancers 2020, 12, 2564. [Google Scholar] [CrossRef] [PubMed]
  87. Ragab, M.; Abouelregal, A.E.; AlShaibi, H.F.; Mansouri, R.A. Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. Biology 2021, 10, 1259. [Google Scholar] [CrossRef] [PubMed]
  88. Zeinoun, M.; Domingo-Diez, J.; Rodriguez-Garcia, M.; Garcia, O.; Vasic, M.; Ramos, M.; Serrano Olmedo, J.J. Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms. Nanomaterials 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
  89. McWilliams, B.T.; Wang, H.; Binns, V.J.; Curto, S.; Bossmann, S.H.; Prakash, P. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. J. Funct. Biomater. 2017, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  90. Alromi, D.A.; Madani, S.Y.; Seifalian, A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers 2021, 13, 4146. [Google Scholar] [CrossRef] [PubMed]
  91. Wei, D.-H.; Pan, K.-Y.; Tong, S.-K. Surface Modification and Heat Generation of FePt Nanoparticles. Materials 2017, 10, 181. [Google Scholar] [CrossRef] [PubMed]
  92. Matos, R.J.R.; Soares, P.I.P.; Silva, J.C.; Borges, J.P. Magnetic Bioactive Glass-Based 3D Systems for Bone Cancer Therapy and Regeneration. Mater. Proc. 2022, 8, 18. [Google Scholar] [CrossRef]
  93. Sheng, L.; Zhu, X.; Sun, M.; Lan, Z.; Yang, Y.; Xin, Y.; Li, Y. Tumor Microenvironment-Responsive Magnetic Nanofluid for Enhanced Tumor MRI and Tumor multi-treatments. Pharmaceuticals 2023, 16, 166. [Google Scholar] [CrossRef]
  94. Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023, 15, 236. [Google Scholar] [CrossRef]
  95. Caizer, C. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Nanomaterials 2021, 11, 40. [Google Scholar] [CrossRef]
  96. Illés, E.; Tombácz, E.; Hegedűs, Z.; Szabó, T. Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions. Nanomaterials 2020, 10, 2426. [Google Scholar] [CrossRef] [PubMed]
  97. Choi, S.K. Activation Strategies in Image-Guided Nanotherapeutic Delivery. J. Nanotheranostics 2020, 1, 78–104. [Google Scholar] [CrossRef]
  98. Sahin, O.; Meiyazhagan, A.; Ajayan, P.M.; Krishnan, S. Immunogenicity of Externally Activated Nanoparticles for Cancer Therapy. Cancers 2020, 12, 3559. [Google Scholar] [CrossRef] [PubMed]
  99. Khuyen, H.T.; Huong, T.T.; Van, N.D.; Huong, N.T.; Vu, N.; Lien, P.T.; Nam, P.H.; Nghia, V.X. Synthesis of Multifunctional Eu(III) Complex Doped Fe3O4/Au Nanocomposite for Dual Photo-Magnetic Hyperthermia and Fluorescence Bioimaging. Molecules 2023, 28, 749. [Google Scholar] [CrossRef]
  100. Arsalani, S.; Arsalani, S.; Isikawa, M.; Guidelli, E.J.; Mazon, E.E.; Ramos, A.P.; Bakuzis, A.; Pavan, T.Z.; Baffa, O.; Carneiro, A.A.O. Hybrid Nanoparticles of Citrate-Coated Manganese Ferrite and Gold Nanorods in Magneto-Optical Imaging and Thermal Therapy. Nanomaterials 2023, 13, 434. [Google Scholar] [CrossRef] [PubMed]
  101. Ghemes, C.; Dragos-Pinzaru, O.-G.; Tibu, M.; Lostun, M.; Lupu, N.; Chiriac, H. Tunnel Magnetoresistance-Based Sensor for Biomedical Application: Proof-of-Concept. Coatings 2023, 13, 227. [Google Scholar] [CrossRef]
  102. Diab, D.E.H.; Clerc, P.; Serhan, N.; Fourmy, D.; Gigoux, V. Combined Treatments of Magnetic Intra-Lysosomal Hyperthermia with Doxorubicin Promotes Synergistic Anti-Tumoral Activity. Nanomaterials 2018, 8, 468. [Google Scholar] [CrossRef] [Green Version]
  103. Osial, M.; Rybicka, P.; Pękała, M.; Cichowicz, G.; Cyrański, M.K.; Krysiński, P. Easy Synthesis and Characterization of Holmium-Doped SPIONs. Nanomaterials 2018, 8, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.D.; Delbem, A.C.B.; Monteiro, D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Adam, A.; Mertz, D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. Nanomaterials 2023, 13, 1342. [Google Scholar] [CrossRef]
  106. Salimi, M.; Sarkar, S.; Hashemi, M.; Saber, R. Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. Nanomaterials 2020, 10, 2310. [Google Scholar] [CrossRef] [PubMed]
  107. Ting, C.-K.; Dhawan, U.; Tseng, C.-L.; Alex Gong, C.-S.; Liu, W.-C.; Tsai, H.-D.; Chung, R.-J. Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles. Pharmaceutics 2020, 12, 1097. [Google Scholar] [CrossRef]
  108. Stadler, B.J.H.; Reddy, M.; Basantkumar, R.; McGary, P.; Estrine, E.; Huang, X.; Sung, S.Y.; Tan, L.; Zou, J.; Maqableh, M.; et al. Galfenol Thin Films and Nanowires. Sensors 2018, 18, 2643. [Google Scholar] [CrossRef] [Green Version]
  109. Yadel, C.; Michel, A.; Casale, S.; Fresnais, J. Hyperthermia Efficiency of Magnetic Nanoparticles in Dense Aggregates of Cerium Oxide/Iron Oxide Nanoparticles. Appl. Sci. 2018, 8, 1241. [Google Scholar] [CrossRef] [Green Version]
  110. Albarqi, H.A.; Demessie, A.A.; Sabei, F.Y.; Moses, A.S.; Hansen, M.N.; Dhagat, P.; Taratula, O.R.; Taratula, O. Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics 2020, 12, 1020. [Google Scholar] [CrossRef]
  111. Attanayake, S.B.; Chanda, A.; Hulse, T.; Das, R.; Phan, M.-H.; Srikanth, H. Competing Magnetic Interactions and Field-Induced Metamagnetic Transition in Highly Crystalline Phase-Tunable Iron Oxide Nanorods. Nanomaterials 2023, 13, 1340. [Google Scholar] [CrossRef]
  112. Tavares, F.J.T.M.; Soares, P.I.P.; Silva, J.C.; Borges, J.P. Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration. Int. J. Mol. Sci. 2023, 24, 1128. [Google Scholar] [CrossRef] [PubMed]
  113. Meneses-Brassea, B.P.; Borrego, E.A.; Blazer, D.S.; Sanad, M.F.; Pourmiri, S.; Gutierrez, D.A.; Varela-Ramirez, A.; Hadjipanayis, G.C.; El-Gendy, A.A. Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia. Nanomaterials 2020, 10, 1988. [Google Scholar] [CrossRef] [PubMed]
  114. Medina, M.A.; Oza, G.; Ángeles-Pascual, A.; González, M.M.; Antaño-López, R.; Vera, A.; Leija, L.; Reguera, E.; Arriaga, L.G.; Hernández Hernández, J.M.; et al. Synthesis, Characterization and Magnetic Hyperthermia of Monodispersed Cobalt Ferrite Nanoparticles for Cancer Therapeutics. Molecules 2020, 25, 4428. [Google Scholar] [CrossRef] [PubMed]
