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Abstract: All activities of our daily life, of the nature surrounding us and of the entire society and its
complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-
responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to
natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge,
for the first time the stimuli-responsive principles of supramolecular organizations emerging from
self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions
of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided
that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers,
and dendronized polymers may fit best in the definition of stimuli from biology. After a brief
historical introduction to the discovery and development of conventional and self-assembling and self-
organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible
principles as internal- and external-stimuli was made. Due to the enormous amount of literature on
conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling
and self-organizable systems we decided to discuss stimuli-responsive principles only with examples
from our laboratory. We apologize to all contributors to dendrimers and to the readers of this
Perspective for this space-limited decision. Even after this decision, restrictions to a limited number
of examples were required. In spite of this, we expect that this Perspective will provide a new way of
thinking about stimuli in all fields of self-organized complex soft matter.

Keywords: stimuli-responsive principles; internal-stimuli; external-stimuli; supramolecular
organizations; self-assembling and self-organizable; dendrons; dendrimers; dendronized polymers

1. Introduction

This invited Perspective will start with the discussion of relevant definitions of stimu-
lus and stimuli as available in classic dictionaries and in various fields of science. Subse-
quently, the selection of the topic and of the title of this article will be justified.

The American Heritage College Dictionary defines stimulus as “something causing or
regarded as causing a response” [1]. Oxford Concise Science Dictionary refers to stimulus
as being “any change in the external or internal environment of an organism that provokes a
physiological or behavioral response in the organism” [2]. Academic Press Dictionary of Science
and Technology considers stimulus “a condition or change in the environment that produces a
behavioral response” [3]. In biology stimulus is “something that produces a reaction in a plant,
animal or person.” The biological definition of stimulus is more complex and complete and
provided the inspiration for the organization of this Perspective. “A stimulus is anything
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that can trigger a physical or behavioral change. Stimuli can be external or internal. An example of
external stimuli is your body responding to a medicine. An example of Internal stimuli is your vital
sign changing due to a change in the body.” Since supramolecular organizations or systems
hierarchically emerging from self-assembling and self-organizable dendrons, dendrimers,
and dendronized polymers resemble the complexity of the biological systems we will rely
on the biological definition of stimulus since it differentiates between 3-dimensional (3D)
supramolecular assemblies and amorphous or liquid dendrimers, polymers, and other
forms of complex self-organized condensed matter. Therefore, a brief discussion of the
historical developments of conventional dendrons, dendrimers, and dendronized polymers
will be compared with the evolution of supramolecular organizations assembled from
self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers.
Synthetic and structural analysis methodologies from both fields will be summarized
before a comprehensive classification of internal and external stimuli in supramolecular
dendrimers and in their periodic and quasiperiodic assemblies, accompanied by selected
examples, will be provided. We expect that this Perspective will impact the way of thinking
about stimuli in other classes of complex self-organized supramolecular systems.

2. The Discovery of Dendrimers and Their Development

Dendrimers were discovered independently in four different laboratories. In 1978, the
laboratory of Fritz Voegtle from the University of Bonn [4] reported the bis-cyanoethylation
of primary aliphatic amines and of bifunctional secondary amines followed by reductions of
the resulting cyano groups and subsequent iteration of the cyanoethylation to produce two
generations of what they named at that time “cascade” molecules. In a series of U.S. patents
starting in 1981 Denkewalter, Kolc, and Lukasavage of Allied Corporation [5] elaborated
the first examples of globular poly(lysine) that were demonstrated by Aharoni from the
same company to be globular and monodisperse [6]. In 1985, Tomalia, Baker, Dewald,
Hall, Kallos, Martin, Roeck, Ryder, and Smith from Dow Chemical Company reported
the synthesis and characterization of a new class of polymers named starburst-dendritic
macromolecules [7]. Seven generations of starburst-dendritic macromolecules were pre-
pared by the iterative Michael addition of methyl acrylate to ethylenediamine or ammonia
followed by amidation with excess ethylene diamine and reiteration of the same process.
This comprehensive publication established the name dendrimer and pioneered the field
of dendrimers. Also in 1985, Newkome, Yao, Baker, and Gupta reported a new “cascade”
molecule that provided a synthetic approach to unimolecular micelles. This molecule was
named Arborol [8]. All four laboratories provided excellent synthesis methodologies, iden-
tified side reactions leading to molecular imperfection(s) in the structure, and performed
careful characterization of the resulting dendrimers.

Influential review articles and books on dendrimers were published by Tomalia,
Voegtle, and Newkome laboratories and by many other laboratories that joined the field
soon after [9–28]. Numerous applications emerged from the field of classic dendrimers.
Most of these dendrimers and dendronized polymers are liquid or amorphous solids and
even when they crystallize, their structure was not solved at the molecular level. They were
discussed in numerous review articles and books and will not be presented again in this
Perspective.

3. The Discovery of Self-Assembling and Self-Organizable Dendrons, Dendrimers,
and Dendronized Polymers

In an attempt to prepare a biaxial nematic liquid crystal from a molecule combining a
half-disc with a rod-like fragments, during the late 1980s, Percec and his graduate student
Heck discovered both self-assembling dendrons and self-organizable dendronized poly-
mers [29–60]. The half-disc fragment employed in these experiments was a first-generation
self-assembling dendron found to self-organize in the absence and presence of a large
diversity of chemical fragments attached at its apex including rod-like, crown-ethers, oli-
gooxyethylenes, their metal salt complexes, metal carboxylates, and polymers. All these
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combinations were discovered to self-assemble and self-organize into supramolecular heli-
cal columns resembling Tobacco Mosaic Virus (TMV). Figure 1 outlines the divergent and
convergent methodologies for the synthesis of self-assembling dendrons and dendrimers
and the simplest molecular principles that were employed to transform non-self-assembling
dendrons and dendrimers into the corresponding self-assembling building blocks.

4. Methodologies Employed in the Synthesis of Self-Assembling and
Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers

These methods will be only briefly enumerated in case the reader would like to
become familiar with organic, supramolecular, and polymer synthesis methodologies,
some of them specifically designed for this process. Cu(I)-catalyzed azide-alkyne, thio-
bromo click, and TERMINI double click reactions [61–74] and Ni-catalyzed borylation
and cross-coupling [75–86] are only a few less conventional organic reactions employed to
elaborate new and efficient iterative and modular-orthogonal strategies for the synthesis of
self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers.
Poly(methylsiloxane)s with well-defined molar mass and narrow polydispersity were
prepared by living ring-opening polymerization [87], poly(vinyl ether)s by living cationic
polymerization of vinyl ethers [88,89], substituted polyethylene imines by living cationic
ring opening polymerization of oxazolines [90], polyacrylate, and polymethacrylate by
group transfer polymerization [91] and SET-LRP [71–74,91–94], helical poly(phenyl and
aryl acetylene)s with controlled stereochemistry by living polymerization [95–101], by
living metathesis ring opening [52] and living anionic polymerizations [51], all elaborated
for the conventional synthesis of side-chain liquid crystal polymers and of other complex
systems [102–104] were employed in these experiments. The story of this discovery was
published by invitation including in several review articles [98,102–112].
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5. Discover, Elucidate the Mechanism, and Predict Primary Structure by Generational,
Deconstruction and Other Synthetic Methodologies Combined with Structural and
Retrostructural Analysis

