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Abstract: This in vitro study aimed to evaluate the hardness and color change of an ethylene-vinyl-
acetate copolymer (EVA) material for mouthguards after exposition to different cleaning agent
solutions and isotonic drinks. Four hundred samples were prepared and divided into four equinu-
merous groups (n = 100), in which there were 25 samples from each color of EVA (red, green, blue
and white). The hardness, using the digital durometer, and the color coordinates (CIE L*a*b*), using
the digital colorimeter, were measured before the first exposition and after 3 months of exposition
to spray disinfection and incubation in the oral cavity temperature, or immersion in isotonic drinks.
The values of Shore A hardness (HA) and color change (∆E—calculated by Euclidean distance) were
statistically analyzed using the Kolmogorov–Smirnov test, multiple comparison ANOVA/Kruskal–
Wallis and appropriate post-hoc tests. Statistically significant changes in color and hardness between
the tested groups were demonstrated after the use of agents predestined for disinfecting the surface
of mouthguards on the tested samples. There were no statistically significant differences in color and
hardness between the groups immersed in isotonic sport drinks potentially consumed by competitors
practicing combat sports using mouthguards. Despite the changes in color and hardness after the
use of disinfectants, the deviations were minor and limited to specific colors of the EVA plates. The
intake of isotonic drinks practically did not change either the color or the hardness of the samples,
regardless of the tested color of the EVA plates.

Keywords: mouthguards; dental polymers; dental materials; disinfection; oral hygiene; combat
sports; martial arts; occlusal splint

1. Introduction

A mouthguard is a protective polymeric device that covers the palate and occlusal
surfaces of the teeth. During an injury, it protects the teeth, oral cavity structures and
temporomandibular joint from trauma [1–4]. The American Standards for Testing Materials
classifies mouthguards into three categories: stock, boil-and-bite and custom-made [5]. Cus-
tom mouthguards are prepared using thermoforming, traditional polymerization methods
and thermal injection [6–8]. Ethylene vinyl acetate (EVA) is commonly used in mouthguard
fabrication—both in boil-and-bite appliances, and those custom-made. It is a copolymer
characterized by flexibility, elasticity and certified biocompatibility [9–12]. This thermo-
plastic polymer is made of separate monomers: ethylene and vinyl acetate (usually 1–40%
by weight). EVA is a semi-crystalline polymer; its structure comprises an amorphous and
crystalline component. The amorphous phase of EVA is represented by a macromolecule
entanglement that lacks a three-dimensional organized and periodic structure. In contrast,
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the crystalline phase is distinguished by a three-dimensional organized and periodic struc-
ture of macromolecules folded one on the base of the other in the lamellar format. When
the proportion of vinyl acetate (VA) in EVA falls, so does its damping capacity. In some
circumstances, the stiffness and hardness of EVA increase according to the degree of crys-
tallization. EVA is a macromolecule comprised of repeating units linked by covalent bonds.
Its fundamental constituents are two monomers whose physical properties are determined
by their size and molecular weight. Polymeric materials have a density range of 0.926 to
0.950 g/cm3. Among the most essential aspects of EVA is its elastic behavior, which is
defined by a Young Modulus ranging from 15 to 80 MPa. [13–15]. Unfortunately, despite
being the gold standard for protective splints, it has some disadvantages that should be
considered. EVA copolymers are sensitive to repeated exposure to high temperatures
and prolonged heating. There is a problem in thermoforming of achieving the optimal
thickness of the appliance, necessary to provide adequate protection against the effects of
trauma [10,16–19]. Loss of up to 25% of the thickness of the protector on the occlusal surface
and 50% on the labial surface result in a reduction in its ability to dampen the force of the
strike [20]. The use of color pigment in the EVA material influences its properties—the
opaque materials have lower adhesive capabilities than clear or semi-transparent [21]. The
literature also describes the hardening of ethylene vinyl acetate protectors and changes
in the structure of the material under usage, temperature differences and pressure, which
can affect the energy absorption properties [22]. Benli et al. [23] stated that EVA can be
prone to wear and its long-term use is not recommended as it has an irregular surface
which may increase plaque accumulation. As mouthguards should be used in various
sport activities it should be also verified whether it is possible to use isotonic drinks having
the protective splint in the oral cavity. Such beverages are used to refill the fluids lost
during the exercise. Studies concerning the effect of isotonic drinks on dental materials and
tooth structures have shown that they have erosive potential and decrease the hardness of
restorative materials after immersion in tested solutions [24–27].