  115. Simeonidis, K.; Kaprara, E.; Rivera-Gil, P.; Xu, R.; Teran, F.J.; Kokkinos, E.; Mitropoulos, A.; Maniotis, N.; Balcells, L. Hydrotalcite-Embedded Magnetite Nanoparticles for Hyperthermia-Triggered Chemotherapy. Nanomaterials 2021, 11, 1796. [Google Scholar] [CrossRef]
  116. Gareev, K.G.; Grouzdev, D.S.; Kharitonskii, P.V.; Kosterov, A.; Koziaeva, V.V.; Sergienko, E.S.; Shevtsov, M.A. Magnetotactic Bacteria and Magnetosomes: Basic Properties and Applications. Magnetochemistry 2021, 7, 86. [Google Scholar] [CrossRef]
  117. Caizer, C. Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. Appl. Sci. 2021, 11, 5505. [Google Scholar] [CrossRef]
  118. Das, R.; Masa, J.A.; Kalappattil, V.; Nemati, Z.; Rodrigo, I.; Garaio, E.; García, J.Á.; Phan, M.-H.; Srikanth, H. Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions. Nanomaterials 2021, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
  119. de la Parte, B.H.; Irazola, M.; Pérez-Muñoz, J.; Rodrigo, I.; Iturrizaga Correcher, S.; Mar Medina, C.; Castro, K.; Etxebarria, N.; Plazaola, F.; García, J.Á.; et al. Biochemical and Metabolomic Changes after Electromagnetic Hyperthermia Exposure to Treat Colorectal Cancer Liver Implants in Rats. Nanomaterials 2021, 11, 1318. [Google Scholar] [CrossRef]
  120. Ortega-Muñoz, M.; Plesselova, S.; Delgado, A.V.; Santoyo-Gonzalez, F.; Salto-Gonzalez, R.; Giron-Gonzalez, M.D.; Iglesias, G.R.; López-Jaramillo, F.J. Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties. Polymers 2021, 13, 1599. [Google Scholar] [CrossRef]
  121. Fatima, H.; Charinpanitkul, T.; Kim, K.-S. Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef]
  122. Moacă, E.-A.; Watz, C.-G.; Socoliuc, V.; Racoviceanu, R.; Păcurariu, C.; Ianoş, R.; Cîntă-Pînzaru, S.; Tudoran, L.B.; Nekvapil, F.; Iurciuc, S.; et al. Biocompatible Magnetic Colloidal Suspension Used as a Tool for Localized Hyperthermia in Human Breast Adenocarcinoma Cells: Physicochemical Analysis and Complex In Vitro Biological Profile. Nanomaterials 2021, 11, 1189. [Google Scholar] [CrossRef]
  123. Jabalera, Y.; Sola-Leyva, A.; Carrasco-Jiménez, M.P.; Iglesias, G.R.; Jimenez-Lopez, C. Synergistic Photothermal-Chemotherapy Based on the Use of Biomimetic Magnetic Nanoparticles. Pharmaceutics 2021, 13, 625. [Google Scholar] [CrossRef] [PubMed]
  124. Saikova, S.; Pavlikov, A.; Trofimova, T.; Mikhlin, Y.; Karpov, D.; Asanova, A.; Grigoriev, Y.; Volochaev, M.; Samoilo, A.; Zharkov, S.; et al. Hybrid Nanoparticles Based on Cobalt Ferrite and Gold: Preparation and Characterization. Metals 2021, 11, 705. [Google Scholar] [CrossRef]
  125. Darwish, M.S.A.; Kim, H.; Bui, M.P.; Le, T.-A.; Lee, H.; Ryu, C.; Lee, J.Y.; Yoon, J. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. Nanomaterials 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
  126. Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials 2020, 10, 2099. [Google Scholar] [CrossRef]
  127. Nemec, S.; Kralj, S.; Wilhelm, C.; Abou-Hassan, A.; Rols, M.-P.; Kolosnjaj-Tabi, J. Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles’ Heating Yield. Appl. Sci. 2020, 10, 7322. [Google Scholar] [CrossRef]
  128. Ajinkya, N.; Yu, X.; Kaithal, P.; Luo, H.; Somani, P.; Ramakrishna, S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials 2020, 13, 4644. [Google Scholar] [CrossRef]
  129. Schneider-Futschik, E.K.; Reyes-Ortega, F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics 2021, 13, 1157. [Google Scholar] [CrossRef]
  130. Sanad, M.F.; Meneses-Brassea, B.P.; Blazer, D.S.; Pourmiri, S.; Hadjipanayis, G.C.; El-Gendy, A.A. Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia. Appl. Sci. 2021, 11, 6637. [Google Scholar] [CrossRef]
  131. Xue, Y.; Lofland, S.; Hu, X. Comparative Study of Silk-Based Magnetic Materials: Effect of Magnetic Particle Types on the Protein Structure and Biomaterial Properties. Int. J. Mol. Sci. 2020, 21, 7583. [Google Scholar] [CrossRef]
  132. Reichel, V.E.; Matuszak, J.; Bente, K.; Heil, T.; Kraupner, A.; Dutz, S.; Cicha, I.; Faivre, D. Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool. Nanomaterials 2020, 10, 2014. [Google Scholar] [CrossRef] [PubMed]
  133. Khan, U.; Zaib, A.; Ishak, A. Magnetic Field Effect on Sisko Fluid Flow Containing Gold Nanoparticles through a Porous Curved Surface in the Presence of Radiation and Partial Slip. Mathematics 2021, 9, 921. [Google Scholar] [CrossRef]
  134. Vurro, F.; Jabalera, Y.; Mannucci, S.; Glorani, G.; Sola-Leyva, A.; Gerosa, M.; Romeo, A.; Romanelli, M.G.; Malatesta, M.; Calderan, L.; et al. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. Nanomaterials 2021, 11, 766. [Google Scholar] [CrossRef]
  135. Baino, F.; Fiume, E.; Miola, M.; Leone, F.; Onida, B.; Laviano, F.; Gerbaldo, R.; Verné, E. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Materials 2018, 11, 173. [Google Scholar] [CrossRef] [Green Version]
  136. Slavu, L.M.; Rinaldi, R.; Di Corato, R. Application in Nanomedicine of Manganese-Zinc Ferrite Nanoparticles. Appl. Sci. 2021, 11, 11183. [Google Scholar] [CrossRef]
  137. Zhao, S.; Lee, S. Biomaterial-Modified Magnetic Nanoparticles γ-Fe2O3, Fe3O4 Used to Improve the Efficiency of Hyperthermia of Tumors in HepG2 Model. Appl. Sci. 2021, 11, 11124. [Google Scholar] [CrossRef]
  138. Spoială, A.; Ilie, C.-I.; Crăciun, L.N.; Ficai, D.; Ficai, A.; Andronescu, E. Magnetite-Silica Core/Shell Nanostructures: From Surface Functionalization towards Biomedical Applications—A Review. Appl. Sci. 2021, 11, 11075. [Google Scholar] [CrossRef]
  139. Cho, M.; Cervadoro, A.; Ramirez, M.R.; Stigliano, C.; Brazdeikis, A.; Colvin, V.L.; Civera, P.; Key, J.; Decuzzi, P. Assembly of Iron Oxide Nanocubes for Enhanced Cancer Hyperthermia and Magnetic Resonance Imaging. Nanomaterials 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