Figure 2 outlines the structural and retrostructural analysis of supramolecular as-
semblies performed by a combination of differential scanning calorimetry (DSC), thermal
optical polarized microscopy (TOPM), powder and oriented fiber X-ray analysis (XRD)
combined with electron density maps, transmission electron microscopy (TEM), and other
methods [60,112]. This process allows for determining the secondary structure of the self-
assembling dendrons, dendrimers, or dendronized polymers. Generational libraries of
self-assembling dendrons constructed by the convergent process illustrated on the left side
of Figure 1 were employed for these investigations. Examples of representative secondary
structures are shown at the top of Figure 2. Their secondary structures are in the middle
row of the same Figure 2, while tertiary structures are in the bottom row. Various columnar
assemblies self-organized from helical columns [40–42,51,52,55,113] are shown on the left
side, whereas periodic and quasiperiodic arrays self-organized from spherical helices in-
cluding liquid-quasicrystal [114,115]. We feel that at this time providing brief definitions of
self-assembly and self-organization could be helpful. Self-assembly refers to the aggrega-
tion of a supramolecular object, whereas self-organization refers to the process via which a
periodic or quasiperiodic array generated from supramolecular objects is formed [71,101].
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Figure 2. Structural and retrostructural analysis of supramolecular assemblies formed via the self-
assembly and self-organization of dendrons help to discover and predict by generational strategy [60].
The Figure was adapted and modified from [60]. Reproduced with permission from [60]. Copyright
© 2009, American Chemical Society.

Frank–Kasper A15 [58,116–131] and σ [132] as well as BCC [133,134] are illustrated
on the right side of Figure 2. A few examples of dendronized polymers indicate that the
polymer backbone will adopt a helical conformation confined to the center of the helical
columns or a random coiled or helical conformation in the case of spherical helices (last
two models in the right side of Figure 2).

Elucidation of the mechanism of self-assembly and self-organization provides access
to the prediction of the primary structure that will undergo a specific mechanism of
self-organization with about 85% predictability [131]. Once this level of predictability is
accomplished, the probability to discover new primary structures that will generate new
secondary, tertiary, and quaternary structures by the generational methodology, decreases.
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Subsequently, new synthetic approaches to self-assembling dendrons were developed.
The deconstructions strategy [135] to discovery was developed to discover new primary
structures of self-assembling dendrons. The deconstruction methodology is illustrated in
Figure 3 [135].
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Figure 3. The deconstruction strategy of third-generation dendron (3,4BpPr-(3,4,5BpPr)2)12G3-X
(shown in the middle) led to the discovery of new self-assembling minidendrons marked in yellow,
where X = –CO2CH3 for 6a and –CH2OH for 6b. In each step of the deconstruction (solid arrows),
the fragment highlighted by the wedge of the corresponding color (red or gray) is removed, and the
remaining unmarked dendron is synthesized and structurally analyzed. Yellow highlights form a
molecular switch and a ribosome-size supramolecular dendrimer [135]. The Figure was adapted
from [135] and modified. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

A previously synthesized and characterized self-assembling dendron or a structure
that was never synthesized is cleaved on paper, and the imaginary new dendrons whose
primary structure would not have been predicted by the generational methodology is
synthesized. Their structural and retrostructural analyses is performed as in the case
of the generational libraries. The deconstruction strategy to discovery is illustrated in
Figure 3 [135].
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The two primary structures highlighted in yellow indicate some of the most important
discoveries generated by this strategy. One from the left side of Figure 3 provided a
molecular switch to be discussed in more detail in Figure 4, whereas the one from the
right side of the same figure shows a 1.7 × 106 gmol−1 monodisperse bilayered spherical
assembly generated from 933 self-assembling dendrons that is in the range of the size of
the ribosome [135]. This structure had a diameter of 171.9 Å.
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Figure 4. (a) A diversity of supramolecular assemblies generated from the primary structures
designed by the deconstruction strategy. Novel structures from deconstructed dendritic esters (blue
arrows) and alcohols (purple dotted arrows). (b) Reconstructed relative electron density distributions
of the Φh and Φh

3D-SL phases generated from 9b indicating the reversible transition with temperature.
(c) The potential role as a supramolecular switch. [135]. The parts of the Figures were adapted
from [135] and modified. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 4 outlines a diversity of supramolecular assemblies generated from the primary
structures designed by the deconstruction strategy are outlined in Figure 4. The third
structure from the left side of this Figure demonstrates a new self-assembly mechanism
that provides access to a molecular switch. At low temperature, a columnar hexagonal
periodic array is assembled. At a higher temperature, the columns transform into ondulated
columns, and the periodic array transforms from a 2D lattice with a = 65.3 Å) into a 3D
superlattice (with a = 175.3 Å). The ondulated columns double the size of the lattice when
the superlattice is generated (ACIE). The third approach to discovery via libraries was
produced by changing the architecture of self-assembling dendrons from being constructed
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via sp2–sp3 bonds to sp2–sp2 bonds [85,86]. This process was possible by replacing benzyl
and alkyl ethers as links in the structure of self-assembling dendrons with aryl-aryl sp2–sp2

bonds. This was possible by employing two new chemistries elaborated in our laboratory:
Ni-catalyzed borylation with Ni-catalyzed Suzuki-like cross-coupling [75,85,86]. A large
number of symmetric and non-symmetric constitutional isomeric dendrons were generated.
A library of symmetric AB2 to AB9 self-assembling dendrons was generated by a single
and simple alkylation with an n-alkyl benzyl chloride [86]. Two constitutional isomeric
AB2, four constitutional isomeric AB4, two pairs of constitutional isomeric AB6, one AB3,
and one AB9 self-assembling dendrons were generated (Figure 5) [85,86]. Before this work
was reported, AB4 and AB5 were the most complex self-assembling dendrons that were
synthesized by a very large number of steps [130]. The discoveries generated with the
structures from Figure 5 will be discussed in a later chapter of this Perspective.
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6. Classification of Internal and External Stimuli in Supramolecular Dendrimers

Based on the discussion from the previous subchapters, particularly from Figures 2–5,
that illustrate the role of the primary structure on the tertiary, quaternary structures of
supramolecular assemblies, it is quite clear that stimuli in supramolecular dendrimers can
and, we believe, it must be classified as in biological systems into internal and external
stimuli. A classification based on these principles is illustrated in Figure 6. In our clas-
sification, internal stimuli refer to the role of all components of the primary structure of
self-assembling dendrons and dendrimers as well as of dendronized polymers on their
secondary and tertiary structures resulting via self-assembly and self-organization. Exter-
nal stimuli refer to the role of the environment, temperature, light, electric, and magnetic
fields on the functions of the supramolecular structure and of its co-assembly with various
components of the environment under a set of conditions. In the next subchapters, we will
discuss with selected examples, mostly from our laboratory, how all internal and exter-
nal stimuli affect the functions of supramolecular dendrimers and of the supramolecular
dendronized polymers.
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7. Internal Stimuli of Supramolecular Dendrimers. Primary Structure of Dendrons
and Dendrimers

The internal stimuli of supramolecular dendrimers are provided by the primary struc-
ture of the self-assembling dendrons and dendrimers. In this chapter we will discuss with
selected, and usually simple examples, how various components of the primary structure
of the self-assembling dendron or dendrimers affect their supramolecular structure. The
primary structure of self-assembling dendrons and dendrimers is as influential in affect-
ing the structure of supramolecular dendrimers as the primary structure of peptides and
proteins affects their secondary, tertiary, and quaternary structures.

