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Abstract: Six Cd(II)/Mn(II)/Co(II)/Ni(II)/Zn(II) coordination complexes are formulated as [Cd2

(X2−)2(µ3-O)2/3]n (1), [Mn2(X2−)2(µ3-O)2/3]n (2), {[Co1.5(Y4−)0.5(4,4′-bpy)1.5(OH−)]·2H2O}n (3), {[Ni(X2−)
(4,4′-bpy)(H2O)2]·4H2O}n (4), [Zn(m-bdc2−)(bebiyh)]n (5), and [Cd(5-tbia2−)(bebiyh)]n (6) (H2X = 3,3′-
(2,3,5,6-tetramethyl-1,4-phenylene) dipropionic acid. H4Y = 2,2′-(2,3,5,6-tetramethyl-1,4-phenylene)bis-
(methylene) dimalonic acid, bebiyh = 1,6-bis(2-ethyl-1H-benzo[d]imidazol-1-yl)hexane, m-H2bdc
= 1,3-benzenedicarboxylic acid, and 5-H2tbia = 5-(tert-butyl)isophthalic acid) were obtained by hy-
drothermal reactions and structurally characterized. Complexes 1 and 2 have a 6-connected 3D
architecture and with several point symbols of (36·46·53). Complex 3 features a 5-connected 3D net
structure with a point symbol of (5·69). Complex 4 possesses a 4-connected 2D net with a vertex
symbol of (44·62). Complex 5 is a 3-connected 2D network with a point symbol of (63). Complex 6 is
a (3,3)-connected 2D network with a point symbol of (63)2. In addition, complexes 1 and 4 present
good photoluminescence behaviors. The electronic structures of 1 and 4 were investigated with the
density functional theory (DFT) method to understand the photoluminescence behaviors.

Keywords: coordination complex; fluorescence properties; density functional theory

1. Introduction

The research and development of materials play vital roles in the development of
modern society [1–4]. As a new type of functional material, complexes’ structures are
modifiable and thus have easy to modify functions [5–7]. In the field of materials chemistry,
the complex has been a hot topic [8–10].

Structure determines performance. If you want to get the desired performance of the
complex, you have to design it properly which is exactly what we have been trying to
pursue [11–13]. Complexes are self-assembled by central metal ions or clusters (inorganic
components) and organic ligands (organic components), so selecting appropriate metal
ions and organic ligands can realize the design and construction of this material [14,15].
Among them, the variety of ligands is extremely large. The organic ligands with different
configurations have an important influence on the synthesis and structure of complexes. In
terms of the toughness of the ligand, ligands can be divided into rigid, flexible, or semirigid.
Although the stability of the complex constructed by rigid ligands is good, rigid ligands
cannot twist at will, which makes the structure of the complex monotonous. Although more
complex, novel, and exotic sturctures with varied configurations can be obtained using
flexible ligands, complex structures synthesized by the ligands are difficult to control. To
our satisfaction, semirigid ligands have the characteristics of both rigid and flexible ligands.

To date, many polycarboxylic acid ligands have been employed to construct complexes
due to the abundant coordination patterns of carboxylic acids [16–22]. Carboxylic acids
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have the following advantages: firstly, the O atom on the carboxylic acid group has a
strong electron-donating ability and it is easy to coordinate with metal ions. Secondly, the
coordination modes of carboxylic groups are flexible and varied. There are roughly three
modes: single tooth, chelate, and bridge. When coordinating with more than one metal,
the three types of double, three, and four teeth are displayed. In addition, the different
orientations of coordination bonds between metal ions and O atoms can be expressed as
cis–cis, cis–anti, and anti–anti patterns. The structural diversity of the coordination patterns
of carboxylic acids is impressive. Thirdly, carboxyl groups are completely or partially
deprotonated, rendering them hydrogen bond acceptors or hydrogen bond donors. In
this way, hydrogen bonds can be formed with more electronegative atoms such as O,
N, and F, thus contributing to the formation of a supramolecular structure. Fourthly,
the conjugation property of the aromatic ring is conducive to electron transfer. Therefore,
semirigid polycarboxylate ligands are our first choice followed by rigid ligands. In addition,
the mixing strategy of the polycarboxylic acid and N-donor ligand is also an effective
method in the synthesis of multi-dimensional structures [23–28].