  140. Iacovita, C.; Florea, A.; Dudric, R.; Pall, E.; Moldovan, A.I.; Tetean, R.; Stiufiuc, R.; Lucaciu, C.M. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties. Molecules 2016, 21, 1357. [Google Scholar] [CrossRef] [Green Version]
  141. de la Parte, B.H.; Rodrigo, I.; Gutiérrez-Basoa, J.; Iturrizaga Correcher, S.; Mar Medina, C.; Echevarría-Uraga, J.J.; Garcia, J.A.; Plazaola, F.; García-Alonso, I. Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy. Cancers 2022, 14, 3084. [Google Scholar] [CrossRef]
  142. Zverev, V.; Dobroserdova, A.; Kuznetsov, A.; Ivanov, A.; Elfimova, E. Computer Simulations of Dynamic Response of Ferrofluids on an Alternating Magnetic Field with High Amplitude. Mathematics 2021, 9, 2581. [Google Scholar] [CrossRef]
  143. Nikolenko, P.I.; Nizamov, T.R.; Bordyuzhin, I.G.; Abakumov, M.A.; Baranova, Y.A.; Kovalev, A.D.; Shchetinin, I.V. Structure and Magnetic Properties of SrFe12−xInxO19 Compounds for Magnetic Hyperthermia Applications. Materials 2023, 16, 347. [Google Scholar] [CrossRef]
  144. Baabu, P.R.S.; Kumar, H.K.; Gumpu, M.B.; Babu, K.J.; Kulandaisamy, A.J.; Rayappan, J.B.B. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. Materials 2023, 16, 59. [Google Scholar] [CrossRef] [PubMed]
  145. Dabaghi, M.; Rasa, S.M.M.; Cirri, E.; Ori, A.; Neri, F.; Quaas, R.; Hilger, I. Iron Oxide Nanoparticles Carrying 5-Fluorouracil in Combination with Magnetic Hyperthermia Induce Thrombogenic Collagen Fibers, Cellular Stress, and Immune Responses in Heterotopic Human Colon Cancer in Mice. Pharmaceutics 2021, 13, 1625. [Google Scholar] [CrossRef]
  146. Baki, A.; Wiekhorst, F.; Bleul, R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications—A Review. Bioengineering 2021, 8, 134. [Google Scholar] [CrossRef]
  147. Lemine, O.M.; Madkhali, N.; Alshammari, M.; Algessair, S.; Gismelseed, A.; El Mir, L.; Hjiri, M.; Yousif, A.A.; El-Boubbou, K. Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. Materials 2021, 14, 5691. [Google Scholar] [CrossRef]
  148. Kahil, H.; Faramawy, A.; El-Sayed, H.; Abdel-Sattar, A. Magnetic Properties and SAR for Gadolinium-Doped Iron Oxide Nanoparticles Prepared by Hydrothermal Method. Crystals 2021, 11, 1153. [Google Scholar] [CrossRef]
  149. Caizer, C.; Caizer, I.S. Study on Maximum Specific Loss Power in Fe3O4 Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia. Int. J. Mol. Sci. 2021, 22, 10071. [Google Scholar] [CrossRef]
  150. Veloso, S.R.S.; Andrade, R.G.D.; Gomes, V.; Amorim, C.O.; Amaral, V.S.; Salgueiriño, V.; Coutinho, P.J.G.; Ferreira, P.M.T.; Correa-Duarte, M.A.; Castanheira, E.M.S. Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Int. J. Mol. Sci. 2022, 23, 14145. [Google Scholar] [CrossRef] [PubMed]
  151. Korolev, D.V.; Shulmeyster, G.A.; Istomina, M.S.; Nikiforov, A.I.; Aleksandrov, I.V.; Semenov, V.G.; Galagudza, M.M. Indocyanine Green-Containing Magnetic Liposomes for Constant Magnetic Field-Guided Targeted Delivery and Theranostics. Magnetochemistry 2022, 8, 127. [Google Scholar] [CrossRef]
  152. Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8, 107. [Google Scholar] [CrossRef]
  153. Arkaban, H.; Ebrahimi, A.K.; Yarahmadi, A.; Zarrintaj, P.; Barani, M. Development of a multifunctional system based on CoFe2O4@polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology 2021, 32, 305101. [Google Scholar] [CrossRef] [PubMed]
  154. Iacoviță, C.; Fizeșan, I.; Nitica, S.; Florea, A.; Barbu-Tudoran, L.; Dudric, R.; Pop, A.; Vedeanu, N.; Crisan, O.; Tetean, R.; et al. Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro. Pharmaceutics 2021, 13, 2026. [Google Scholar] [CrossRef] [PubMed]
  155. Häring, M.; Schiller, J.; Mayr, J.; Grijalvo, S.; Eritja, R.; Díaz, D.D. Magnetic Gel Composites for Hyperthermia Cancer Therapy. Gels 2015, 1, 135–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Zamora-Mora, V.; Soares, P.I.P.; Echeverria, C.; Hernández, R.; Mijangos, C. Composite Chitosan/Agarose Ferrogels for Potential Applications in Magnetic Hyperthermia. Gels 2015, 1, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Andrýsková, N.; Sourivong, P.; Babincová, M.; Šimaljaková, M. Controlled Release of Tazarotene from Magnetically Responsive Nanofiber Patch: Towards More Efficient Topical Therapy of Psoriasis. Appl. Sci. 2021, 11, 11022. [Google Scholar] [CrossRef]
  158. Duong, H.D.T.; Nguyen, D.T.; Kim, K.-S. Effects of Process Variables on Properties of CoFe2O4 Nanoparticles Prepared by Solvothermal Process. Nanomaterials 2021, 11, 3056. [Google Scholar] [CrossRef]
  159. Persano, S.; Vicini, F.; Poggi, A.; Fernandez, J.L.C.; Rizzo, G.M.R.; Gavilán, H.; Silvestri, N.; Pellegrino, T. Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics 2021, 13, 1668. [Google Scholar] [CrossRef]
  160. Manescu, V.; Paltanea, G.; Antoniac, I.; Vasilescu, M. Magnetic Nanoparticles Used in Oncology. Materials 2021, 14, 5948. [Google Scholar] [CrossRef]
  161. Alkhayal, A.; Fathima, A.; Alhasan, A.H.; Alsharaeh, E.H. PEG Coated Fe3O4/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia. Nanomaterials 2021, 11, 2398. [Google Scholar] [CrossRef]
  162. Jivago, J.L.P.R.; Brito, J.L.M.; Capistrano, G.; Vinícius-Araújo, M.; Lima Verde, E.; Bakuzis, A.F.; Souza, P.E.N.; Azevedo, R.B.; Lucci, C.M. New Prospects in Neutering Male Animals Using Magnetic Nanoparticle Hyperthermia. Pharmaceutics 2021, 13, 1465. [Google Scholar] [CrossRef]
  163. Egea-Benavente, D.; Ovejero, J.G.; Morales, M.D.P.; Barber, D.F. Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers 2021, 13, 4583. [Google Scholar] [CrossRef] [PubMed]
  164. Han, H.; Eigentler, T.W.; Wang, S.; Kretov, E.; Winter, L.; Hoffmann, W.; Grass, E.; Niendorf, T. Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers 2020, 12, 1720. [Google Scholar] [CrossRef]
  165. Piehler, S.; Dähring, H.; Grandke, J.; Göring, J.; Couleaud, P.; Aires, A.; Cortajarena, A.L.; Courty, J.; Latorre, A.; Somoza, Á.; et al. Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives. Nanomaterials 2020, 10, 1016. [Google Scholar] [CrossRef] [PubMed]