7.1. Chemical Composition

We will select an example in which alkyl groups of a second generation AB3 dendron
affect the secondary, tertiary, and quaternary structure of its supramolecular dendrimer
(Figure 7). When the n-alkyl groups on the periphery of this dendron are perhydrogenated,
the dendron adopts a conical secondary structure that self-assemble a supramolecular
sphere as a tertiary structure. The supramolecular sphere will self-organize into a cu-

bic Pm
−
3n lattice known also as an A15 Frank–Kasper phase. When the n-alkyl groups

of the same dendron are semifluorinated, the dendron changes its secondary structure
from conical to crown conformation [136]. The crown conformation self-assembles into
supramolecular pyramidal columns rather than spheres, and the supramolecular pyramidal
columns self-organize into a periodic columnar hexagonal p6mm array. Similar or different
situations were demonstrated by changing the chemical composition of the dendrons or
dendrimers in numerous libraries.
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Figure 7. Chemical composition affecting the structure of self-organized supramolecular dendrimers.
Structures, self-assembly, and self-organization of the second generation dendrons: (a) all-trans cone
conformation of (3,4,5)212G2-CO2Me; (b) all gauche-crown conformation of (3,4,5)212F8G2-CO2Me;
(c) all trans-taper conformation of (3,4,5)212F8G2-CO2Me [136]. Parts of this Figure were adapted
from [136] and modified. Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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7.2. Sequence

Figure 8a provides an example in which the chemical composition of two AB3 self-
assembling dendrons is identical, but the sequence in which the components of the two
building blocks is different [127]. A conical conformation is adopted by (4-3,4,5-43)12G1-
CH2OH while, depending on the temperature, a triangular or tapered secondary structure
is adopted by (42-3,4,5)12G1-CH2OH. Subsequently, the first self-assembling dendron

assembles supramolecular spheres forming a cubic Pm
−
3n or A15 Frank–Kasper phase,

whereas the second dendron self-assemble, depending on temperature, a bilayer forming a
smectic liquid crystal phase or a supramolecular column generating a columnar hexagonal
P2mm or P6mm symmetry. Figure 8b demonstrates an additional example in which the
sequence of a combination of linear n-nonyl and branched chiral or racemic labeled, in, this
case as an r group attached to a perylene-bisimide provides an extraordinary acceleration
for the formation of a cogwheel supramolecular helix; that is, the case of rrr-PBI or 999-PBI
sequence is not observed at all or requires a very long annealing time at high temperatures
to form it, as in the case of PBI-rrr. Compare the DSC traces of constitutional isomeric
sequences of r9r-PBI with rr9-PBI and with the constitutional isomeric sequences 9r9-PBI
with 99r-PBI from the bottom part of Figure 8b [137–139].

7.3. Constitutional Isomerism

The two self-assembling dendrons from Figure 8 provide also an excellent example
of how identical chemical composition but different constitutional isomerism provide
different supramolecular structures and functions. Additional examples of constitutional
isomerism are available in Figure 5 [86]. The best examples are provided by the four AB4

constitutional isomers marked in yellow. IVd self-organized cubic Pm
−
3n or Frank–Kasper

phases regardless of the functional group available at its apex. Vd and VIId self-organize
different columnar phases, whereas VIIId self-organized bilayered smectic phases.

7.4. Multiplicity of Branching Point

Figure 9 provides an example that demonstrates the role of the multiplicity of the
branching point during the self-organization of the supramolecular assembly [86]. The
self-assembling dendrons (3,4-(3,4,5)n−1)12Gn-X and (3,4-(3,5)n−1)12Gn-X were selected
as models for this discussion [126]. They will be discussed for two different generations.
The first self-assembling dendron shown in the left side of Figure 9 has an AB3 branching
point, whereas the second one has an AB2-derived branching point. The structure on
the periphery of both self-assembling dendrons is identical. The transition from the 3,4,5-
trisubstituted AB3 benzyl ether to the 3,5-disubstituted AB2 benzyl ether in the inner part
of the structure changes completely the mechanism of self-assembly and self-organization.
In the first case, a conical secondary structure is adopted by the self-assembling dendron,
whereas in the second case, a tapered secondary structure is adopted. The conical dendron

self-assembles into supramolecular spheres forming Pm
−
3n cubic or A15 Frank–Kasper

phase. In the second case, the tapered secondary structure self-assembles a supramolecular
column forming a columnar hexagonal periodic array. This dependence between the
multiplicity of the branching point and the hierarchical mechanism of self-organization
was observed for all libraries of self-assembling dendrons investigated in our laboratory
and in other laboratories [111–131]. The role of the multiplicity of the branching point in
non-self-assembling dendrons and dendrimers forming liquid or amorphous solids is not
accessible via X-ray diffraction experiments and, therefore, is not as precisely known as in
the case illustrated in Figure 9.
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Figure 8. (a) Dendrons with identical chemical composition but different sequence forming different
kinds of supramolecular structures. Supramolecular dendrimers self-assembled from (4-3,4,5-43)12G1-
CH2OH and (42-3,4,5)12G1-CH2OH. (b) An example in which constitutional isomeric structures
with identical composition but a different sequence of a combination of linear n-nonyl and branched
chiral or racemic groups provide different supramolecular assemblies with different rates of heating
and cooling. DSC traces of PBIs with sequence-defined hybrid r/n-nonyl dendrons were recorded
upon second heating and first cooling at 10 ◦C/min. Phases determined by fiber XRD, transition
temperatures (in ◦C), and associated enthalpy changes (in parentheses, in kcal/mol) are indicated.
Phase notation: Φh
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crystal with cogwheel assembly; Φc–o
k, columnar centered orthorhombic crystal; Φm

k, columnar
monoclinic crystal, i, isotropic liquid [127,140]. Parts of the Figure were adapted, combined, and
modified from [127,140]. Copyright © 2004, American Chemical Society. Copyright © 2020, American
Chemical Society.
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Figure 9. An example that demonstrates the role of the multiplicity of the branching point during the
self-organization of a supramolecular assembly. Structural and retrostructural analysis of supramolec-
ular dendrimers self-assembled from AB3 3,4,5-trisubstituted monodendrons of generation 2 and
3 are shown on the left side and from a generation 3 AB2 3,5-disubstituted dendron on the right
side [126]. Parts of the Figure were adapted, combined, and modified from [126]. Copyright © 2004,
American Chemical Society.
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7.5. Constitutional Isomerism of the Branching Point

The constitutional isomerism of the branching point in self-assembling dendrons is
as influential during the self-assembly process as the multiplicity of the branching point
discussed in the previous subsection. Figure 10 provides an example that demonstrated
this concept [126].

Polymers 2023, 15, x FOR PEER REVIEW 13 of 47 
 

 

 
Figure 10. An example demonstrating the constitutional isomerism of the branching point affecting 
the supramolecular organizations. Structural and retrostructural analysis of supramolecular den-
drimers self-assembled from AB2 3,5-disubstituted dendron is shown on the left side and of its con-
stitutional isomeric AB2 3,4-disubstituted dendron is shown on the left side [126]. Parts of the Figure 
were adapted, combined, and modified from [126]. Copyright © 2004, American Chemical Society. 