The optimal method of mouthguard sanitization is disinfection [28–31]. The disin-
fectant solution decreases the number of microorganisms isolated from its surface [29].
Unfortunately, there are still no conclusive guidelines comparing disinfectants. The changes
in the porosity of the elastic polymeric material used in mouthguard fabrication may in-
duce microbial colonization of its surface [28,31–34]. D’Ercole et al. [35] have shown that
the use of intraoral protectors interferes with the oral environment—changing the pH
of saliva, reducing its buffering capacity and increasing plaque accumulation and bleed-
ing. The porous surface of the mouthguard contains opportunistic or pathogenic bacteria
and fungi, while its roughness, which appears after too long and unhygienic use, can
cause minor soft tissue injuries [23]. The damage of such an appliance can cause the
migration of microorganisms into the pterygoid plexus [23,28]. A microbiological analy-
sis of intraoral protectors used by 62 American football players revealed the presence of
356 bacillus strains, 22 yeast-like fungi and 107 molds. Ifkovits et al. [36] found that 89.9%
of mouthguards used by athletes are defective due to their incomplete coverage of the labial
surface of the teeth, improper interocclusal contacts and destruction of the splint surface.
Glass et al. [30] recommended replacing the mouthguard with a new appliance once surface
porosity appears. They also indicated that it should be perceived as a therapeutic device—it
should be replaced after the damage of its surface, 14 days of regular use or in cases of
oral mucosal lesions or respiratory infection [31]. Because of the risk of cross-infection,
they also considered whether protective occlusal splints should be disposed of after single
use [28]. Due to economic reasons and lack of awareness, this is still unlikely—research has
shown that 20% of athletes never replace their mouthguard and 85.5% of athletes choose
tap water rinsing as the primary method of protective splint cleaning [37]. Disinfection,
recommended in the literature, is currently used by only 2.7% of mouthguard users. It is
necessary to choose a disinfectant that does not damage the surface of a protective splint
and to introduce guidelines for mouthguard maintenance [38,39]. The aim of this research
was to compare the influence of different disinfectants and isotonic drinks on the hardness
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and color stability of EVA used in mouthguard fabrication. The results of the study could
contribute to providing guidelines for correct mouthguard maintenance for their users.

2. Materials and Methods
2.1. Preparation of Samples

The test material used in this study was ethylene vinyl acetate plates (EVA, Drufosoft,
Dreve, Unna, Germany) with standard dimensions of 1200 mm in diameter and 3 mm
in thickness. There were 400 EVA samples prepared, 100 for each evaluated color (red,
green, blue, and white), cut from rounded plates using a scalpel in the form of cuboids
10 mm × 10 mm × 3 mm. Four tested groups were created—in each, there were 100 sam-
ples (25 from each color).

2.2. Sample Disinfection Protocol

In this part of the study, 320 samples were tested, 80 from each color of EVA. Three
times a week, all samples were put in small (3 mL), separate containers (Figure 1), into
the Natrium Chloratum (NaCl) 0.9% solution (Braun, Meisunger, Germany; according
to the manufacturer’s data with a pH of 4.5–7) changed for each exposition, for an hour
into the laboratory incubator (Elkon CL-65, Rybnik, Poland) set on temperature 36.6 ◦C.
The frequency and duration of incubation were based on previous research—most martial
arts practitioners train about three times a week and the mouthguard is placed in the
oral cavity for about an hour as an athlete does not use it during the initial part of the
training [40]. After each incubation, the tested samples were disinfected and put into
ventilated containers until the next exposition. The first group was disinfected using the
spray containing chlorhexidine (CHX) digluconate 0.12%, and cetylpirydynium chlorite
0.05% (Perio-AID, Dentaid, Barcelona, Spain); the second—Safe JAWZ spray (Safe Jawz,
Aldrige, UK) dedicated to mouthguard disinfection; the third—spray with ethyl alcohol
(Bioseptol AMF, Chełmża, Poland). The fourth group was the control—the samples were
incubated in the NaCL but they were not disinfected. The pH of the disinfectants measured
using the calibrated ph-Meter PH-100ATC (Volcraft, Hirschau, Germany) was pH 5.23 for
Perio-AID spray, pH 4.74 for Safe JAWZ spray, and pH 4.47 for Bioseptol AMF spray. The
pH of saline used in the study was 5.5. The hardness and color were measured before the
first exposition and after 3 months. The total effective exposition period was 36 h.
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2.3. Protocol for Immersion of Samples in Isotonic Drinks