In view of this, the semirigid 3,3′-(2,3,5,6-tetramethyl-1,4-phenylene)dipropionic acid
(H2X), 2,2′-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)dimalonic acid (H4Y), rigid
1,3-benzenedicarboxylic acid (m-H2bdc), and 5-(tert-butyl)isophthalic acid) (5-H2tbia) are
selected as the primary ligand in this paper (Scheme 1). When 4,4′-bipyridine (4,4′-bpy)
is present or not present, Cd(II) salt/Mn(II) salt/Co(II) salt/Ni(II) salt/Zn(II) salt reacts
with H2X/H4Y/m-H2bdc/5-H2tbia to prepare six complexes: [Cd2(X2−)2(µ3-O)2/3]n (1),
[Mn2(X2−)2(µ3-O)2/3]n (2), {[Co1.5(Y4−)0.5(4,4′-bpy)1.5(OH−)]·2H2O}n (3), {[Ni(X2−)(4,4′-
bpy)(H2O)2]·4H2O}n (4), [Zn(m-bdc2−)(bebiyh)]n (5), and [Cd(5-tbia2−)(bebiyh)]n (6). We
discuss the crystal structures of 1–6 and investigate the fluorescence properties of 1 and 4.
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Scheme 1. The organic ligand in this paper.

2. Materials and Methods

All reagents and solvents were purchased commercially except for H2X and H4Y [29].
In the region of 400–4000 cm−1, FT-IR spectra were tested on an FTIR-7600 spectrophotome-
ter. The C, H, and N content was recorded on a FLASH EA 1112 elemental analyzer. The
luminescence properties were studied using a Cary Eclipse fluorescence spectrophotometer.

2.1. Synthesis

Synthesis of [Cd2(X2−)2(µ3-O)2/3]n (1). A hybrid of Cd(NO3)2·4H2O (0.0308 g), H2X
(0.0138 g), DMF(4 mL), and H2O (2 mL) was placed in a 25 mL reactor. It was heated at
100 ◦C for three days. It was then cooled to produce a colorless crystal 1. The yield is
36% (based on Cd). Anal. Calcd for C96H120Cd6O26 (%): C, 48.76, and H, 5.11. Found: C,
48.77, and H, 5.14. IR (KBr, cm−1): 3448(m), 2987(w), 1600(vs), 1428(m), 1319(w), 1226(vw),
1178(m), 1029(w), 1002(w), 946(w), 889(w), 786(w), 763(vw), 607(w), and 474(w).
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Synthesis of [Mn2(X2−)2(µ3-O)2/3]n (2). A hybrid of MnCl2·4H2O (0.0297 g), H2X
(0.0138 g), DMF (3 mL), EtOH (3 mL), and H2O (2 mL) was placed in a 25 mL reactor. It
was also heated at 100 ◦C for three days. It was then cooled to produce a colorless crystal
2. The yield is 25% (based on Mn). Anal. Calcd for C96H120Mn6O26 (%): C, 57.09, and H,
5.99. Found: C, 57.12, and H, 5.97. IR (KBr, cm−1): 3417(s), 2983(vw), 1706(vw), 1616(s),
1488(w), 1440(w), 1398(s), 1322(s), 1261(w), 1222(w), 1170(w), 1002(w), 939(w), 835(w),
759(w), 713(vw), 611(s), and 485(s).

Synthesis of {[Co1.5(Y4−)0.5(4,4′-bpy)1.5(OH−)]·2H2O}n (3). A hybrid of Co(NO3)2·6H2O
(0.0291 g), H4Y (0.0180 g), 4,4′-bpy (0.0156 g), CH3CN (6 mL), and H2O (2 mL) was placed
in a 25 mL reactor. It was heated at 95 ◦C for four days. It was then cooled to produce a
purple rod crystal 3. The yield is 10% (based on Co). Anal. Calcd for C48H54Co3N6O14 (%),
C, 51.67; H, 4.88; and N, 7.53. Found: C, 51.64; H, 4.90; and N, 7.49.

Synthesis of {[Ni(X2−)(4,4′-bpy)(H2O)2]·4H2O}n (4). A hybrid of Ni(NO3)2·6H2O
(0.0436 g), H2X (0.0138 g), 4,4′-bpy (0.0156 g), NaOH (0.008 g), and H2O (8 mL) was placed
in a 25 mL reactor. It was heated at 130 ◦C for three days. It was then cooled to produce a
green strip crystal 4. The yield is 16% (based on Ni). Anal. Calcd for C26H40NiN2O10 (%),
C, 52.10; H, 6.72; and N, 4.67. Found: C, 52.13; H, 6.70; and N, 4.64.