This discussion will be made for three different generations of the two self-assem-
bling dendrons shown in Figure 10. The first generation located on the periphery of the 
self-assembling dendrons (4-3,4-(3,5)n−1)12Gn-X (see the left side of Figure 10) and (4-
(3,4)n)12Gn-X (see the right-side part of Figure 10) are identical. However, the inner part 
of the self-assembling dendron from the left side of Figure 10 has a 3,5-disubstituted ben-
zyl ether, while the inner part of the self-assembling dendron from the right side has a 3,4-
disubstituted benzyl ether. The 3,5- and 3.4-disubstituted branching points are both AB2, 
but at the same time, they are constitutional isomers. Generation one (n = 1) of both den-
drons exhibits a tapered secondary structure forming supramolecular columns. However, 
generations two and three undergo a completely different hierarchical mechanism of self-
assembly and self-organization for the corresponding dendrons. The 3,5-disbusbstituted 
dendrons continue via the same mechanism of self-assembly as its first generation, that is, 
tapered secondary structure leading to a supramolecular column forming a columnar hex-
agonal periodic array. The main difference, as a function of generation number, consists 
of the number of tapered dendrons forming the cross-section of the supramolecular col-
umn and its diameter. As we change from the 3,5-disubstituted pattern to its constitutional 
isomeric 3,4-pattern the hierarchical mechanism of self-organization changes. The 3,4-con-
stitutional isomeric pattern-based dendron adopts a conical secondary structure that 

Figure 10. An example demonstrating the constitutional isomerism of the branching point affect-
ing the supramolecular organizations. Structural and retrostructural analysis of supramolecular
dendrimers self-assembled from AB2 3,5-disubstituted dendron is shown on the left side and of its
constitutional isomeric AB2 3,4-disubstituted dendron is shown on the left side [126]. Parts of the
Figure were adapted, combined, and modified from [126]. Copyright © 2004, American Chemical
Society.
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This discussion will be made for three different generations of the two self-assembling
dendrons shown in Figure 10. The first generation located on the periphery of the self-
assembling dendrons (4-3,4-(3,5)n−1)12Gn-X (see the left side of Figure 10) and
(4-(3,4)n)12Gn-X (see the right-side part of Figure 10) are identical. However, the inner
part of the self-assembling dendron from the left side of Figure 10 has a 3,5-disubstituted
benzyl ether, while the inner part of the self-assembling dendron from the right side has a
3,4-disubstituted benzyl ether. The 3,5- and 3.4-disubstituted branching points are both AB2,
but at the same time, they are constitutional isomers. Generation one (n = 1) of both den-
drons exhibits a tapered secondary structure forming supramolecular columns. However,
generations two and three undergo a completely different hierarchical mechanism of self-
assembly and self-organization for the corresponding dendrons. The 3,5-disbusbstituted
dendrons continue via the same mechanism of self-assembly as its first generation, that
is, tapered secondary structure leading to a supramolecular column forming a columnar
hexagonal periodic array. The main difference, as a function of generation number, con-
sists of the number of tapered dendrons forming the cross-section of the supramolecular
column and its diameter. As we change from the 3,5-disubstituted pattern to its constitu-
tional isomeric 3,4-pattern the hierarchical mechanism of self-organization changes. The
3,4-constitutional isomeric pattern-based dendron adopts a conical secondary structure

that forms a supramolecular sphere assembling into cubic Pm
−
3n or Frank–Kasper A15

periodic arrays. This process is similar for both generations two and three except that the
number of conical dendrons forming the sphere increases, and the diameter also increases
as the generation number increases (right side of Figure 10) [126]. Since spherical lattices
exhibit different physical properties from columnar hexagonal lattices, the constitutional
isomerism of the branching point illustrated in Figure 10 is similar to the constitutional
isomerism of cellulose and amylose. Both cellulose and amylose have strictly the same
chemical composition but different stereochemistry at the anomeric carbon and, therefore,
are constitutional isomers with completely different chain conformations, liner for cellulose
and helical for amylose, different solubilities in water, and different physical properties.
Therefore, Figure 10 provides an excellent example correlating constitutional isomerism of
the self-assembling dendrons with their supramolecular structure and function. The role of
constitutional isomerism of the branching point in amorphous and liquid dendrimers was
not yet elucidated.

7.6. Generation Number

Figure 11 illustrates the hierarchical self-organization of the same self-assembling den-
dron at two different generations. (4-(3,4,5)212G2-X is a second generation (top of Figure 11),
whereas (4-(3,4,5)312G3-X (bottom of Figure 11) is a third generation [124,125]. Change in
the shape of the dendrimer as a function of generation was predicted by Tomalia, but it
was difficult to demonstrate it definitively with this PAMAM dendrimer [9]. In 1998, our
laboratory demonstrated, by X-ray diffraction experiments, the change in shape as a func-
tion of generation for supramolecular dendrimers [124,125]. Figure 11 provides an example
that demonstrates this concept. The second-generation self-assembling (4-(3,4,5)212G2-
X adopts a half of a disc secondary structure that self-assembles into supramolecular
columns forming columnar hexagonal periodic arrays. The third generation (4-(3,4,5)312G3-
X adopts a fragment equal to 1/6 of a spherical secondary structure that self-organizes

spherical supramolecular dendrimers generating Pm
−
3n cubic phases known also as A15

Frank–Kasper phase. This general concept was demonstrated with numerous generational
libraries of self-assembling dendrons [60,112,124–131,133].
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7.7. Covalent and Supramolecular Multiplicity of the Focal Point

Multiplicity of the focal point can be covalent or supramolecular. Covalent multiplicity
of the focal point is forced by the chemical structure employed to construct the focal point
with self-assembling dendrons and is limited by the chemical capabilities available to gener-
ate multiplicity. Figure 12 illustrates several examples of architectures employed frequently
in our laboratory to assemble the branching point. Multiplicities of 2, 3, and 6 that are
commonly employed in our laboratory are shown in Figure 12. Supramolecular multiplicity
at the focal point is spontaneously determined by self-assembly and is practically unlimited
as numbers. It usually matches the multiplicity number that is required to fill the space by
self-assembly. We would like to point to a few examples of the supramolecular multiplicity
of the focal point by inspecting Figure 8 [27]. In the supramolecular columns from the
right side of Figure 8, we can see a supramolecular multiplicity of 19 and 6. While a
multiplicity of 6 can be also accomplished by the covalent strategies indicated in Figure 12,
no covalent mechanism is known today to accomplish a covalent multiplicity of 19. An
even more striking demonstration of the supramolecular multiplicity at the focal point is
observed on the left side of Figure 8. A supramolecular multiplicity of 269 is endowed by
the self-assembly of the supramolecular spheres from the conical secondary structure of
the dendron [131]. No covalent mechanism is known to accomplish a multiplicity of 269!
Numerous examples of giant supramolecular multiplicities at the focal point can be seen
by screening through libraries of self-assembling dendrons in original publications and
review articles from our laboratory [58,60–119,122,124–160]. The trivial question is: what
happens to the self-assembly process when the supramolecular multicity is replaced with a
covalent multiplicity of a much lower value? The answer is very simple, a new mechanism
of self-assembly and self-organization will be generated, and we will not go into any details
in this Perspective on this issue.
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7.8. Constitutional Isomerism of the Focal Point

Figure 12 presents also two covalent constitutional isomers of the focal point: 1,3,5-
and 1,2,3-trisubstituted benzene based constitutional isomers [124]. In one experiment in
which they were compared, they both provided the same mechanism of self-organization
of a supramolecular column except that the thermal stability of the column assembled
from the 1,2,3-focal point is much higher than the one assembled via the 3,4,5-based focal
point [124].

7.9. Stereochemistry at the Focal Point and in Other Parts of Self-Assembling Dendrons
and Dendrimers

We will start this discussion with the self-assembly of dendritic dipeptides elabo-
rated in our laboratory to self-assemble mimics of the helical water channel aquaporin
(AQP) [161–170]. Figure 13a illustrates the concept of the helical dendritic dipeptide and of
its self-assembly into hydrophobic helical pores [161–170]. A dipeptide based on tyrosine
and any other α-amino acid containing a variety of protecting groups and all possible
stereochemical permutations of the two α-amino acids were attached at the focal point of a
self-assembling dendron generating supramolecular columns (see top-part of Figure 13a).