There were 80 EVA samples tested—20 for each evaluated color. The number of
samples was lower in each group than in the disinfection protocol because in this case the
exposure was continuous, and samples were immersed in tested solutions, so the time
and direct effect was assumed to be of greater intensity—the number of samples was
coordinated with the assumed statistical tests. Four tested groups were created—in each,
there were 20 samples (5 from each color). Samples were placed in small, closed containers.
In three groups, they were immersed in isotonic drinks—Oshee Red Orange Flavour, Oshee
Lemon Flavour, and Oshee Multifruit Flavour (Oshee Poland Sp. z o.o., Kraków, Poland)
istotonic drinks were used in the evaluation. The list of ingredients of the isotonic drinks is
given in Table 1. Samples from the fourth control group were immersed in spring water
(Żywiec Zdrój, Danone, Paris, France). The pH of the isotonic drinks measured using
calibrated ph-Meter PH-100ATC (Volcraft) was 2.99 for Oshee Red Orange Flavour, 3.22
for Oshee Lemon Flavour and 2.94 for Oshee Multifruit Flavour. All samples remained
in tested solutions continuously for 3 months (Figure 2). The hardness and color were
measured before the exposition and after 3 months of immersion. The long-term immersion
protocol has been used in colorimetric studies of denture-based materials [41,42]

Table 1. The ingredients of the isotonic drinks used in this study.

Oshee Red Orange Flavour Oshee Lemon Flavour Oshee Multifruit Flavour

water water water
glucose glucose glucose

citric acid maltodextrin maltodextrin
sodium citrate citric acid citric acid

potassium citrates trisodium citrates sodium citrates
flavours tripotassium citrates potassium citrates

potassium sorbate flavours flavours
potassium benzoate potassium sorbate potassium sorbate

gum arabic potassium benzoate potassium benzoate
glycerol esters of wood rosins gum arabic gum arabic

sucralose glycerol esters of wood rosins glycerol esters of wood rosins
Allura Red AC aspartame aspartame

niacine acesulfame K acesulfame K
vitamin B guinoline yellow brilliant blue FCF

biotin niacine niacine
vitamin B vitamin B

biotin biotin
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2.4. Hardness and Color Change Measurements

The digital durometer (LX-A, Huatec Group Corporation, Beijing, China), with con-
stant load test stand (TI-D, Sauter -KERN & SOHN GmbH, Ballingen, Germany), using the
Shore A scale was used to measure the hardness of all samples. For the color comparison,
the digital colorimeter (ColorReader, Datacolor AG Europe, Switzerland) compliant with
the standards adopted by the International Commission of Illumination for colorimetric
tests, including a 10◦ observational angle, D65 luminant with built-in light source in the
form of six light diodes. The data acquired with the device were sent by a wireless Blue-
tooth interface, and were analyzed using the three-dimensional measurement system—CIE
L*a*b* color space where values represent: L*—the object clarity (from black, 0, to white,
100); a*—the quality of red (a > 0) or green (a < 0); and b*—the quality of yellow (b > 0)
or blue (b < 0). The obtained values were compiled using descriptive statistics (mean and
standard deviation—SD). The differences between the groups were calculated using the
∆E parameter according to the distance formula. ∆E is the Euclidean distance between
two colors in the space with the assumption that they are both described in the same space
and expressed as a number. All measurements were made by the same operator, in the
same research and control station, in the same lighting conditions (dark room).