  166. Chung, R.-J.; Shih, H.-T. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia. Materials 2014, 7, 653–661. [Google Scholar] [CrossRef] [Green Version]
  167. Zhao, S.; Zhang, K.; Li, G.; Zhang, Z.; Li, X.; Cai, B.; Li, J. Novel degradable super-paramagnetic bone cement with self-controlled hyperthermia ability. Mater. Des. 2022, 218, 110676. [Google Scholar] [CrossRef]
  168. Darwish, M.S.A.; Kim, H.; Lee, H.; Ryu, C.; Young Lee, J.; Yoon, J. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance. Nanomaterials 2020, 10, 991. [Google Scholar] [CrossRef]
  169. Cardoso, B.D.; Rodrigues, A.R.O.; Almeida, B.G.; Amorim, C.O.; Amaral, V.S.; Castanheira, E.M.S.; Coutinho, P.J.G. Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. Int. J. Mol. Sci. 2020, 21, 3641. [Google Scholar] [CrossRef] [PubMed]
  170. Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef]
  171. Heid, S.; Unterweger, H.; Tietze, R.; Friedrich, R.P.; Weigel, B.; Cicha, I.; Eberbeck, D.; Boccaccini, A.R.; Alexiou, C.; Lyer, S. Synthesis and Characterization of Tissue Plasminogen Activator—Functionalized Superparamagnetic Iron Oxide Nanoparticles for Targeted Fibrin Clot Dissolution. Int. J. Mol. Sci. 2017, 18, 1837. [Google Scholar] [CrossRef] [Green Version]
  172. Aram, E.; Moeni, M.; Abedizadeh, R.; Sabour, D.; Sadeghi-Abandansari, H.; Gardy, J.; Hassanpour, A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022, 12, 3567. [Google Scholar] [CrossRef] [PubMed]
  173. Kulikov, O.A.; Zharkov, M.N.; Ageev, V.P.; Yakobson, D.E.; Shlyapkina, V.I.; Zaborovskiy, A.V.; Inchina, V.I.; Balykova, L.A.; Tishin, A.M.; Sukhorukov, G.B.; et al. Magnetic Hyperthermia Nanoarchitectonics via Iron Oxide Nanoparticles Stabilised by Oleic Acid: Anti-Tumour Efficiency and Safety Evaluation in Animals with Transplanted Carcinoma. Int. J. Mol. Sci. 2022, 23, 4234. [Google Scholar] [CrossRef]
  174. Ferreira, L.P.; Reis, C.P.; Robalo, T.T.; Melo Jorge, M.E.; Ferreira, P.; Gonçalves, J.; Hajalilou, A.; Cruz, M.M. Assisted Synthesis of Coated Iron Oxide Nanoparticles for Magnetic Hyperthermia. Nanomaterials 2022, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
  175. Dadfar, S.M.; Camozzi, D.; Darguzyte, M.; Roemhild, K.; Varvarà, P.; Metselaar, J.; Banala, S.; Straub, M.; Güvener, N.; Engelmann, U.; et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J. Nanobiotechnol. 2020, 18, 22. [Google Scholar] [CrossRef]
  176. Rodrigues, R.O.; Baldi, G.; Doumett, S.; Gallo, J.; Bañobre-López, M.; Dražić, G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R.; Silva, A.M.T.; et al. A Tailor-Made Protocol to Synthesize Yolk-Shell Graphene-Based Magnetic Nanoparticles for Nanomedicine. C 2018, 4, 55. [Google Scholar] [CrossRef] [Green Version]
  177. Gonçalves, J.; Ferreira, P.; Nunes, C. Development of Magnetic Chitosan Scaffolds with Potential for Bone Regeneration and Cancer Therapy. Mater. Proc. 2022, 8, 26. [Google Scholar] [CrossRef]
  178. Giovannetti, G.; Frijia, F.; Flori, A. Radiofrequency Coils for Low-Field (0.18–0.55 T) Magnetic Resonance Scanners: Experience from a Research Lab–Manufacturing Companies Cooperation. Electronics 2022, 11, 4233. [Google Scholar] [CrossRef]
  179. Freis, B.; Ramirez, M.D.L.A.; Kiefer, C.; Harlepp, S.; Iacovita, C.; Henoumont, C.; Affolter-Zbaraszczuk, C.; Meyer, F.; Mertz, D.; Boos, A.; et al. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023, 15, 1104. [Google Scholar] [CrossRef]
  180. Atluri, R.; Atmaramani, R.; Tharaka, G.; McCallister, T.; Peng, J.; Diercks, D.; GhoshMitra, S.; Ghosh, S. Photo-Magnetic Irradiation-Mediated Multimodal Therapy of Neuroblastoma Cells Using a Cluster of Multifunctional Nanostructures. Nanomaterials 2018, 8, 774. [Google Scholar] [CrossRef] [Green Version]
  181. Vargas, G.; Cypriano, J.; Correa, T.; Leão, P.; Bazylinski, D.A.; Abreu, F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018, 23, 2438. [Google Scholar] [CrossRef] [Green Version]
  182. Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
  183. Zahn, D.; Landers, J.; Buchwald, J.; Diegel, M.; Salamon, S.; Müller, R.; Köhler, M.; Ecke, G.; Wende, H.; Dutz, S. Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications. Nanomaterials 2022, 12, 343. [Google Scholar] [CrossRef] [PubMed]
  184. Veloso, S.R.S.; Ferreira, P.M.T.; Martins, J.A.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018, 10, 145. [Google Scholar] [CrossRef] [Green Version]
  185. Marassi, V.; Zanoni, I.; Ortelli, S.; Giordani, S.; Reschiglian, P.; Roda, B.; Zattoni, A.; Ravagli, C.; Cappiello, L.; Baldi, G.; et al. Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration. Pharmaceutics 2022, 14, 2810. [Google Scholar] [CrossRef] [PubMed]
  186. Kaczmarek, K.; Hornowski, T.; Dobosz, B.; Józefczak, A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials 2018, 11, 1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Cervantes, O.; Lopez, Z.D.R.; Casillas, N.; Knauth, P.; Checa, N.; Cholico, F.A.; Hernandez-Gutiérrez, R.; Quintero, L.H.; Paz, J.A.; Cano, M.E. A Ferrofluid with Surface Modified Nanoparticles for Magnetic Hyperthermia and High ROS Production. Molecules 2022, 27, 544. [Google Scholar] [CrossRef]
  188. Ferrero, R.; Barrera, G.; Celegato, F.; Vicentini, M.; Sözeri, H.; Yıldız, N.; Atila Dinçer, C.; Coïsson, M.; Manzin, A.; Tiberto, P. Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes. Nanomaterials 2021, 11, 2179. [Google Scholar] [CrossRef]
  189. Chen, H.-A.; Lu, Y.-J.; Dash, B.S.; Chao, Y.-K.; Chen, J.-P. Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics 2023, 15, 290. [Google Scholar] [CrossRef]
  190. Shabatina, T.I.; Vernaya, O.I.; Shabatin, V.P.; Melnikov, M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry 2020, 6, 30. [Google Scholar] [CrossRef]
  191. Coene, A.; Leliaert, J. Simultaneous Coercivity and Size Determination of Magnetic Nanoparticles. Sensors 2020, 20, 3882. [Google Scholar] [CrossRef]