A solvophobic solvent that mimics the hydrophobic part of the cell membrane was
found to select the tapered conformation of the dendrons that mediates the self-assembly
of helical pores both in solution, in the cell membrane, and in the bulk state. Homochiral
dendritic dipeptides self-assemble highly ordered single-handed porous dendritic dipep-
tide columns, heterochiral self-assemble less ordered porous dendritic dipeptides display
a lower rate of crystallization, whereas racemic dendritic dipeptides assemble micellar
disordered porous columns that do not crystallize and due to their very strong H-bonding
cannot be deracemized even upon long time annealing. Homochiral dendritic dipeptides
assemble helical pores that transport water, while their racemic structure does not. This is a
very powerful example demonstrating the role of chirality and the transfer of its stereo-
chemical information from the focal point to the crystal structure of the supramolecular
assembly and of its functions. The replacement of the 3,5-disubstituted pattern of the
dendritic dipeptide with a 3,4-pattern changes the helical porous assembly into a hollow
spherical helix, demonstrating, again, the power of constitutional isomerism. When the
strong H-bonding forming the helical assembly from dendritic dipeptide is replaced with
a less strongly interacting arrangement generated by a dendronized cyclotriveratrylene
(CTV) (Figure 13b), a hat-like homochiral or racemic column is generated [171]. The racemic
and homochiral assemblies self-organize helical columns just like in the case of the dendritic
dipeptides. A low order is observed in the racemic columnar hexagonal array of the hat-like
molecules (Figure 13b). However, upon annealing this racemic structure at 60 ◦C for 2 h,
a deracemization in the crystal state occurs, and a highly ordered columnar hexagonal
crystal is generated. This is the first example of deracemization in the crystal state from the
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entire literature. The driving force for this deracemization is provided by the unit cell of the
hexagonal crystal that contains a single column or four quarters of columns that must all
exhibit the same handedness in order to provide a highly ordered hexagonal crystal array.
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determined from XRD analysis in the solid state. (b) A hat-like homochiral or racemic column is 
generated by a dendronized cyclotriveratrylene (CTV). The deracemization process between enan-
tiomerically rich columns assembled from the hat-shaped dendronized CTV. Illustration of homo-
chiral columns constructed by a chiral self-sorting supramolecular helical organization of hat-
shaped molecules (S), (R)-(3,4Bn)dm8*G1-CTV; comparison of wide-angle XRD patterns before and 

Figure 13. (a) Illustration of the concept of the helical dendritic dipeptide and of its self-assembly
into hydrophobic helical pores. Structure, conformation and hydrogen-bonding of (4-3,4-3,5)12G2-
CH2-Boc-L-Tyr-L-Ala-OMe and (4-3,4-3,5)12G2-CH2-Boc-L-Tyr-D-Ala-OMe during self-assembly.
Self-assembly of homochiral dendritic dipeptides in porous supramolecular columns via a helical
cooperative growth. Schematic and analysis of self-assembly via supramolecular polymerization in
solution and the corresponding side-view and cross-section of the porous supramolecular columns
determined from XRD analysis in the solid state. (b) A hat-like homochiral or racemic column
is generated by a dendronized cyclotriveratrylene (CTV). The deracemization process between
enantiomerically rich columns assembled from the hat-shaped dendronized CTV. Illustration of
homochiral columns constructed by a chiral self-sorting supramolecular helical organization of
hat-shaped molecules (S), (R)-(3,4Bn)dm8*G1-CTV; comparison of wide-angle XRD patterns before
and after thermal annealing; demonstration of chiral self-sorting mechanism [161,167,171]. Parts of
the Figure were adapted, combined and modified from [160,166,171]. Copyright © 2004, Macmillan
Magazines Ltd. Copyright © 2011, American Chemical Society.
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7.10. The Three-Dimenional Architecture of the Focal Point

As shown in Figure 12, covalently generated focal points can be planar, as in the case
of trihydroxybenzene (THB) and hexahydroxytriphenylene-based structures, conforma-
tionally disordered as in the case of hexasubstituted tetraveratrylene (CTTV), or exhibit
preferentially a crown conformation as is the case for trisubstituded or hexasubstituted
cyclotriveratrylene (CTV). THB has been shown to induce predominantly a conical of
tapered dendron or dendrimer secondary structure [98,118,168,172,173], whereas triph-
enylene focal point planar architecture favors the formation of crown-like supramolecular
dendrimers [174]. Enhancing the conformational flexibility of dendronized triphenylene
via diethylene glycol linkers lowers transitions of helical columnar, Frank–Kasper, and
quasicrystal phases [175]. The crown conformation resulting from triphenylene is capa-
ble of promoting the self-organization of both helical pyramidal columns and spherical
helices [174–179]. The conformationally disordered but flexible CTTV induces similar
supramolecular structures to triphenylene except that they are more flexible and display
higher dynamics of their self-organization. CTV was the model employed for the self-
assembly of pyramidal columns and spherical helices [176–186].

8. Internal Stimuli of Supramolecular Dendrimers. Primary Structure of
Self-Organizable Dendronized Polymers

The internal stimuli of supramolecular dendrimers self-organized from dendronized
polymers is more complex than the primary structure of self-assembling dendrons and
dendrimers since it takes into account the primary structure of the dendron or dendrimer,
the secondary structure of the dendron or dendrimer, the degree of polymerization of the
backbone of the dendronized polymer, and the stereochemistry of the polymer backbone.
This chapter will discuss, independently, each of these internal stimuli.

8.1. The Primary Architecture of the Self-Assembling Dendron or Dendrimer and the Mode of Its
Attachment to the Polymer Backbone

Figure 14 [187] outlines the diversity of possibilities for the attachment of a self-
assembling dendron or dendrimer to a covalent or supramolecular backbone. They will
only briefly be enumerated here. A self-assembling dendron can be attached covalently
directly from its apex to the covalent backbone (a). Alternatively, it can be connected from
apex to the backbone via a flexible spacer (b) or via a supramolecular interaction (c). For
case (a), the covalent backbone can be replaced with a supramolecular backbone (d). The
covalent attachments from (a) and (b) can be replaced with a covalent attachment directly
from the periphery of the dendron without (e) or with a flexible spacer (f). Finally, twin
self-assembling dendrons can be attached from their periphery to the backbone (g). Janus
amphiphilic self-assembling dendrons can be attached via one (h) or the other side of their
amphiphilic structure (i). Depending on the mode of attachment and of their structure the
resulting self-organizable dendronized polymers can form spherical, helical cylindrical
(Figure 2, right-side and Figure 15), bundles of cylinders surrounding the backbone that
can result in periodic arrays [121,122] or superlattices [159]. In this Perspective, we will
limit our discussion to cases (a), (b), (c), and (d) from Figure 14.
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Figure 14. The diversity of possibilities for the attachment of a self-assembling dendron or den-
drimer to a covalent or supramolecular backbone. Topologies generated from linear covalent and
supramolecular polymers dendronized with self-assembling dendrons, twin dendritic molecules,
and Janus dendrimers [185]. Dendron directly attached to the polymer backbone via apex (a), with a
flexible spacer (b), attached via non-covalent interactions (c), supramolecular polymers dendronized
(d), dendron directly attached to the polymer backbone via its periphery (e), via its periphery and a
flexible spacer (f), covalent polymers dendronized with twin-dendrimers (g), and with Janus den-
drimers (h,i). This Figure is reproduced with permission from [185]. Copyright © 2012, American
Chemical Society.