2.5. Statistical Analysis

The statistical analysis of obtained data was performed with PQStat Software (v.1.8.4.142,
PQStat Software, Poznań, Poland). Descriptive statistics including means and standard
deviations were performed. Due to the knowledge of the mean values and the standard
deviation, the normal distribution of data was verified using Kolmogorov–Smirnov tests.
ANOVA or Kruskal–Wallis tests and then post-hoc tests were performed in groups with
statistically significant differences. In order to compare the individual groups with each
other, the Sheffe testing was used in the case of the ANOVA test due to its conservative
nature. In the case of contraindications to parametric testing, failure to meet the requirement
of equality of variance (in the Brown–Forsythe test), post-hoc Dunn–Bonfferoni was used.
The level of significance for tests was set at p < 0.05.

3. Results
3.1. Influence of Cleaning Agents on Color and Hardness Changes of EVA

Regardless of the disinfection spray used, the color of the samples changed during
the test. The average color change for all EVA colors in the test procedure treated with
disinfectants was almost twice higher than in the control group (test groups 1.64 (±0.81),
control group 0.92 (±0.45)). Considering the division due to the color of the EVA plates, the
highest value was calculated for the green samples and was 8.08 for the group immersed in
the CHX solution. The greatest color changes were caused by the CHX-containing solution,
apart from samples made of white material. Changes in the values of the ∆E calculation
components in the form of the CIE L* component were also most noticeable, which may
indicate a tendency to bleach samples under the influence of Perio-AID.

Testing with Kruskal–Wallis was performed, reaching statistical significance
(p < 0.000001), which was the basis for further proceedings in the form of post-hoc tests
(Dunn–Bonferroni)—the statistical results are presented in a graphical form in Figure 3,
see Table 2.

The part of the study concerning changes in the hardness of samples under the
influence of disinfectants showed that, despite the changes noted, the fluctuations of
the HA index were at a very low level. The mean change in hardness regardless of the
disinfectant in the test and control groups was 0.5 (0.91) and 0.8 (0.92), respectively. The
variation visible in some groups may be the effect of the heterogenous surface of the samples
after exposition or covering the surface of the samples with sprayed disinfectant. When
comparing the groups in terms of the impact of specific disinfectants on their hardness, the
ANOVA statistical test was used, obtaining a statistically significant p < 0.000001. Post-hoc
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tests (Sheffe testing) showed which groups differed from each other and which showed
homogeneity; this is illustrated in Figure 4.

Table 2. Abbreviations for groups in disinfection protocol.

Abbreviation Group Description

R-CHX red samples disinfected with Perio-AID
R-AL red samples disinfected with Bioseptol AMF
R-CT red samples control group (without disinfection)
R-MG red samples disinfected with Safe JAWZ spray
B-CHX blue samples disinfected with Perio-AID
B-AL blue samples disinfected with Bioseptol AMF
B-CT blue samples control group (without disinfection)
B-MG blue samples disinfected with Safe JAWZ spray

G-CHX green samples disinfected with Perio-AID
G-AL green samples disinfected with Bioseptol AMF
G-CT green samples control group (without disinfection)
G-MG green samples disinfected with Safe JAWZ spray

W-CHX white samples disinfected with Perio-AID
W-AL white samples disinfected with Bioseptol AMF
W-CT white samples control group (without disinfection)
W-MG white samples disinfected with Safe JAWZ sprayPolymers 2023, 15, x FOR PEER REVIEW 7 of 17 
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The maximum unit specimen hardness change was recorded for the group of red
samples disinfected with Safe JAWZ spray (R-AL group) and was 4 HA, while the largest
average change in hardness was recorded for the group of green samples disinfected with
Perio-AID and was 2.38 (0.60).
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3.2. Influence of Sport Drinks on Color and Hardness Changes of EVA