  192. Puiu, R.A.; Balaure, P.C.; Constantinescu, E.; Grumezescu, A.M.; Andronescu, E.; Oprea, O.-C.; Vasile, B.S.; Grumezescu, V.; Negut, I.; Nica, I.C.; et al. Anti-Cancer Nanopowders and MAPLE-Fabricated Thin Films Based on SPIONs Surface Modified with Paclitaxel Loaded β-Cyclodextrin. Pharmaceutics 2021, 13, 1356. [Google Scholar] [CrossRef]
  193. Habra, K.; McArdle, S.E.B.; Morris, R.H.; Cave, G.W.V. Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours. Nanomaterials 2021, 11, 2157. [Google Scholar] [CrossRef] [PubMed]
  194. Dias, A.M.M.; Courteau, A.; Bellaye, P.-S.; Kohli, E.; Oudot, A.; Doulain, P.-E.; Petitot, C.; Walker, P.-M.; Decréau, R.; Collin, B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022, 14, 2388. [Google Scholar] [CrossRef] [PubMed]
  195. Cao, T.-L.; Le, T.-A.; Hadadian, Y.; Yoon, J. Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. Int. J. Mol. Sci. 2021, 22, 8895. [Google Scholar] [CrossRef]
  196. Raouf, I.; Gas, P.; Kim, H.S. Numerical Investigation of Ferrofluid Preparation during In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia. Sensors 2021, 21, 5545. [Google Scholar] [CrossRef] [PubMed]
  197. Lafuente-Gómez, N.; Milán-Rois, P.; García-Soriano, D.; Luengo, Y.; Cordani, M.; Alarcón-Iniesta, H.; Salas, G.; Somoza, Á. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers 2021, 13, 4095. [Google Scholar] [CrossRef]
  198. Carrey, J.; Mehdaoui, B.; Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 2011, 109, 083921. [Google Scholar] [CrossRef]
  199. Cardoso, B.D.; Rodrigues, A.R.O.; Bañobre-López, M.; Almeida, B.G.; Amorim, C.O.; Amaral, V.S.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetoliposomes Based on Shape Anisotropic Calcium/Magnesium Ferrite Nanoparticles as Nanocarriers for Doxorubicin. Pharmaceutics 2021, 13, 1248. [Google Scholar] [CrossRef] [PubMed]
  200. Dhawan, U.; Tseng, C.-L.; Wang, H.-Y.; Hsu, S.-Y.; Tsai, M.-T.; Chung, R.-J. Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. Nanomaterials 2021, 11, 2048. [Google Scholar] [CrossRef]
  201. Fernández-Álvarez, F.; García-García, G.; Arias, J.L. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021, 13, 1232. [Google Scholar] [CrossRef]
  202. Ganguly, S.; Margel, S. Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery. Polymers 2021, 13, 4259. [Google Scholar] [CrossRef]
  203. Hazarika, K.P.; Borah, J.P. Biocompatible Tb doped Fe3O4 nanoparticles with enhanced heating efficiency for magnetic hyperthermia application. J. Magn. Magn. Mater. 2022, 560, 169597. [Google Scholar] [CrossRef]
  204. Bañobre López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013, 18, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  205. Zhong, Y.; Leung, V.; Wan, L.Y.; Dutz, S.; Ko, F.K.; Häfeli, U.O. Electrospun magnetic nanofibre mats—A new bondable biomaterial using remotely activated magnetic heating. J. Magn. Magn. Mater. 2015, 380, 330–334. [Google Scholar] [CrossRef]
  206. Steblinski, P.; Blachowicz, T.; Ehrmann, A. Analysis of the energy distribution of iron nano-spheres for bit-patterned media. J. Magn. Magn. Mater. 2022, 562, 169805. [Google Scholar] [CrossRef]
  207. Blachowicz, T.; Grzybowski, J.; Ehrmann, A. Influence of agglomerations on magnetic properties of polymer matrices filled with magnetic nanoparticles. Mater. Today Proc. 2022, 67, 792–796. [Google Scholar] [CrossRef]
  208. Trabelsi, M.; Mamun, A.; Klöcker, M.; Sabantina, L. Needleless Electrospun Magnetic Carbon Nanofiber Mats for Sensor Applications. Eng. Proc. 2021, 6, 76. [Google Scholar]
  209. Hu, P.-Y.; Zhao, Y.-T.; Zhang, J.; Yu, S.-X.; Yan, J.-S.; Wang, X.-X.; Hu, M.-H.; Xiang, H.-F.; Long, Y.-Z. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Mater. Sci. Eng. C 2020, 110, 110708. [Google Scholar] [CrossRef] [PubMed]
  210. Molcan, M.; Safarik, I.; Pospiskova, K.; Paulovičová, K.; Timko, M.; Kopčanský, P.; Torma, N. Magnetically Modified Electrospun Nanofibers for Hyperthermia Treatment. Ukr. J. Phys. 2020, 65, 655. [Google Scholar] [CrossRef]
  211. Song, C.; Wang, X.-X.; Zhang, J.; Nie, G.-D.; Luo, W.-L.; Fu, J.; Ramakrishna, S.; Long, Y.-J. Electric Field-Assisted In Situ Precise Deposition of Electrospun γ-Fe2O3/Polyurethane Nanofibers for Magnetic Hyperthermia. Nanoscale Res. Lett. 2018, 13, 273. [Google Scholar] [CrossRef] [Green Version]
  212. Sarier, N.; Onder, E.; Carvalho, M.D.; Ferreira, L.P.; Cruz, M.M.; Arat, R. Preparation of magnetite nanoparticle and fatty acid incorporated poly(methacrylic acid-ethyl acrylate) nanowebs via electrospinning for magnetic hyperthermia application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012025. [Google Scholar] [CrossRef]
  213. Lee, J.-S.; Kim, S.H. Evaluation of Fe3O4/PAN Magnetic Nanofibrous Membrane. IEEE Access 2021, 9, 77009–77016. [Google Scholar] [CrossRef]
  214. Sasikala, A.R.K.; Unnithan, A.R.; Yun, Y.H.; Park, C.H.; Kim, C.S. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 2016, 31, 122–133. [Google Scholar] [CrossRef]
  215. Matos, R.J.R.; Chaparro, C.I.P.; Silva, J.C.; Valente, M.A.; Borges, J.P.; Soares, P.I.P. Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydr. Polym. 2018, 198, 9–16. [Google Scholar] [CrossRef]
  216. Park, C.-H.; Kang, S.-J.; Tijing, L.D.; Pant, H.R.; Kim, J.S. Inductive heating of electrospun Fe2O3/polyurethane composite mat under high-frequency magnetic field. Ceram. Int. 2013, 39, 9785–9790. [Google Scholar] [CrossRef]
  217. Sapountzi, E.; Braiek, M.; Chateaux, J.-F.; Jaffrezic-Renault, N.; Lagarde, F. Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices. Sensors 2017, 17, 1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  218. Singh, B.; Kim, K.; Park, M.-H. On-Demand Drug Delivery Systems Using Nanofibers. Nanomaterials 2021, 11, 3411. [Google Scholar] [CrossRef] [PubMed]