8.2. Secondary Structure of the Self-Assembling Dendron. Tapered and Conical

Tapered self-assembling dendrons attached to the polymer backbone directly or via
a flexible backbone as shown in Figure 14a,b induce a helical conformation in the back-
bone that fits the helical supramolecular column that is jacketing it (Figure 2, right side
and Figure 15) [22–59,121,180,181]. By analogy, a conical dendron will self-assemble a
supramolecular sphere with the backbone adopting most probably a random coil or also a
helical conformation [121]. A maximum degree of polymerization can be tolerated by the
spherical supramolecular polymer [121,122]. Induction of a helical backbone conformation
by a helical supramolecular column jacketing was demonstrated, and it will be discussed in
more detail later in this Perspective. However, the definitive conformation of the polymer
backbone in a supramolecular sphere was not yet definitively demonstrated.
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8.3. Degree of Polymerization

Any degree of polymerization is tolerated by self-organizable dendronized poly-
mers containing tapered side-groups that end up being coated in supramolecular helical
dendrimers. However, the degree of polymerization of the conical attached dendron self-
assembling a spherical dendrimer is limited to the degree of polymerization that can be
incorporated into the sphere [121]. Depending on the polymerization temperature and the
mechanism of polymerization, a self-interruption of the polymerization process can occur
exactly when the last conical dendron completes the assembly of the supramolecular sphere
leading to the construction of monodisperse polymers by a self-interruption process [123].
However, at high temperatures, the conical dendron is quasiequivalent and therefore, it un-
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dergoes a shape change from conical to tapered, transforming the structure of the polymer
from a sphere to a column [121]. Figure 16 illustrates the process mentioned above for the
case of the living ring-opening cationic polymerization of a cyclic imino ether or oxazoline
monomer, and the structures of the resulting polymers resulted in different degrees of
polymerization as demonstrated by X-ray diffraction experiments [144]. The experiment
illustrated in Figure 15 was performed with other monomers attached to conical dendrons
including acrylates, methacrylate, styrene, etc. [121].
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8.4. Stereochemistry of the Polymer Backbone

When a less flexible backbone adopts a helical conformation determined by its stereo-
chemistry, the stereochemistry of this backbone is very important. We will discuss in more
detail the case of dendronized poly(phenylacetylene) and of other poly(arylacetylene)s.
This concept will be discussed with the help of Figure 17.
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When the backbone of the cis-transoidal or cis-cisoidal PPA is coated with a self-assem-
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Figure 17. Molecular machine self-organized from dendronized helical polyphenylacetylenes. Illus-
tration of the helix–coil transition and its transformation into a helix–helix transition that mediates
expansion and contraction of the helical structure with temperature (a); expanded images collected
by a digital camera at 25 ◦C and at 80 ◦C of the oriented fiber (b); variable-temperature CD spectrum
(c); comparison of the fiber length change from optical microscopy and column diameter from the
fiber XRD for the library of the polyphenylacetylenes with different peripheral alkyl chain length
in the dendron (m) (d) [97,100]. The Figure is adapted from [97,100]. Copyright © 2005, American
Chemical Society. Copyright © 2008, American Chemical Society.

Cis-cisoidal and cis-transoidal poly(phenylacetylene) (PPA) exhibit compact and less
compact helical conformations in solid state [96–101,188–200]. In solution, a helix–coil
conformational transition occurs. This transition is accompanied at high temperatures by
an intramolecular electrocyclization followed by irreversible chain cleavage (Figure 17a,b).
When the backbone of the cis-transoidal or cis-cisoidal PPA is coated with a self-assembling
dendron that fits the conformation of helical conformation of PPA—the helix-coil transition
accompanied by electrocyclization is eliminated and a new helix–helix transition is gener-
ated. This reversible transition can be monitored by circular dichroism in solution and film
and by X-ray diffraction experiments performed on oriented fibers. At low temperature,
a compact cis-cisoidal helix is generated that undergoes a new helix–helix transition to a
more extended cis-transoidal helix at high temperatures. A decrease in the diameter of the
oriented fiber is accompanied by an extension of the fiber producing a molecular machine
that lifts coins. The second part of this concept is illustrated in Figure 17a,c–e.
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9. External Stimuli

By analogy with internal stimuli that refers to any structural molecular parameter that
is internal to the architecture of the supramolecular dendrimer, external stimuli refer to all
stimuli that are external to the structure of the supramolecular dendrimer. Environment,
temperature, light, electric, magnetic fields, and many others are external stimuli that will
be discussed in the next subchapters.

9.1. Environment

Environment can refer to stimuli that are present in solid state or bulk state, solution
and even stimuli that are present in the gas phase including in the air. Selected examples of
all these stimuli will be briefly discussed.

9.1.1. Solid-State or Bulk-State Stimuli
Electron-Donor and Electron-Acceptor Components as External Stimuli

We will start the discussion of the bulk state or solid-state stimuli with donor and accep-
tor components that can interact in solid state with a supramolecular dendrimer and affect
its behavior. Figure 18 [201–203] summarizes this concept that was elaborated in our labora-
tory. Self-assembling dendrons functionalized with an electron-donor or electron-acceptor
at their apex may self-assemble or not into supramolecular helical columns organizing their
donor or acceptor in the center of the helical column. In their native crystal or amorphous
state these acceptors and donors may exhibit poor charge electron mobilities. However,
after self-assembly in the center of a helical column, they exhibit excellent charge carrier
mobilities that can be many orders of magnitude higher than in the native state. In the
presence of an external donor or acceptor, simple contact between the donor dendron or
acceptor dendron with its complementary component will form a donor–acceptor complex
in a solid state that will incorporate the complex in the center of the helical column. Alterna-
tively, donor dendrons will co-assemble with acceptor dendrons in a solid state or by simple
grounding in a mortar and co-assemble a donor–acceptor dendron–dendron complex in
a helical supramolecular column. The most powerful event will be when an amorphous
polymer containing donor or acceptor side groups will be mixed in the solid state with the
corresponding complementary acceptor dendron or donor dendron. A co-assembly process
will occur placing the amorphous donor of the acceptor polymer in a helical conformation
in the center of the supramolecular column via donor–acceptor interactions. Charge carrier
mobilities for the amorphous polymers are very low. However, the incorporation of the
amorphous polymer into a helical columnar arrangement also increases the charge carrier
mobility by several orders of magnitude. Backfolded structural defects, as shown in the top
columnar hexagonal arrangement from the top right side of Figure 18, are self-repairing
upon heating and subsequent cooling. In this case, donor–acceptor external stimuli are
mediated and self-repaired by temperature as second external stimuli. This concept also
belongs to parts (c,d) from Figure 14.