In this part of the study, we compared the impact of three types of sports drinks in
the form of isotonic fluids of one brand. The color change oscillated between 0.24 and 1.91.
The lowest ∆E value was recorded for the red EVA sample and the highest for the green
EVA sample. In comparison, in the control groups, the lowest and highest recalculated ∆E
values were 0.23 (for the white EVA sample) and 1.78 (for the red EVA sample), respectively.
Regardless of the color of the samples and drink, average changes of color were 0.85 (±0.35)
for study groups and 0.72 (±0.38) for control. In statistical calculations, after meeting
the requirements of uniformity of distribution (Kolmogorov–Smirnov tests) and variance
(Brown–Forsythe test p = 0.850321), an ANOVA analysis was performed, obtaining the
value p = 0.117293 (p > 0.05), indicating no statistically significant differences between the
groups. Homogeneity was maintained between all groups in the study. Mean values with
standard deviations for individual groups are presented in Figure 5, see Table 3.

Table 3. Abbreviations for groups in isotonic drink protocol.

Abbreviation Group Description

R-1 red samples immersed in Oshee Red Orange Flavour
R-2 red samples immersed in Oshee Lemon Flavour
R-3 red samples immersed in Oshee Multifruit Flavour

R-4 (control) red samples immersed in water (control group)
B-1 blue samples immersed in Oshee Red Orange Flavour
B-2 blue samples immersed in Oshee Lemon Flavour
B-3 blue samples immersed in Oshee Multifruit Flavour

B-4 (control) blue samples immersed in water (control group)
G-1 green samples immersed in Oshee Lemon Flavour
G-2 green samples disinfected with Bioseptol AMF
G-3 green samples immersed in Oshee Multifruit Flavour

G-4 (control) green samples immersed in water (control group)
W-1 white samples immersed in Oshee Red Orange Flavour
W-2 white samples immersed in Oshee Lemon Flavour
W-3 white samples immersed in Oshee Multifruit Flavour

W-4 (control white samples immersed in water (control group)
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Figure 5. Graphical representation of the results of statistical analysis of the color changes of EVA
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The average hardness changes of EVA samples under the influence of isotonic drinks
were higher than in the case of disinfectants. Across the study, the groups changed an
average of 2.78 (±1.31) for the tested groups and 2.40 (±0.38) for the control groups. Some
samples (blue and white EVA) did not change their hardness at all, while the highest
change in hardness recorded in the study was for the white sample—6.5 HA. To compare,
the highest value recorded in the control groups alone was 5 HA. A null hypothesis was
adopted that the variances in individual groups were not statistically significantly different
(Brown–Forsythe p = 0.854758). Then, an ANOVA test was performed, which showed that
there were no statistically significant differences between the groups, reaching the value of
p = 0.365338.

Figure 6 graphically presents the mean values with deviations for individual groups.
The study showed the homogeneity of hardness changes between all groups, regardless
of the immersion agent used in this part of the study. Throughout the study, the average
change in the hardness of the samples regardless of the EVA color tested was 2.69 (1.28) HA.
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4. Discussion

The use of disinfection sprays causes hardening of the EVA samples in a very small
range. Changes are so subtle that they remain within the accuracy level of the used device,
and it could not be stated that it would be clinically noticeable to such an extent. Although
the degree of changes occurring in 3 months does not seem to be clinically important,
cumulated changes after longer usage could lower the comfort of the user and reduce
energy absorption capacities—according to the literature, most athletes do not change the
used appliance at regular intervals [37]. The hardening of the material may influence the
performance of the mouthguard [31,37]. The main feature of the appliance is the protection
of teeth and oral cavity structure from injury. Previously conducted studies confirmed
that the energy-absorbing qualities of the material used in their fabrication are correlated
with the hardness of the material [3,37]. Additionally, softer mouthguards are perceived
as more comfortable by users [43]. Current results show also that the use of disinfectant
containing 0.12% CHX and 0.05% cetylpirydynium chloride may influence the EVA color.
Evaluation of the type of color changes revealed that there was an increase in the lightness
value (L*) defined from black at 0 to white at 100, which explains why changes were not
significant for white samples. The highest color changes were noted in red samples, which
means that there may be differences in color stability between different material colors.
Statistically significant changes were noted in green material samples. However, we cannot
exclude that if the time of exposure was further extended, significant changes could be
observed also in red and blue samples, and further research should include evaluation after
longer exposure to tested disinfectants. The presented study showed also that long-term
immersion in isotonic drinks did not cause statistically important changes in the color
of the samples. However, there was a slight increase in the mouthguard hardness after
immersion in all solutions, without statistically important differences between test groups,
which potentially may result in deterioration of the protective function. The current study
involves evaluating only one type of commercially available EVA plate. Unfortunately, the
manufacturer does not provide the specific composition of the material. The VA content
in commonly available EVA ranges between 1 and 40 wt.-%. [12]. Its constitution strongly
influences the properties—at 40 wt.-% VA it is soft polymer with a broad melting point of
approximately 25–55◦ [44–46]. The use of EVA with different VA content could influence
the achieved results. Additionally, EVA retains high flexibility and material diffusivity even
at very low temperatures. The disinfection of samples after incubation in 36◦ may influence
the effect of disinfecting sprays on the material composition. However, such conditions
resemble real-life application, when athletes sanitize the splint after removing it from the
oral cavity. Due to the specific application of mouthguards, they are usually not exposed to
the hot temperatures associated with food or beverage intake.