  219. Eslami, P.; Albino, M.; Scavone, F.; Chiellini, F.; Morelli, A.; Baldi, G.; Cappiello, L.; Doumett, S.; Lorenzi, G.; Ravagli, C.; et al. Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. Nanomaterials 2022, 12, 303. [Google Scholar] [CrossRef]
  220. Tehrani, M.H.H.; Soltani, M.; Moradi Kashkooli, F.; Mahmoudi, M.; Raahemifar, K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics 2022, 14, 35. [Google Scholar] [CrossRef] [PubMed]
  221. Comanescu, C. Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. Chemistry 2022, 4, 872–930. [Google Scholar] [CrossRef]
  222. Wang, Y.-J.; Lin, P.-Y.; Hsieh, S.-L.; Kirankumar, R.; Lin, H.-Y.; Li, J.-H.; Chen, Y.-T.; Wu, H.-M.; Hsieh, S. Utilizing Edible Agar as a Carrier for Dual Functional Doxorubicin-Fe3O4 Nanotherapy Drugs. Materials 2021, 14, 1824. [Google Scholar] [CrossRef]
  223. Lachowicz, D.; Kaczyńska, A.; Wirecka, R.; Kmita, A.; Szczerba, W.; Bodzoń-Kułakowska, A.; Sikora, M.; Karewicz, A.; Zapotoczny, S. A Hybrid System for Magnetic Hyperthermia and Drug Delivery: SPION Functionalized by Curcumin Conjugate. Materials 2018, 11, 2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Cardoso, B.D.; Cardoso, V.F.; Lanceros-Méndez, S.; Castanheira, E.M.S. Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. Biomedicines 2022, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
  225. Nieciecka, D.; Rękorajska, A.; Cichy, D.; Końska, P.; Żuk, M.; Krysiński, P. Synthesis and Characterization of Magnetic Drug Carriers Modified with Tb3+ Ions. Nanomaterials 2022, 12, 795. [Google Scholar] [CrossRef]
  226. Yu, Y.; Miyako, E. Alternating-Magnetic-Field-Mediated Wireless Manipulations of a Liquid Metal for Therapeutic Bioengineering. iScience 2018, 3, 134–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  227. Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394. [Google Scholar] [CrossRef]
  228. Kumar, C.S.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef] [Green Version]
  229. Hayashi, K.; Tokuda, A.; Nakamura, J.; Sugawara-Narutaki, A.; Ohtsuki, C. Tearable and Fillable Composite Sponges Capable of Heat Generation and Drug Release in Response to Alternating Magnetic Field. Materials 2020, 13, 3637. [Google Scholar] [CrossRef]
  230. Jabalera, Y.; Oltolina, F.; Peigneux, A.; Sola-Leyva, A.; Carrasco-Jiménez, M.P.; Prat, M.; Jimenez-Lopez, C.; Iglesias, G.R. Nanoformulation Design Including MamC-Mediated Biomimetic Nanoparticles Allows the Simultaneous Application of Targeted Drug Delivery and Magnetic Hyperthermia. Polymers 2020, 12, 1832. [Google Scholar] [CrossRef]
  231. Contreras-Cáceres, R.; Cabeza, L.; Perazzoli, G.; Díaz, A.; López-Romero, J.M.; Melguizo, C.; Prados, J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2019, 9, 656. [Google Scholar] [CrossRef] [Green Version]
  232. Bazzazzadeh, A.; Dizaji, B.F.; Kianinejad, N.; Nouri, A.; Irani, M. Fabrication of poly(acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. Int. J. Pharm. 2020, 587, 119674. [Google Scholar] [CrossRef]
  233. Nejad, A.G.; Sasikala, A.R.K.; Unnithan, A.R.; Thomas, R.G.; Jeong, Y.Y.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J.; Park, C.H.; Kim, C.S. Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy. Adv. Funct. Mater. 2015, 25, 2867–2875. [Google Scholar] [CrossRef]
  234. Radmansouri, M.; Bahmani, E.; Sarikhani, E.; Rahmani, K.; Sharifianjazi, F.; Irani, M. Doxorubicin hydrochloride—Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int. J. Biol. Macromol. 2018, 116, 378–384. [Google Scholar] [CrossRef]
  235. Zhang, C.; Li, J.; Xiao, M.; Wang, D.; Qu, Y.; Zou, L.; Zheng, C.; Zhang, J. Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chin. Chem. Lett. 2022, 33, 4924–4929. [Google Scholar] [CrossRef]
  236. Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int. J. Nanomed. 2020, 15, 2563–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  237. Sun, S.J.; Deng, P.; Peng, C.E.; Ji, H.Y.; Mao, L.F.; Peng, L.Z. Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis. Cancer Manag. Res. 2022, 14, 3335–3345. [Google Scholar] [CrossRef] [PubMed]
  238. He, X.; Zhu, Y.; Yang, L.; Wang, Z.; Wang, Z.; Feng, J.; Wen, X.; Cheng, L.; Zhu, R. MgFe-LDH Nanoparticles: A Promising Leukemia Inhibitory Factor Replacement for Self-Renewal and Pluripotency Maintenance in Cultured Mouse Embryonic Stem Cells. Appl. Sci. 2021, 8, 2003535. [Google Scholar] [CrossRef] [PubMed]
  239. Brennan, G.; Bergamino, S.; Pescio, M.; Tofail, S.A.M.; Silien, C. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia. Nanomaterials 2020, 10, 2424. [Google Scholar] [CrossRef]
  240. Sandre, O.; Genevois, C.; Garaio, E.; Adumeau, L.; Mornet, S.; Couillaud, F. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia. Genes 2017, 8, 61. [Google Scholar] [CrossRef] [Green Version]
  241. Wang, L.; Lai, S.-M.; Li, C.-Z.; Yu, H.-P.; Venkatesan, P.; Lai, P.-S. D-Alpha-Tocopheryl Poly(ethylene Glycol 1000) Succinate-Coated Manganese-Zinc Ferrite Nanomaterials for a Dual-Mode Magnetic Resonance Imaging Contrast Agent and Hyperthermia Treatments. Pharmaceutics 2022, 14, 1000. [Google Scholar] [CrossRef]
  242. Griaznova, O.Y.; Belyaev, I.B.; Sogomonyan, A.S.; Zelepukin, I.V.; Tikhonowski, G.V.; Popov, A.A.; Komlev, A.S.; Nikitin, P.I.; Gorin, D.A.; Kabashin, A.V.; et al. Laser Synthesized Core-Satellite Fe-Au Nanoparticles for Multimodal In Vivo Imaging and In Vitro Photothermal Therapy. Pharmaceutics 2022, 14, 994. [Google Scholar] [CrossRef] [PubMed]
  243. Christou, E.; Pearson, J.R.; Beltrán, A.M.; Fernández-Afonso, Y.; Gutiérrez, L.; de la Fuente, J.M.; Gámez, F.; García-Martín, M.L.; Caro, C. Iron–Gold Nanoflowers: A Promising Tool for Multimodal Imaging and Hyperthermia Therapy. Pharmaceutics 2022, 14, 636. [Google Scholar] [CrossRef]
  244. Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