Metal Salts and Their Interactions with Crown Ethers or PEG Attached to the Apex of a
Self-Assembling Dendron

Related external stimuli are provided by solid metal salts. Metal salts are recognized
by crown ethers (CE) or by podants that are poly(ethylene glycol)s of various degrees
of polymerization (PEG). Self-assembling dendrons containing CE or PEG at their apex
spontaneously co-assemble with metal salts and incorporate the salt in the center of a
helical column creating a supramolecular polymer. Numerous examples were designed by
our laboratory by employing this strategy [41,42,56,113,154,204–206]. The salt dissolved in
the center of the column becomes an ionic conductor whose mobility is lower in the crystal
state and increases dramatically in the liquid crystal state. Figure 19 provides an example
illustrating this concept mediated by PEG at the apex of the self-assembling dendron. The
thermal stability of the supramolecular column increases by increasing the amount of salt
in its supramolecular polymer [41,42,56,112,113,204–206]. Also, a combination of dendrons
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that does not self-assemble in the presence of salt and its co-assembly by complexation
with salt must be mentioned. A non-self-assembling dendron containing a crown ether
at its apex is melted on a glass plate located on an optical polarized microscope. A few
crystals of sodium or potassium triflate are dropped on it to see the spontaneous transition
from an isomorphic black liquid on the optical microscope to the formation of a focal conic
texture, demonstrating the spontaneous self-assembly of the supramolecular column.
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Figure 18. Schematic illustration of complex electronic supramolecular materials mediated by den-
drons containing donor (D) and acceptor (A) groups, and their co-assembly with complementary
amorphous polymers containing D and A side groups (a). The different systems form hexagonal
columnar (Φh), centred rectangular columnar (Φr-c), and simple rectangular columnar (Φr-s) arrays; a
and b are lattice dimensions. The self-repairing process of back-folded (brown) electronically active
supramolecular helical pyramidal columns self-assembled by semifluorinated minidendron attached
to the acceptor groups (b) [200]. The Figure is adapted and modified from [201]. Copyright © 2002,
Macmillan Magazines Ltd.
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9.1.2. Solvents

Solvents as stimuli will be classified as organic and aqueous solvents.

Organic Solvents

Organic solvents can be classified in the simplest way as solvophobic solvents for a
certain dendron or supramolecular dendrimers or as good or ideal solvents for a certain den-
dron. Solvophobic solvents select a certain dendron secondary structure and subsequently,
mediate self-assembly in solution. We will discuss briefly only several examples. Ideal
or good solvents for a dendron do not select a certain secondary structure that mediates
self-assembly, whereas a solvophobic solvent has the capability to select it.

Solvophobic Solvents

The top part of Figure 13 demonstrates what a solvophobic solvent’s role is. In an ideal
solution or good solvent like chloroform, for example, the dendritic dipeptide exhibits a
dynamic equilibrium mixture of its anti and gauche conformers that form an ideal solution.
A solvophobic solvent like cyclohexane or hexane shifts the anti-gauche equilibrium to an
all anti- or trans conformation for the benzyl ether groups of the dendritic dipeptide and
the dendritic dipeptide self-organized the helical columns illustrated under their structures.
Cyclohexane and hexane mimic the structure of the hydrophobic part of a cell membrane
and, therefore, this self-assembly process occurs also in the bilayer of the cell membrane or
of a cell membrane mimic allowing transport of water from the exterior to the interior of the
cell of the hydrophobic channel of the helical porous assembly to be measured. Solvophobic
solvents are commonly used to mediate self-assembly in solution.

Aqueous Solvents

Aqueous solvents can be water of buffers of different pH. Amphiphilic molecules,
including phospholipids, mixtures of phospholipids with cholesterol, and PEG-conjugated
phospholipids, self-assemble in water or buffer into vesicles named liposomes [207]
(Figure 20) and stealth liposomes [208,209]. Amphiphilic block-copolymers self-assemble
into vesicles named polymersomes [210]. Amphiphilic Janus dendrimers self-assemble into
unilamellar [211] or onion-like dendrimersomes [212]. Glycopolymers form the simplest
mimic of the glycan from the surface of cell membranes [213], glycodendrimers for more
precise examples of glycan mimics [214], whereas glycoliposomes form also a complex
mimic of the glycan [215]. The simplest approach to the glycan of the cell membranes was
obtained by the self-assembly of amphiphilic Janus glycodendrimers [216]. Amphiphilic
Janus glycodendrimers self-assemble as their counterpart Janus dendrimers can for both
unilamellar and onion glycodendrimersomes [217]. The unique feature of Janus dendrimers
and Janus glycodendrimers is that they can self-assemble in water or buffer into unimolec-
ular and onion-vesicles by simple injection in water forming monodisperse unilamellar or
onion-like dendrimersomes and glycodendrimersomes with predictable dimensions. All
other amphiphilic building blocks shown in Figure 20 require very complex methods for
self-assembly followed by fractionation in order to produce narrow dispersity vesicles. For
numerous applications, the stability of vesicles in buffer at different pH values is requested.

Sugar Binding Proteins by Sequence-Defined Glycodendrimersomes in Aqueous Solvents

Sugar-binding proteins, known as lectins and galectins, interact with the glycan of the
cell membranes and with the glycan mimics of the cell membranes. Numerous experiments
on this topic were performed in our laboratory with glycodendrimersomes assembled from
Janus glycodendrimersomes [217–238]. Glycodendrimersomes bind to sugar-binding pro-
teins via their multivalency. We would like to mention here a single experiment performed
towards the elucidation of the multivalency concept. This experiment was performed both
with unilamellar and multilamellar onion-like glycodendrimersioimes and involves eluci-
dation of the role of sequence-defined glycan mimic on the binding efficiency. Figure 21
illustrates these experiments. Sequence-defined Janus glycodendrimers were constructed
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as shown in Figure 21a,b. Their self-assembly into sequence-defined glycodendrimersomes
provided from binding ability to a library of lectins is shown in Figure 21c. The lower the
concentration of sugar in their glycan mimics the higher the activity towards sugar-binding
proteins. These results contradict most of the literature results that predicted the highest
activity to occur at the highest concentration of sugar. The highest activity at a low con-
centration of sugar was demonstrated to be due to a different rate of contact of interaction
that was supported by a different activity of the glycan due to its different architecture or
morphology [217–238].
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Decoration of Dendrimersomes with Proteins

A different mechanism to attach proteins directly on the surface of dendrimersomes is
by dendrimersomes decorated with Janus dendrimers functionalized with NTA. Janus-NTA
developed in our laboratory [232,233] are very active in binding proteins via their histidine
groups. The protein coat generated via this mechanism subsequently binds DNA to create
a second coat of DNA on the surface of the dendrimersome. This process is illustrated in
Figure 22 [232].

Hybrid Membranes by Co-Assembly of Dendrimersome and Glycodendrimersomes with
Bacteria Membranes

Giant dendrimersomes and giant glycodendrimersomew were demonstrated to co-
assemble with bacterial membrane vesicles creating hybrid vesicles transplanting lipopro-
teins, channel proteins, and other components of the bacterial membrane into the bilayer of
the hybrid cells. This is a process that is difficult to accomplish via any other technology
since transmembrane proteins are not soluble in water [223]. Figure 23 outlines this concept
that is of interest for numerous applications.
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Figure 21. Encoding biological recognition in a bicomponent cell-membrane mimic. (a) Sequence-
defined JGDs with different Lac densities, sequence, and linker length. (b) Schematic representation
of JGD building blocks. (c) Summary of aggregation assay data using GDSs from self-assembly of
sequence-defined JGDs (Lac = 0.1 mM, 900 µL) with Gal-1 (1 mg·mL−1, 100 µL), Gal-8S (1 mg·mL−1,
100 µL), and (Gal-1)4–GG (1 mg·mL−1, 100 µL). Color codes for galectins: Gal-1, red; Gal-8S, blue;
(Gal-1)4–GG, green. N and C represent the N and C termini of proteins. For selected examples
symbols used for significant difference (p values by Student’s t-test) are: “n.s.” for p > 0.05 (for
statistically nonsignificant) and “*” for p < 0.05 (for statistically significant) [226]. Copyright (2019)
National Academy of Sciences USA.
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Figure 22. Modular tethering of DNA to SNAP-tagged dendrimersomes. (a) Schematic showing
layering of a protein and DNA coat to dendrimersome vesicle. (b) His-SNAP proteins bind to RH-
NTA to form the initial protein layer. SNAP binds to a BG conjugated to the DNA, allowing for the
modular formation of a second layer, composed of nucleic acids. The DNA aptamer is labeled with
FAM to enable imaging. (c) schematic of multilayer dendrimersome containing DNA and protein
coat [230]. Copyright (2019) National Academy of Sciences USA.
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Figure 23. Illustration of (a) the preparation of giant DSs, (b) the preparation of BMV expressing
YadA bacterial adhesin protein, and (c) coassembly of giant hybrid vesicles from giant DSs and
E. coli BMV expressing YadA bacterial adhesin protein [222]. Copyright (2016) National Academy of
Sciences USA.