The hardening of EVA mouthguards have been previously evaluated by Kuwahara
et al. [22]. They conducted 13C NMR measurements, Pulse NMR measurements, DSC mea-
surements, repeated compression and thermal cycle experiments, as well as compressive
stress–strain measurements, on samples made of the same EVA material (Drufosoft, Dreve,
Germany). Temperature fluctuations and repeated pressure changes affect the protective
ability of protective splints. EVA is a macromolecule with entangled polymer chains com-
prising crystalline and amorphous phases [46,47]. The changes in the crystallinity of EVA
during routine use explain the hardening that occurs after a period of usage. The increase in
the relative amount of the crystalline phase may be primarily attributed to temperature fluc-
tuations and repeated changes in pressure [22]. The change in the vinyl acetate content in
the copolymer changes the material properties—the VA groups inhibit crystallization of the
polyethylene chain segments, enabling variation in the softness and crystallinity without
the addition of low molecular weight plasticizers [12]. In the EVA, apart from the immobile
orthorhombic phase and monoclinic crystalline phases, a third crysthalline phase SOCP
was detected via solid state NMR and DSC. Such a phase forms during room-temperature
aging and melts at temperature higher than that on heating [47]. Conducted research also
showed that simulated usage with disinfection had a statistically significant influence on
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the hardness of EVA mouthguards. Clinically, EVA mouthguards have increased roughness
and significant changes of the surface after intraoral application [48].

The chemical substances used in the current study have previously been used in
mouthguard disinfection. Riberio et al. [48] conducted a randomized clinical trial on the
application of 0.12% chlorhexidine spray and its influence on contamination and surface
roughness of vacuum-pressed EVA mouthguards. The use of disinfecting spray signifi-
cantly reduced bacterial cell viability. All mouthguards had significantly increased surface
roughness after being evaluated for 15 days of usage, regardless of the sanitization method
applied—no differences were found between the control and experimental groups. The
use of chlorhexidine on mouthguards was also studied by D’Erkole et al. [49] who showed
that it inhibits the growth of microbial species and improves pH value. Unfortunately,
the influence of such disinfectant on the copolymer was not evaluated. Wood et al. [50]
proposed coating EVA with chlorhexidine, gradually released from the material. However,
the long-term use of this additive is somewhat questionable due to its cytotoxicity to human
gingival fibroblasts, possible tooth discoloration, taste changes or even the risk of anaphy-
lactic reaction [50–53]. In the current research, the evaluated spray also had cetylpyridinium
chloride—used as a disinfectant in dentistry in concentrations of 0.05% to 0.75%—and its
addition may influence the results [54,55]. Whitaker et al. [56] described the possibility
of using hand sanitizer for on-site mouthguard disinfection. The main active ingredient
of the applied disinfectant was alcohol, which evaporates rapidly and is not toxic with
respect to soft tissues. According to the literature, chemical disinfecting agents containing
alcohol affect the flexural strengths of the non-crosslinked denture base resins and affect
the interphase region between the polymethyl metacrylate polymer bead and the polymer
matrix [57,58]. Further research should investigate the influence of its application on the
EVA copolymer. One of the sprays used in the current study was dedicated to mouthguards
disinfection. Previous studies on the antimicrobial effects of MG disinfectant sprays have
proved their effectiveness [59,60]. Unfortunately, the manufacturer does not provide its
composition; therefore, the influence of its active ingredients cannot be discussed. The lack
of this information should be considered as a limitation of this study.