Synthesis of [Zn(m-bdc2−)(bebiyh)]n (5). Zn(Ac)2·2H2O (0.2 mmol), bebiyh (0.1 mmol),
m-H2bdc (0.2 mmol), NaOH (0.4 mmol), and H2O (8 mL) were mixed and heated in a
25-mL steel vessel at 120 ◦C for 3 days. After cooling the mixture, colorless crystals were
obtained at a 12% yield (based on Zn).

Synthesis of [Cd(5-tbia2−)(bebiyh)]n (6). Cd(NO3)2·4H2O (0.2 mmol), bebiyh (0.1 mmol),
5-H2tbia (0.2 mmol), NaOH (0.4 mmol), and H2O (8 mL) were mixed and heated in a 25-mL
steel vessel at 170 ◦C for 3 days. After cooling the mixture, crystals of 6 were obtained at an
11% yield (based on Cd).

2.2. X-ray Crystallography

Crystallographic data for 1–6 were collected using an Xcalibur Eos Gemini CCD diffrac-
tometer (Mo-Kα, λ = 0.71073 Å). Absorption corrections were applied by using a multi-scan
program. The data were corrected for Lorentz and polarization effects. Structures were
solved by immediate methods and refined with a full-matrix least-squares technique based
on F2 using the ShelXL software package [30]. Then, all of the non-hydrogen atoms were
refined anisotropically. The hydrogen atoms of ligands were assigned at perfect positions
capitalizing on a riding model and then they were refined isotropically [30]. Crystallo-
graphic crystal data and structure refinement details for 1–6 are summarized in Table S1,
while selected bond lengths and bond angles for 1–6 are listed in Table S2.

3. Results and Discussion
3.1. Crystal Structure Description of Complexes 1–6

3.1.1. Crystal Structures of [Cd2(X2−)2(µ3-O)2/3]n (1) and [Mn2(X2−)2(µ3-O)2/3]n (2)

Crystals 1 and 2 are isostructural. To be concise, only the structure of 1 is described
in detail. The coordination environment of the Mn(II) ions and their correlation structure
diagram in crystal 2 is presented in Figure S1. The asymmetric unit of 1 is composed of
two Cd(II) atoms, two X2−, and 2/3 µ3-oxygen atoms. Each Cd1(II) atom has a hexagonal
configuration formed by five carboxyl O atoms (O1, O2, O4, O5, and O5A) from five X2−

anions and one O3 atom from µ3-O. Cd1-O bond length is between 2.190(3) and 2.436(6) Å
(Figure 2a). Each Cd2(II) atom has a hexagonal configuration formed by five carboxyl O
atoms (O6B, O7, O8B, O10, and O10A) from five X2− anions and one O9 atom from µ3-O.
The Cd2-O bond length is between 2.210(6) and 2.451(6) Å. The O–Cd–O bond angles were
in the range of 77.0(2)–169.3(2)◦. In 2, the Mn1(II) atom and Mn2(II) atom both adopt a
six-coordinated configuration, respectively. The Mn1-O bond length is between 2.116(4)
and 2.321(4) Å and the Mn2-O bond length is between 2.121(4) and 2.281(4) Å. The O–Mn–O
bond angles were in the range of 77.27(15)–172.91(18)◦.
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In 1, the ligand X2− exhibits a coordination pattern (Figure 1a). In this pattern, two
carboxyl groups appear as µ2-η1:η1 and µ3-η1:η2, respectively, bridged with five Cd(II)
ions. Based on this connection pattern, Cd1 and symmetrically related Cd1 atoms are
bridged together by three carboxyl oxygen atoms and a µ3-O to produce a three-nucleated
[Cd3O4] unit (SBU-A). The Cd2 atom and the symmetrically related Cd2 atom are also
joined together by three carboxyl oxygen atoms and a µ3-O bridge to produce a three-
nucleated [Cd3O4] unit (SBU-B). SBU-A and SBU-B are interchangeably connected by
carboxyl oxygen atoms of X2−, resulting in a 1D chain structure (Figure 2b). The 1D chain
forms a 3D structure under the extension of X2− (Figure 2c).
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(b) The coordination pattern of X2− in 3. (c) The coordination pattern of X2− in 4.