Hybrid Membranes by Co-Assembly of Dendrimersomes with Human Cell Membranes

Figure 24 illustrates the mechanism of the co-assembly of dendrimersomes with vesi-
cles assembled from human membrane vesicles. As shown in Figure 23 for the case of
bacterial cell membranes, successful experiments were shown to co-assemble dendrimer-
somes with human cell membranes [219].
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Figure 24. Schematic illustration of (a) the preparation of giant DSs, (b) the preparation of HMV from
human kidney cells 293 (HEK293), and (c) coassembly of giant hybrid vesicles from giant DSs, and
HMV from HEK293 labeled with GFP [218]. Copyright (2019) National Academy of Sciences USA.

Encapsulation of Bacteria into Dendrimersomes

Figure 25 outlines the encapsulation of a living bacterial into a dendrimersome [233].
A proper combination of interaction between the dendrimersome and bacteria facilitates the
encapsulation of a bacterial into a dendrimersome via endocytosis. This first demonstration
of the encapsulation of a living bacteria into a synthetic membrane mimic is important for
numerous applications that will not be discussed here. The encapsulated bacteria remains
alive for a long period of time, fighting to exit the synthetic dendrimersome without success
for as long as it has food to survive. We encourage the reader of this Perspective to consult
the original publication that contains numerous movies demonstrating this concept.

Encapsulation of mRNA into Dendrimersome Nanoparticles and their Endocytosis into
Living Cells, Release of mRNA into Living Cells, and Synthesis of Proteins in
Collaboration with the Ribosome

This concept provides a new technology for one-component mRNA vaccines. The
classic mRNA vaccines are accomplished via a four-component technology that involves
a combination of phospholipids, cholesterol, phospholipids conjugated to PEG, and an
ionizable amine that becomes protonated at an acidic pH and deprotonated at the physio-
logical pH. Figure 26 outlines the concept of four-component and one-component delivery
of mRNA systems [234–240]. A complex microfluidic technology is used at low pH with
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the four-component system to generate nanoparticles incorporating the mRNA in their
interior via interaction of the phosphate groups of mRNA with the protonated ionizable
amines of the four-component system. Fractionation, followed by dialysis to deprotonate
the exterior of the nanoparticles is needed before the injection process. The two-component
system consists of sequence-defined Janus glycodendrimers in which the carbohydrate was
replaced with an ionizable amine. Injection of the ionizable Janus dendrimers together with
mRNA at low pH self-assemble nanoparticles of predictable size with narrow dispersity.
No microfluidic technology, fractionation, or dialysis is required, and the nanoparticles can
be directly injected into mice. Upon endocyctosis to the cell, the mRNA is released and in
combination with the ribosome will synthesize the required protein. Figure 26 outlines this
concept that we will not describe in more detail.
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Figure 25. CLSM images show the process of engulfment of bacteria (blue) by DSs (red). (a) Adhesion
of E. coli to the DS membrane. (b,c) Invagination of E. coli into the interior of the DS. (d) Formed
endosome with living bacteria inside. (e) 3D reconstruction of 150 confocal scans for the whole (left)
and 80 confocal scans for half (right) of the DS with engulfed E. coli. The white dashed line on a
whole DS indicates the place of intersection for the presentation of half of the DS to show the interior
of an endosome with engulfed bacteria [232]. The Figure was adapted from [233]. Copyright © 2019,
American Chemical Society.
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of LNPs and DNPs encapsulating Luc-mRNA.

9.1.3. Temperature

Several examples were already discussed in Figures 13 and 15–18, and we will not
repeat them here. Aside from change ion conductivity, self-repairing processes, molecular
machine, deracemization, temperature provides a new methodology to assemble unprece-
dently new combinations of helical supramolecular dendrimers via the supramolecular
orientational memory effect (SOM) [86,175–179,240–244] is summarized in Figure 27.
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SOM occurs at the transition from a Frank–Kasper supramolecular spherical dendrimer
generated only from crown conformations of dendrimers to columnar assemblies and back
and is nucleated by the closest distance spheres of the Frank–Kasper phase. Recently, this
concept was demonstrated to provide the only methodology for the discrimination between
different mechanisms of self-assembly when X-ray analysis is inadequate [86].

9.1.4. Light

Photocleavable supramolecular dendrimers were investigated and demonstrated a
mechanism for their dis-assembly and reassembly of different size spherical dendrimers.
This is an important concept with numerous applications in drug and other delivery
processes [245,246]. Such a mechanism is briefly outlined in Figure 28.
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9.1.5. Electric and Magnetic Fields

Figure 29 outlines the structure of one of the first self-organizable dendrimer reported
from our laboratory: the “willow” dendrimer [247–250]. “Willow” dendrimers and trees
do not adopt a spherical conformation even at high generations.
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a magnetic field is higher than that of most classic thermotropic liquid crystals. The reason 
for this process is not yet known and, therefore, it was not yet published, but we think it 
is important to be disclosed here. 

  

Figure 29. (a) Molecular structure of dendrimers G4(D3); (b) Molecular structure of dendron G2(OH)
(anti), and (c) Molecular structure of dendrimers G2(OH) (gauche). (d) Molecular model of the
smectic phase of G2(OH). The magnetic field is almost horizontal [249].

They collapse into a bilayer structure when placed on the ground [247–250]. The
concept shown in Figure 29 is self-explanatory. The gauche conformation of the repeat unit
from the top of the Figure becomes anti and the corresponding dendrimer exhibits classic
smectic and nematic thermotropic mesophases. What is not trivial from this Figure and is
not available in the original publications is that the switching time of this dendrimer under
a magnetic field is higher than that of most classic thermotropic liquid crystals. The reason
for this process is not yet known and, therefore, it was not yet published, but we think it is
important to be disclosed here.
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10. Conclusions

The inspiration for this Perspective was initiated by the guest editor of this special
issue, Professor Ivan Gitsov. Without his invitation we would have never thought about
writing a Perspective on stimuli-responsive complex self-organized dendrimers, and in
addition, consider the topic in the way we reported stimuli-responsive dendrimer systems
here. In order to do so, we had to neglect numerous contributions to this field including
many from our own laboratory [251]. We also had to neglect very important contributions
to this field from the laboratory of the guest editor [252–256]. As we have mentioned in
the Abstract, Introduction, and in the rest of this Perspective, we preferred to discuss only
topics of research for which we consider that we were qualified to provide a different view
on stimuli-responsive principles. We also tried to avoid being influenced by other excellent
review articles on the topic of stimuli-responsive systems [257–261]. We hope that this
Perspective will bring a complimentary view to all published work on this topic [257–261]
and to other reviews and publications to be reported in this special issue. We also expect
that this Perspective will impact other fields of soft and living self-organized matter as it was
already demonstrated by our laboratory for the case of helical self-organizations [262,263].
As elegantly pointed out by Lehn, there are unlimited fields of self-organization [264] where
these concepts can, and we hope will, provide an impact.
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