The sanitization of restorations made of EVA was also studied by Ogawa et al. [59].
The study consisted of inserting 5 mm × 20 mm × 1 mm plates of Erkoflex (Erkodent,
Pfalzgrafenweiler, Germany) material into the oral cavity of seven healthy volunteers who
had previously undergone professional mechanical tooth cleaning. The samples were rinsed
after removal with sterile water for 10 s, then cleaned with a toothbrush for 5 min or with a
disinfected mouthguard (Mouthguard Cleaner, Earth Chemical Co., Tokyo, Japan). After
sanitization, they were stored at room temperature in ventilated containers or sealed tubes
for 0, 1, 2, 3, 7, 14, 21 or 28 days. The use of ventilated containers resulted in a reduction
in live isolated bacteria—after two days, all samples stored in such a manner were free of
their presence. Closed containers allowed bacteria to survive for up to 14 days. The authors
emphasized that although rinsing with sterile water and brushing does not kill bacteria,
it is effective due to the attenuation of bacterial colonization. Nagai et al. [61] proposed
introducing a bioactive filler of pre-reacted glass-ionomer (S-PRG) into the EVA. Analysis
of the properties of such material showed the activity against the Streptococcus mutans and
Porphyromonas gingivalis, while showing no cytotoxic effects. However, the introduction of
the particles slightly changed the physical properties of the samples. Evaluating the effect
of decontamination on the surface of the materials used in mouthguard fabrication showed
that only samples made of hybrid acrylic (Impak, Vernon-Benshoff Comp., Pitsburgh, PA,
USA), disinfected with a spray dedicated to mouthguards, maintained a homogeneous
surface [62]. A protector made via the traditional polymerization technique from this
material can be subjected to regular disinfection by the user. The surface of EVA was uneven
and contained grooves and cracks in all types of sanitization methods. Similar doubts
concerning the uneven structure of this material were stated by Benli et al. [23]. In the
current study, samples of EVA were not thermoformed before the research, while previous
studies showed that it could create damage to the surface [21], and the achieved results
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could be different. There are only three disinfectants tested—to compare new solutions,
it would be beneficial to conduct equivalent research using new products. Additionally,
in the study all EVA plates were from only one manufacturer to maintain consistency and
compare the colors—however, the use of other materials could also provide different results.
The use of different colors of EVA materials was also used in the research conducted by
Del Rossi et al. [21]. Although they did not compare their color stability, they discovered
that they behave differently during thermoforming—the dark-color plates enabled one to
achieve superior adaptation and produce more firmly fitting mouthguards. Despite the
aesthetic aspect of the protective splint color, it is also an important factor in the visibility of
a splint—the study by Wilkinson and Powers [63] showed that yellow mouthguards were
visible at almost twice the distance of the clear protector. Almeida et al. [64] showed that
the color and thickness did not influence the surface roughness.

Storage conditions and disinfection can influence the properties of prosthodontics
materials [65,66]. However, there are some limitations of the applied methodology which
should be considered—the simulation of the oral cavity environment by increased temper-
ature and immersion in NaCl is simplified and may not perfectly reflect in vivo conditions.
The temperature in the oral cavity and saliva composition during exercise changes. With
the increase in the temperature in the oral cavity, the polymer material comes closer to
the glass transition temperature (TG), leading to deformation at lower stress levels [67,68].
D’Ercole et al. [69] demonstrated that footballers had a statistically higher salivary micro-
bial load than in boys who did not practice any sport. Additionally, during training time,
a statistically significant decrease in S-IgA concentration occurred. As the level of CO2
increases in the blood during a sports performance, the salivary pH decreases [70]. Sport
activity is characterized by greater salivary function and intense physiological response.
Due to the difficulties of fabrication predictability and cleaning maintenance, it should
be considered whether mouthguards could be made using different polymers. Protectors
made with hybrid acrylic are positively evaluated by users and physicians [9,43,71]. In
addition, these materials have adequate impact energy absorption properties [21]. Cur-
rently, new methods for mouthguard fabrication are being introduced—the use of digital
techniques could perhaps allow one to 3D print a new appliance without the need for
another impression, opening the possibility for more frequent replacement. Of course, the
new methods and materials used will require thorough testing, but preliminary reports
are promising [72–74]. Li Z et al. [72] published preliminary results evaluating the use of
CAD/CAM methods in the design of protective splints from PEEK, indicating that such
mouthguards had favorable clinical properties. Liang et al. [73] evaluated the possibility of
using 3D printing for protective splints. However, despite the advantageous properties of
such materials, the most used polymer for mouthguard fabrication is still EVA and thus the
current recommendations should be created for this material.

Prolonged exercise causes the loss of body fluids associated with elevated sweat
rates [75,76]. Dehydration greater than 3–5% of total body water may reduce cardiac
output, increase perceived exertion and impair thermoregulatory function, muscle blood
flow and endurance exercise performance [77–80]. The use of isotonic sports drinks is also
recommended in martial arts, as it promotes rehydration during the training session and
reduces post-training proteinuria [81]. According to Erdemir et al. [24], the immersion of
restorative materials in sports and energy drinks causes a change in their surface hardness.
After 6 months of exposition, the softening of all restorative materials was observed, which
was probably caused by water absorption and reducing the frictional forces between the
polymer chains [25,82,83]. The environment of the oral cavity is difficult to replicate by
in vitro experimental conditions—saliva has protective effects in moderating the extent
of wear, abrasion and fatigue of restorative materials by interfering with the hydrolytic
degradation process. The use of artificial saliva may be considered in material studies to
mimic oral conditions [84–86]. However, the natural changes in saliva composition are
still hard to duplicate in the research study, and solutions used in the literature have a
different composition which may influence the achieved results [87]. In the conducted
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study, the NaCl used after each exposition was used as a control in disinfection, and water
in the isotonic drinks part. This simplification, although improving the repeatability of
the study, may be considered also as its limitation, as the use of different solutions could
provide different results. Additionally, the long-term immersion does not replicate the
real intake of isotonic drinks during martial arts training. However, the true exposition
is difficult to estimate, as many mouthguard users do not maintain the correct hygiene
of the used appliance and do not replace it regularly [37]. Thus, the remains of isotonic
drinks could stay longer on the surface of the splint than actual intake during training. To
confirm that the isotonic drinks do not worsen the properties of mouthguard material and
evaluate the long-term influence and verify the tendencies, the conducted study involved
the long-term immersion protocol. As a result, in real-life exposure the described effects
would probably be observed in a longer period of time. Research concentrating on the
durability of mouthguard materials is necessary, as there are reports on the possibility of
using a biosensor in mouthguards, monitoring the parameters of saliva [88]. Arakawa
et al. [88,89] described the possibility of embedding a sensor for monitoring saliva glucose.
The sensor evaluating the saliva composition should be embedded in a material that is
durable, and resistant to external factors.

5. Conclusions

Under the conditions of the current research, it can be concluded that exposure to
disinfectant sprays causes 0.71% increase of hardness of EVA material. The application of
spray containing 0.12% chlorhexidine digluconate and 0.05% cetylpirydynium chloride
changes the color of EVA samples, and therefore its influence on the physical properties
should be further evaluated—the change in the EVA color may be caused by changes in the
copolymer structure. Exposure to the isotonic drinks does not cause change in EVA color,
but immersion in all evaluated fluids caused an increase in mouthguard hardness. Further
research should be conducted to verify whether such changes are clinically important and
repeatable in in vivo conditions. The recommended disinfectant spray for mouthguard
sanitization should be based on alcohol. The commercially available disinfectant spray
does not negatively influence the color of the protective appliance. Athletes should be
informed that isotonic drink intake during training with a mouthguard and the obligatory
disinfection of the appliance may increase its hardness, and therefore its condition should
be monitored by a dentist.
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