  245. Illés, E.; Szekeres, M.; Tóth, I.Y.; Farkas, K.; Földesi, I.; Szabó, Á.; Iván, B.; Tombácz, E. PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis. Nanomaterials 2018, 8, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  246. Khizar, S.; Ahmad, N.M.; Ahmed, N.; Manzoor, S.; Hamayun, M.A.; Naseer, N.; Tenório, M.K.L.; Lebaz, N.; Elaissari, A. Aminodextran Coated CoFe2O4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia. Nanomaterials 2020, 10, 2182. [Google Scholar] [CrossRef]
  247. Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297. [Google Scholar] [CrossRef] [PubMed]
  248. Han, X.; Li, Y.; Liu, W.; Chen, X.; Song, Z.; Wang, X.; Deng, Y.; Tang, X.; Jiang, Z. The Applications of Magnetic Particle Imaging: From Cell to Body. Diagnostics 2020, 10, 800. [Google Scholar] [CrossRef]
  249. Billings, C.; Langley, M.; Warrington, G.; Mashali, F.; Johnson, J.A. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. Int. J. Mol. Sci. 2021, 22, 7651. [Google Scholar] [CrossRef] [PubMed]
  250. Murase, K.; Mimura, A.; Banura, N.; Nishimoto, K.; Takata, H. Visualization of Magnetic Nanofibers Using Magnetic Particle Imaging. Open J. Med. Imaging 2015, 05, 56–65. [Google Scholar] [CrossRef] [Green Version]
  251. Yu, E.Y.; Bishop, M.; Zheng, B.; Ferguson, R.M.; Khandhar, A.P.; Kemp, S.J.; Krishnan, K.M.; Goodwill, P.W.; Conolly, S.M. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. Nano Lett. 2017, 17, 1648–1654. [Google Scholar] [CrossRef] [Green Version]
  252. Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2015, 435, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
  253. Feddersen, T.V.; Hernandez-Tamames, J.A.; Franckena, M.; van Rhoon, G.C.; Paulides, M.M. Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia. Cancers 2021, 13, 31. [Google Scholar] [CrossRef] [PubMed]
  254. Strbak, O.; Antal, I.; Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Molcan, M.; Jurikova, A.; Hnilicova, P.; Gombos, J.; et al. Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications. Nanomaterials 2020, 10, 2468. [Google Scholar] [CrossRef]
  255. Do, H.D.; Ménager, C.; Michel, A.; Seguin, J.; Korichi, T.; Dhotel, H.; Marie, C.; Doan, B.-T.; Mignet, N. Development of Theranostic Cationic Liposomes Designed for Image-Guided Delivery of Nucleic Acid. Pharmaceutics 2020, 12, 854. [Google Scholar] [CrossRef] [PubMed]
  256. Tsiapla, A.-R.; Kalimeri, A.-A.; Maniotis, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Kalogirou, O. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Int. J. Hyperth. 2021, 38, 511–522. [Google Scholar] [CrossRef] [PubMed]
  257. Mamani, J.B.; Souza, T.K.F.; Nucci, M.P.; Oliveira, F.A.; Nucci, L.P.; Alves, A.H.; Rego, G.N.A.; Marti, L.; Gamarra, L.F. In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells. Pharmaceutics 2021, 13, 1219. [Google Scholar] [CrossRef] [PubMed]
  258. De Lama-Odría, M.D.C.; del Valle, L.J.; Puiggalí, J. Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int. J. Mol. Sci. 2022, 23, 11352. [Google Scholar] [CrossRef]
  259. Christiansen, M.G.; Howe, C.M.; Bono, D.C.; Perreault, D.J.; Anikeeva, P. Practical methods for generating alternating magnetic fields for biomedical research. Rev. Sci. Instrum. 2017, 88, 084301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  260. Kovrigina, E.; Poletaeva, Y.; Zheng, Y.; Chubarov, A.; Dmitrienko, E. Nylon-6-Coated Doxorubicin-Loaded Magnetic Nanoparticles and Nanocapsules for Cancer Treatment. Magnetochemistry 2023, 9, 106. [Google Scholar] [CrossRef]
  261. Alphandéry, E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int. J. Mol. Sci. 2020, 21, 4412. [Google Scholar] [CrossRef]
  262. Tan, M.; Reyes-Ortega, F.; Schneider-Futschik, E.K. Successes and Challenges: Inhaled Treatment Approaches Using Magnetic Nanoparticles in Cystic Fibrosis. Magnetochemistry 2020, 6, 25. [Google Scholar] [CrossRef]
  263. Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
  264. Dabaghi, M.; Quaas, R.; Hilger, I. The Treatment of Heterotopic Human Colon Xenograft Tumors in Mice with 5-Fluorouracil Attached to Magnetic Nanoparticles in Combination with Magnetic Hyperthermia Is More Efficient than Either Therapy Alone. Cancers 2020, 12, 2562. [Google Scholar] [CrossRef]
  265. Sanadgol, N.; Wackerlig, J. Developments of Smart Drug-Delivery Systems Based on Magnetic Molecularly Imprinted Polymers for Targeted Cancer Therapy: A Short Review. Pharmaceutics 2020, 12, 831. [Google Scholar] [CrossRef]
  266. Steinmetz, L.; Kirsch, C.; Geers, C.; Petri-Fink, A.; Bonmarin, M. Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. Nanomaterials 2020, 10, 1665. [Google Scholar] [CrossRef] [PubMed]
  267. Saykova, D.; Saikova, S.; Mikhlin, Y.; Panteleeva, M.; Ivantsov, R.; Belova, E. Synthesis and Characterization of Core–Shell Magnetic Nanoparticles NiFe2O4@Au. Metals 2020, 10, 1075. [Google Scholar] [CrossRef]
  268. Ruskin, E.I.; Coomar, P.P.; Sikder, P.; Bhaduri, S.B. Magnetic Calcium Phosphate Cement for Hyperthermia Treatment of Bone Tumors. Materials 2020, 13, 3501. [Google Scholar] [CrossRef] [PubMed]
  269. Gayol, A.; Malano, F.; Ribo Montenovo, C.; Pérez, P.; Valente, M. Dosimetry Effects Due to the Presence of Fe Nanoparticles for Potential Combination of Hyperthermic Cancer Treatment with MRI-Based Image-Guided Radiotherapy. Int. J. Mol. Sci. 2023, 24, 514. [Google Scholar] [CrossRef] [PubMed]
  270. Cabana, S.; Curcio, A.; Michel, A.; Wilhelm, C.; Abou-Hassan, A. Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers. Nanomaterials 2020, 10, 1548. [Google Scholar] [CrossRef] [PubMed]
  271. Anilkumar, T.S.A.; Lu, Y.-J.; Chen, J.-P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal. Cancer Ther. 2020, 21, 5187. [Google Scholar] [CrossRef]
  272. Popova, V.; Dmitrienko, E.; Chubarov, A. Magnetic Nanocomposites and Imprinted Polymers for Biomedical Applications of Nucleic Acids. Magnetochemistry 2023, 9, 12. [Google Scholar] [CrossRef]
Figure 1. Graphical abstract showing the use of electrospun magnetic nanofiber mats in therapeutic and diagnostic methods for cancer treatment.