Topologically, the [CdO] unit can be considered as a 6-connected node, which is
connected to six equivalent nodes through six X2− ligands. Each X2− links two [CdO] units,
so the X2− can be simplified as links. Accordingly, the whole structure of 1 is related to a
6-connected network with a Schläfli symbol of (36·46·53) topology (Figure 2d).
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3.1.2. Crystal Structures of {[Co1.5(Y4−)0.5(4,4′-bpy)1.5(OH−)]·2H2O}n (3)

The asymmetric unit of 3 is composed of one and a half Co(II) atoms, half a Y4− anion,
one and a half 4,4′-bpy, a coordinated OH−, and two dissociative H2O molecules. Each
Co1(II) atom has a hexagonal configuration formed by four carboxyl O atoms (O2, O3A,
and O4A) from four Y4− anions, one O1 atom from coordinated H2O molecules, and two
N atoms (N1 and N3) from two separate 4,4′-bpy (Figure 3a). The Co1-O bond length is
between 2.054(5) and 2.159(6) Å. The Co1-N bond length is between 2.170(6) and 2.184(6) Å.
Each Co2(II) atom has a hexagonal configuration formed by four carboxyl O atoms (O6, O7,
O6B, and O7B) and two N atoms (N2 and N2B). The Co2-O bond length is between 2.105(6)
and 2.112(7) Å. The Co2-N bond lengths are all 2.176(7) Å. The O/N–Co–O/N bond angles
were in the range of 81.6(2)–180.0(4)◦.
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In 3, the 1D chain (Co(II)/4,4′-bpy chain) along the b-axis is also built by 4,4′-bpy
ligands and Co(II) ions (Co1, symmetrically related Cd1 atoms and Co2) with a Co . . . Co
distance of 11.4397 Å and 11.4606 Å (Figure 3b). The ligand Y4− exhibits a coordination
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pattern (Figure 1b). In this pattern, four carboxyl groups appear as µ4-η1:η2:η1:η2, bridged
with four Co(II) ions. Based on this connection pattern, Co1 and symmetrically related Cd1
atoms are bridged together by four carboxyl oxygen atoms to form a 2D layer (Figure 3c).
The combination of 1D chains of Co(II)/4,4′-bpy and 2D Co(II)/Y4− generates the 3D
structure of 3 (Figure 3d).

As depicted in Figure 3e, topological analysis is performed on 3. If the binuclear unit
constituted by Co1 and symmetrically related Cd1 atoms is taken as a 5-connector, the Y4−

and Cd2 atoms can be defined as linkers, and the 3D framework of 3 can be classified as a
5-connected net with point symbol of (5·69).

3.1.3. Crystal Structures of {[Ni(X2−)(4,4′-bpy)(H2O)2]·4H2O}n (4)

The asymmetric unit of 4 is composed of a Ni(II) atom, an X2− anion, 4,4′-bpy, a
coordinated H2O molecule, and four free H2O molecules. Each Ni(II) atom has a hexagonal
configuration formed by two carboxyl O atoms (O1 and O1A) from two X2− anions, two
N atoms (N1, N2B) from two 4,4′-bpy ligands, and two O atoms (O3, O3A) from two
coordinated H2O molecules (Figure 4a). The length of the Ni-O bond varies from 2.085(3)-
2.086(3)/2.086(4) Å, while the length of the Ni-N1 bond is 2.117(5) Å, and the length
of the Ni-N2B bond is 2.129(5) Å. The O/N–Ni–O/N bond angles were in the range of
81.6(2)–180.0(4)◦.
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X2− adopts a trans-configuration and its two carboxyl groups adopt a single-tooth
coordination mode (Figure 1c). The dihedral angle of the two pyridine rings of 4,4′-bpy is
close to 90◦. In 4, 4,4′-bpy connects adjacent Ni(II) ions along an a-axis to generate a 1D
straight chain structure (Figure 4b). Whereas, X2− connects adjacent Ni(II) ions to generate
a 1D wave-like chain structure along an a-axis (Figure 4c). Both 1D Ni(II)/4,4′-bpy chains
and 1D Ni(II)/X2− chains are alternately connected to form 2D layer structures (Figure 4d).

To further demonstrate the overall 2D structure of 4, we can consider each Ni(II) as a 4-
connecting node which is linked to four equivalent nodes through two X2− anions and two
4,4′-bpy. X2− and 4,4′-bpy are simplified as linear linkers separately. The whole structure
of 4 can be simplified to a 4-connected net with a vertex symbol of (44·62) (Figure 4e).

3.1.4. Crystal Structure of [Zn(m-bdc2−)(bebiyh)]n (5)

Each asymmetric unit of 5 consists of one Zn(II) ion, one bebiyh, and one m-bdc2−.
The Zn(II) ion adopts a four-coordinated configuration ligated by two nitrogen atoms (N1
and N3) from two bebiyh as well as two oxygen atoms (O2, O3A) from two m-bdc2− anions
(Figure S2a). The structural index parameter (τ4) [31,32] is close to 1.0, indicating that
the geometry around Zn(II) can be described as a tetrahedral geometry. The Zn−O bond
length is 1.980(8) Å and the Zn−N bond length is the range of 2.081(8)–2.093(10) Å. Bebiyh
adopts a symmetric trans-conformation with Ndonor . . . N−Csp3 . . . Csp3 torsion angles of
102.601◦ and 114.332◦. In 5, the two bebiyh act as a bidentate mode to joint two adjacent
Zn(II) ions to form a 26-membered ring with a Zn···Zn separation of 11.3803 Å (Figure S2b).
The m-bdc2− adopted a µ2-η1:η1 mode. Each m-bdc2− bridges two Zn(II) ions to generate a
1D Zn(II)/m-bdc2− chain along the c-axis with a Zn···Zn separation of 10.4882 Å (Figure
S2c). The combination of the 1D Zn(II)/m-bdc2− chain and the 26-membered ring produces
the 2D structure of 5 (Figure S2d) by sharing zinc ions.

To further demonstrate the overall 2D structure of 5, we can consider each Zn(II) as a
3-connecting node which is linked to three equivalent nodes through two m-bdc2− anions
and one 26-membered ring. The m-bdc2− and 26-membered ring are simplified as linear
linkers separately. The whole structure of 5 can be simplified to a 3-connected net with a
vertex symbol of (63) (Figure S2e).

3.1.5. Crystal Structure of [Cd(5-tbia2−)(bebiyh)]n (6)

Each asymmetric unit of 6 consists of one Cd(II) ion, one bebiyh, and one 5-tbia2−. The
Cd1 ion adopts a five-coordinated configuration ligated by one nitrogen atom (N1) from two
bebiyh as well as three oxygen atoms (O1A, O2A, and O3) from two 5-tbia2− (Figure S3a).
The structural index parameter (τ5) [31,32] is close to 0.1, indicating that the geometry
around Cd1 can be described as a square pyramidal structure. The Cd1−O/N bond length
is in the range of 2.191(6)–2.581(7) Å. Whereas, the O/N–Cd1–O/N bond angles were
in the range of 53.2(2)–144.3(3)◦. The Cd2 ion adopts a six-coordinated configuration
ligated by two nitrogen atoms (N5 and N7) from two bebiyh as well as four oxygen atoms
(O5, O6, O7, and O8) from two 5-tbia (Figure S3a). The Cd2−O/N bond length is in the
range of 2.218(6)–2.607(6) Å. Whereas, O/N–Cd2–O/N bond angles were in the range of
53.8(2)–150.6(2)◦.

In 6, bebiyh adopts a symmetric trans-conformation with the Ndonor . . . N−Csp3 . . .
Csp3 torsion angle of 85.233◦ and 91.397◦. The bebiyh act in bidentate mode to join two
adjacent Cd(II) ions to form a 1D Cd(II)/bebiyh chain along the a-axis with a Cd···Cd
separation of 8.9479 and 13.1222 Å (Figure S3b). The 5-tbia2− adopted a µ2-η1:η1 mode.
Each 5-tbia bridges two Cd(II) ions to generate a 1D Cd(II)/5-tbia chain with a Cd . . . Cd
separation of 8.9479 and 9.3580 Å (Figure S3c). The combination of the 1D Cd(II)/bebiyh
chain and Cd(II)/5-tbia2− chain by sharing cadmium ions produces the 2D structure of 6
(Figure S3d).

To further demonstrate the overall 2D structure of 6, we can consider each Cd (II)
(Cd1(II) and Cd2(II)) as a 3-connecting node. The 5-tbia2− and bebiyh are simplified as
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linear linkers separately. The whole structure of 6 can be simplified to a (3,3)-connected net
with a vertex symbol of (63)2 (Figure S3e).

3.2. Photoluminescence Properties

We investigated the fluorescence spectrum of complexes 1 and 4 and the free ligand
H2X (Figure S4). H2X shows an emission band at 300 nm (λex = 282 nm). The emission band
of 4,4′-bpy is 428 nm (λex = 350 nm) [33]. The fluorescence emission peaks were observed at
301 nm for complex 1 (λex = 281 nm) and 306 nm for complex 4 (λex = 265 nm), respectively.
The emission peak of 1 is similar to that of H2X, which may be mainly attributed to the
endoligand emission of H2X. The emission band of complex 4 is red-shifted by 6 nm,
thus corresponding to the emission band of H2X. As for 4,4′-bpy, the emission band of
complex 4 is blue-shifted by 122 nm. This may be due to coordination with metal ions.
To better understand the photoluminescent properties of complexes 1 and 4, we further
performed theoretical investigations on their model systems as shown in Figure 5. We
optimized the four geometries at the theoretical level of M06L/6-31G(d,p) under a vacuum,
where the SDD effective core potential was applied for the metallic elements. We further
calculated the excited properties with the time dependent density function theory (TDDFT)
method [34], where the option of nstates for TDDFT was set as 10 [35]. The calculated
Cd2-O bond length is 2.558 Å, which is similar to the experimental results (between 2.210(6)
and 2.451(6) Å). The calculated emission wavelength of complex 1 is 278 nm and the
oscillator strength is as large as 0.228, which is consistent with the experimental results.
Moreover, the relevant orbitals for the excited process are HOMO, LUMO+7, and LUMO+8,
with corresponding energies of −4.45 eV, 0.37 eV, and 0.53 eV, respectively (Figure 5a). The
luminescent processes are related to the frontier orbitals including HOMO, LUMO+3, and
LUMO+4. For complex 4, as shown in Figure 5b, the calculated luminescent properties
are both relevant to the metal center, which is indicative of their crucial roles. As shown
in Figure 5c,d where we gave the calculated emission spectrum of complexes 1 and 4, the
oscillator strength of 1 is arguably larger than 4. This indicates that the emission of 4 is
weaker than 1, which is in line with the experimental observations.
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Figure 5. The calculated excitation of complexes 1 (a) and 4 (b) and the calculated emission spectrum
of 1 (c) and 4 (d) at the theoretical level of TD−M06L/6−31G(d,p), where the SDD effective core
potential was applied for the metallic elements.

4. Conclusions

Six new Cd(II)/Mn(II)/Co(II)/Ni(II)/Zn(II)-containing coordination complexes based
on the dicarboxylic acid/tetracarboxylic acid ligands were synthesized. Complexes 1, 2,
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and 3 feature several 3D net structures. Complex 4, 5, 6 possesses a 2D layer structure,
severally. The structure of the ligand has an important effect on the configuration of
the complex, leading to the formation of different beautiful topologies. The theoretical
calculation results indicate that the luminescence could be mainly related to the metal
center for complexes 1 and 4, while the oscillator strength of 1 is larger than 4.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15071803/s1. Figure S1: (a) Surrounding environment
map of Mn(II) in complex 2, symmetric opcode: A = x, y, 1 + z; B = −y, x − y, 1 + z; C = 0.33333
− x + y, 0.66667 − x, − 0.33333 + z; (b) Mn(II)/X2− 1D chain; and (c) the 3D structure diagram of
complex 2. Figure S2: (a) Coordination environment diagram around the Zn(II) center in 5; (b) the
26-membered rings constructed by two bebiyh ligands and two Zn atoms; (c) 1D Zn/m-H2bdc
chain; (d) the 2D layer structure of 5; and (e) schematic view of the 2D topology network for 5.
Figure S3: (a) coordination environment diagram around the Cd(II) center in 6; (b) 1D Cd/bebiyh
chain; (c) 1D Cd/5-tbia chain; (d) 2D layer structure of 6; and (e) schematic view of the 2D topology
network for 6. Figure S4: Photoluminescent emission spectrum of the free H2X ligand, complexes 1
and 4. Figure S5: Experimental (red) and simulated (black) PXRD patterns of complex 1 (a), 2 (b),
and 4 (c). Table S1: Crystallographic data and structure refinement details for complex 1–6a,b. Table
S2: Table S2 Selected Bond Lengths (Å) and Bond Angles (deg) for 1–6a.
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