Figure 1. Graphical abstract showing the use of electrospun magnetic nanofiber mats in therapeutic and diagnostic methods for cancer treatment.
Polymers 15 01902 g001
Figure 2. Confocal laser scanning microscope (CLSM) images showing a nanofiber mat with biopolymer lignin (10 wt% PEO and 1 wt% lignin) (a) and a nanofiber mat with PAN/magnetite (10 wt% PAN and 5 wt% Fe3O4 (b). Scale bars indicate 20 μm.
Figure 2. Confocal laser scanning microscope (CLSM) images showing a nanofiber mat with biopolymer lignin (10 wt% PEO and 1 wt% lignin) (a) and a nanofiber mat with PAN/magnetite (10 wt% PAN and 5 wt% Fe3O4 (b). Scale bars indicate 20 μm.
Polymers 15 01902 g002
Figure 3. Overview of needle-based (a) and needle-free (b) electrospinning technologies. Adapted from [60], originally published under a CC-BY license.
Figure 3. Overview of needle-based (a) and needle-free (b) electrospinning technologies. Adapted from [60], originally published under a CC-BY license.
Polymers 15 01902 g003
Figure 4. Theoretical schematic diagram showing the design of a magnetic nanomaterial for magnetic hyperthermia. Reproduced with permission from [167].
Figure 4. Theoretical schematic diagram showing the design of a magnetic nanomaterial for magnetic hyperthermia. Reproduced with permission from [167].
Polymers 15 01902 g004
Figure 5. Overview showing the mechanism of thermal energy generation using magnetic nanomaterials. Visualization of typical hysteresis loops in a ferromagnetic/ferrimagnetic nanomaterial and a superparamagnetic nanomaterial and the dependence of the coercivity on the particle size. Adapted from [182], originally published under a CC-BY license.
Figure 5. Overview showing the mechanism of thermal energy generation using magnetic nanomaterials. Visualization of typical hysteresis loops in a ferromagnetic/ferrimagnetic nanomaterial and a superparamagnetic nanomaterial and the dependence of the coercivity on the particle size. Adapted from [182], originally published under a CC-BY license.
Polymers 15 01902 g005
Figure 6. Atomic force microscopic (AFM) image showing a magnetic electrospun PAN nanofiber mat with 20 wt% Fe3O4. The scale bar indicates 5 μm. Adapted from [208], originally published under a CC-BY license.
Figure 6. Atomic force microscopic (AFM) image showing a magnetic electrospun PAN nanofiber mat with 20 wt% Fe3O4. The scale bar indicates 5 μm. Adapted from [208], originally published under a CC-BY license.
Polymers 15 01902 g006
Figure 7. Scanning electron microscope (SEM) image showing an electrospun magnetic PAN nanofiber mat with 20 wt% Fe3O4 (a). Adapted from [42], originally published under a CC-BY license. Confocal laser scanning microscope image (CLSM) showing a PAN nanofiber mat with 20 wt% Fe3O4 (b).
Figure 7. Scanning electron microscope (SEM) image showing an electrospun magnetic PAN nanofiber mat with 20 wt% Fe3O4 (a). Adapted from [42], originally published under a CC-BY license. Confocal laser scanning microscope image (CLSM) showing a PAN nanofiber mat with 20 wt% Fe3O4 (b).
Polymers 15 01902 g007
Figure 8. Overview showing the use of nanofiber mats in drug delivery. From [218], originally published under a CC-BY license.
Figure 8. Overview showing the use of nanofiber mats in drug delivery. From [218], originally published under a CC-BY license.
Polymers 15 01902 g008
Figure 9. Alternating magnetic field (AMF)-controlled spatiotemporal drug release from a liquid metal (LM)–hydrogel microdevice. (A) Schematic illustration showing gel-sol transition of LM–agarose gel composite upon AMF induction. (B) A 1 mL hydrogel matrix (agarose, 2% w w−1; rhodamine B (RhB), 0.5 mg mL−1) containing LM (20 μL) in addition to 2 mL water before and after AMF (200 A m−1, 245 kHz) exposure for 3 min. (C,D) AMF-modulated release profile (C) and temperature change (D) of LM- or phosphate-buffered (PBS)-containing hydrogel matrix over a period of time. The “ON” stage indicates exposure to the AMF (200 A m−1, 245 kHz), whereas the “OFF” stage indicates the absence of AMF. (E) Depiction showing the LM/RhB-Gel microdevice consisting of LM (20 μL), agarose (2%, w w−1, 200 μL), RhB (0.5 mg mL−1), and a polymerase chain reaction (PCR) tube. (F) Sequential snapshots showing the LM/RhB-Gel microdevice electromagnetic levitation induced with low-powered AMF (100 A m−1, 245 kHz). (G) Photograph showing the LM/RhB-Gel microdevice electromagnetic levitation and RhB release behavior induced with high-powered AMF (200 A m−1, 245 kHz). Reproduced with permission from [226].
Figure 9. Alternating magnetic field (AMF)-controlled spatiotemporal drug release from a liquid metal (LM)–hydrogel microdevice. (A) Schematic illustration showing gel-sol transition of LM–agarose gel composite upon AMF induction. (B) A 1 mL hydrogel matrix (agarose, 2% w w−1; rhodamine B (RhB), 0.5 mg mL−1) containing LM (20 μL) in addition to 2 mL water before and after AMF (200 A m−1, 245 kHz) exposure for 3 min. (C,D) AMF-modulated release profile (C) and temperature change (D) of LM- or phosphate-buffered (PBS)-containing hydrogel matrix over a period of time. The “ON” stage indicates exposure to the AMF (200 A m−1, 245 kHz), whereas the “OFF” stage indicates the absence of AMF. (E) Depiction showing the LM/RhB-Gel microdevice consisting of LM (20 μL), agarose (2%, w w−1, 200 μL), RhB (0.5 mg mL−1), and a polymerase chain reaction (PCR) tube. (F) Sequential snapshots showing the LM/RhB-Gel microdevice electromagnetic levitation induced with low-powered AMF (100 A m−1, 245 kHz). (G) Photograph showing the LM/RhB-Gel microdevice electromagnetic levitation and RhB release behavior induced with high-powered AMF (200 A m−1, 245 kHz). Reproduced with permission from [226].
Polymers 15 01902 g009
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Mamun, A.; Sabantina, L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials. Polymers 2023, 15, 1902. https://doi.org/10.3390/polym15081902

AMA Style

Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials. Polymers. 2023; 15(8):1902. https://doi.org/10.3390/polym15081902

Chicago/Turabian Style

Mamun, Al, and Lilia Sabantina. 2023. "Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications—Technology, Mechanism, and Materials" Polymers 15, no. 8: 1902. https://doi.org/10.3390/polym15081902

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop