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Abstract: Curcumin, a natural dye found in the Curcuma longa rhizome, commonly called turmeric,
is used as a photosensitizer in acrylamide-based photopolymers for holographic data storage. We
studied the absorbance of photopolymer films that show two absorption bands due to curcumin,
acrylamide monomer (AA), and the crosslinking agent N,N′-methylenebisacrylamide (MBA). Analy-
sis of the real-time diffraction efficiency of these films shows a maximum of 16% for the sample with
the highest curcumin concentration. Moreover, increasing the curcumin load enhanced the refractive
index contrast from 7.8 × 10−4 for the photopolymer with the lowest curcumin load to 1.1 × 10−3

for the photopolymer with the largest load. The sensitivity and diffraction efficiency of the recorded
gratings also increased from 7.0 to 9.8 cm·J−1 and from 7.9 to 16% with the increase in curcumin load,
respectively. Finally, the influence of NaOH on the photopolymerization of the AA-curcumin-based
sample shows a diffraction efficiency increase with the NaOH content, revealing that the curcumin
enol form is more efficient as a photosensitizer.

Keywords: natural dye; photopolymer; photosensitizer; volume holography

1. Introduction

Photopolymers are materials that are photosensitive, so they find modern applications
in holography which records and retrieves information by means of the interference and
diffraction of light. This property provides a variety of uses, for example, holographic
displays and sensors, micro- and nanoelectronics, and 3D and 4D printing [1], for appli-
cations in medical materials, printed circuit boards, and microelectromechanical systems
(MEMS) [2]. Because of this, photopolymers are widely studied for high-density data
storage due to many advantages such as their large refractive index modulation, high
optical sensitivity, and low processing cost [3,4]. Photopolymers are made up of one or two
co-monomers, a free radical initiator, and a photosensitizer that initiates polymerization by
photoinduced charge transfer with the initiator [5]. All these components are dissolved in a
polymer matrix that acts as a binder providing the desired thickness to the photosensitive
film [4,6]. However, optimization of each component is required to improve the perfor-
mance of the materials to reach the desired formula. Furthermore, the exposition of this
film to light by using an interference pattern induces polymerization and/or crosslinking
in the constructive—illuminated—areas, so the monomer polymerizes, which results in
concentration gradient formation. Because of this, the new monomers start to migrate
from dark to light areas, resulting in local chemical composition variation and a change in
density. As a result, there is a change in the refractive index between the illuminated and
non-illuminated regions [7].
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Turmeric is a yellow-coloured mixture of natural compounds contained in the Curcuma
longa rhizomes. Turmeric is a typical spice that provides so-called curry powder. The main
ingredient in turmeric is curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-
3,5-dione], which is a yellow–orange pigment [8]. The compound is present at 1–2 wt% in
turmeric [9]. As is well known, curcumin is a colouring agent approved for use in food,
drug, and cosmetic products. It is also found as an efficient photoinitiator of polymeriza-
tion [10]. It has been used as a photolysis sensitizer of diaryliodonium salts to photoinduce
the cationic polymerization and copolymerization of styrene and methacrylate [3]. It also
acts as an antibacterial agent under visible light illumination [11]. Curcuminoid derivatives
are also used as photopolymerization initiators under red and near-infrared light [12].

In this paper, we present curcumin as a photosensitizer of an acrylamide-based pho-
topolymer for the recording of transmission holographic gratings at 488 nm wavelength.
Moreover, we studied the effect of dye concentration tuning on the recording wavelength
and the angular response of diffraction efficiency (η).

2. Materials and Methods

Curcumin was isolated from turmeric powder using the method proposed by Ander-
son et al. [13]. A quantity of 40 g of turmeric powder acquired from a nearby grocery store
was added to 100 mL of dichloromethane and stirred at 40 ◦C for 1 h. The mixture was
filtered and concentrated with a rotavapor at 40–50 ◦C. The oily reddish-yellow residue
was stirred overnight with 40 mL of hexane, resulting in a solid. This solid was dissolved in
a minimum amount of 99% dichloromethane and 1% methanol solvent mixture and loaded
onto a column with 70 g of silica gel. The column was eluted with the same mixture. The
least polar-coloured component was concentrated using a rotavapor. The final product
was characterized as curcumin by 1H NMR with a 125.7 MHz instrument using deuterated
DMSO as a solvent. The curcumin was characterized by UV-Vis spectra recorded using a
Perkin Elmer Lambda 19 spectrometer.

Pre-polymer solutions were prepared by mixing the acrylamide monomer (AA, Sigma
Aldrich Chemie, Saint-Quentin-Fallavier, France), the crosslinking agent N,N′-methylenebi-
sacrylamide (MBA, Fluka, France), the initiator triethanolamine (TEA, Aldrich, France),
and the photosensitizer curcumin, at different concentrations in a 13% (w/v) poly(vinyl
alcohol) aqueous solution (PVA, Sigma Aldrich Chemie, Saint-Quentin-Fallavier, France),
in order to obtain a homogenous solution. The compositions of the solutions are given
in Table 1. Sample preparation was carried out inside a dark room. The solution was
cast on pre-cleaned 2.5 cm × 2.5 cm glass substrates. The samples were left to dry for
two days. The thickness of the samples was measured at around 50 µm using a DEKTAK
6M profilometer.

Table 1. The molar concentration of the samples incorporated in the 13% (wt/v) PVA solutions.

Sample AA
(mol·L−1)

MBA
(mol·L−1)

TEA
(mol·L−1)

Curcumin
(mol·L−1)

Cur1 0.45 0.05 0.6 1.54 × 10−4

Cur2 0.45 0.05 0.6 4.86 × 10−4

Cur3 0.45 0.05 0.6 1.01 × 10−3

The experimental setup used for recording transmission holographic gratings is illus-
trated in Figure 1. The gratings were formed from the recombination of two 488 nm beams
from an argon (Ar) ion laser with a total intensity of 133 mW·cm−2. The angle between the
two beams was α = 2 × 34.25◦, providing a fringe spacing λ/2·sin(α/2) = 0.433 µm, which
gives a spatial frequency of 2306 lines/mm. The real-time diffraction efficiency was regis-
tered by measuring the diffracted beam from a He-Ne laser beam at 633 nm wavelength
at the Bragg angle of 46.8◦, using two silicon Hamamatsu photodiodes for reference and
signal. This wavelength was chosen to be in a range where the material does not absorb;
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hence, no polymerization takes place. Diffraction efficiency is defined as the ratio between
the diffracted intensity and the sum of the transmitted and diffracted intensities.
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Figure 1. The experimental setup used for recording transmission holographic gratings.

3. Results and Discussion

The systematic name of curcumin is 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-
dione, which means that it is a 1,3-diketone (Figure 2a). There is some confusion in the
literature concerning the curcumin form in a solid state. Payton et al.’s [14] curcumin crystal
X-ray studies show that it is a keto-enol tautomer, Tewari et al. [15] write that the yellow
keto form is predominant in the solid state (Figure 2a), and Akram et al. [16] claim that the
enol form is more energetically stable in both a solid state and in a solution. These studies
indicate tautomerism in the solid state of curcumin, which corroborates Martin’s work [17],
but contradicts Benfenati et al. [18], who claim that tautomers exist only in a solution or a
liquid state. In summary, there is still no agreement about keto, enol or keto-enol forms in
the solid state of curcumin.
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Figure 3. 1H-NMR of curcumin in DMSO-d6 with curcumin’s hydrogen numbers in the inset. 

Figure 2. Keto-enol (a) and enol-enol (b) tautomers of curcumin (adapted from [15]).

The tautomeric forms of curcumin in solution are more elucidated, and many re-
searchers agree that in neutral, polar, and acidic solutions with pH ≤ 7.4, curcumin is
predominant in keto form, and in non-polar and basic solutions, at pH ≥ 8, the enol form
occurs [14,15]. However, more recently, Prasad et al. [19] reported on NMR studies of
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curcumin, demethoxycurcumin, and bisdemethoxycurcumin in solutions, and they found
that neutral and acidic solutions favored the keto-enol tautomer and alkaline solutions
favored the β-diketone form. Additionally, the enol form has two equivalent tautomers
because of intramolecular hydrogen transfer (Figure 2b) [15].

Aiming to characterize our curcumin, we also performed 1H NMR analysis in DMSO-
d6 (Figure 3). 1H and 13C NMR of the extracted and purified curcumin in CDCl3 are
shown in Figures S1–S4 of the Supplementary Material. Figure 3 reveals a DMSO peak
at δ = 2.51 ppm and multiple peaks characteristic of curcumin. The peak at 3.32 ppm is
attributed to water in DMSO, and the singlet peak at 3.83 ppm is assigned to 6 hydrogens
of both OCH3 (H11); at 6.07 ppm to one hydrogen of H1 and 6.78 to H3 [20]; at 7.15 ppm to
H10 and 7.31 ppm to H6; 7.52 ppm for hydrogens H4; and at 9.66 ppm to phenolic OH hy-
drogens (H12) [13,20,21]. Heteronuclear single quantum coherence (HSQC) analysis, which
correlates proton–carbon single bonds, confirms our 1H and 13C NMR peaks’ attributions
(Figure S6). Finally, as our 1H NMR spectrum results are identical to the 1H NMR data
reported by Anderson et al. [13], who also analyzed their extracted curcumin sample in
DMSO by 13C NMR, we conclude that our final product of the turmeric extraction process
is curcumin in its hydrogen-bond-stabilized enol form.
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Curcumin solubility differs from organic solvents, and it is insoluble in neutral or
acidic water, but it is soluble in a basic NaOH solution. Figure 4a shows the UV-Vis spectra
of curcumin solutions in ethanol (Figure 4a red squares), in DMSO (Figure 4a black circles),
and in aqueous basic solution (Figure 4a blue triangles). This experiment was performed
to show curcumin’s pH sensitivity, which behaves differently in different solvents, mostly
because of its phenolic groups [9]. As discussed above, the solubilization of curcumin also
results in (or at least increases) the keto-enol tautomerism. Figure 4a shows that all three
UV absorption bands are broad, ranging from 300 to almost 500 nm [10]. The absorption
maxima occur at 427.3, 433.5, and 469.3 nm for solutions of curcumin in ethanol, DMSO,
and NaOH, respectively. These bands are assigned to π-π* curcumin transitions [22] and
are at similar wavelengths as observed by others. For example, Crivelo et al. [9] observed
that curcumin’s absorption band was 427 nm in a glacial acetic acid solution, which shifted
to ~450 nm for the solution in NaOH. It can be seen that as the curcumin solution’s pH
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changes from acid (ethanol) to basic sodium hydroxide solution (NaOH 0.5 mol·L−1), the
absorption peak intensity decreases and shifts towards longer wavelengths. This shift of
the maximum absorption wavelength of the compound occurs because of the presence of
methoxy and hydroxyl groups [9]. The curcumin solution’s UV-Vis spectra bathochromic
shift as a function of pH can be observed visually. The ethanol solution colour is pale
yellow (Figure 4a inset B), changes to dark yellow for the DMSO solution (Figure 4a inset
A), and is reddish-orange for the curcumin-NaOH solution (Figure 4a inset C). Besides the
curcumin solutions in C2H5OH, DMSO, and NaOH 0.5 mol·L−1, the UV-Vis spectra were
also recorded in CH2Cl2 and CHCl3 (Figure S6). Finally, we also conducted FTIR analyses
on the extracted and purified curcumin, and the results are shown in Figures S7 and S8 and
are discussed in the Supplementary Material.
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Figure 4. (a) Curcumin UV/Vis spectra at 2.7 × 10−4 mol·L−1 curcumin concentration in anhydrous 
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Figure 4. (a) Curcumin UV/Vis spectra at 2.7 × 10−4 mol·L−1 curcumin concentration in anhydrous
ethanol (red squares), DMSO (black circles), and aqueous NaOH solution (0.5 mol·L−1, blue triangles);
(b) UV spectra of the cast photopolymers Cur1 (blue dash-dot line), Cur2 (black solid line), and Cur3
(red dash line) as 50 µm-thick films. The inset in (a) shows solutions in DMSO (A), ethanol (B), and
NaOH (C).

Figure 4b shows the absorbance of three cast photosensitive films with different
concentrations of curcumin in the UV-Vis range of 350 to 650 nm. Besides curcumin, the
samples Cur1, Cur2, and Cur3 contain PVA, acrylamide monomer (AA), the crosslinking
agent N,N′-methylenebisacrylamide (MBA), and the initiator triethanolamine (Table 1).
Therefore, instead of one absorption band, now there are two bands observed at 460 and
543 nm (Figure 3b) due to π-π* transitions of the keto-enol groups of curcumin [21]. As the
concentration of curcumin increases from sample Cur1 to Cur2, the intensity of the band at
lower wavelengths decreases and at higher wavelengths, it increases. The Cur3 sample’s
band appears to have the same intensity. This change in the UV-Vis spectra can be due
either to the polymerization occurring during the analysis or to the interactions between
the sample’s constituents.

The diffraction efficiency (η) of the gratings can be defined by Equation (1) [7].

η =
ID

IT + ID
× 100, (1)

where ID is the diffracted intensity and IT is the transmitted Ar-ion laser intensity. The
exposure time evolution of the diffraction efficiency of the curcumin photopolymer (Cur3)
was monitored using the He-Ne laser beam is shown in Figure 5a. There is no induction
period after illumination because the diffraction efficiency increases instantaneously and
saturates after 60 s of exposure. At 90 s of exposure, it yields up to η = 16%.
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Figure 5b shows values of the maximum diffraction efficiency as a function of curcumin
content in the Cur1, Cur2, and Cur3 samples. It is seen that η increases linearly (R2 = 0.99)
with the curcumin content from 7.8% for Cur1 to 15.5% for Cur3. Previously, it was observed
that an increase in the acrylamide monomer promotes an increase of diffraction efficiency in
the AA samples with rose bengal dye [7]. In the present study, the same is likely to happen
as additional acrylamide monomers may polymerize with larger curcumin concentrations,
and this promotes an increase in the diffraction efficiency [23]. Further increases in the
curcumin load degraded the quality of the film with non-reproducible properties because
of the curcumin’s limited solubility.

The refractive index modulation (∆n), which is the maximum difference between
light-exposed and unexposed areas, was calculated from the experimentally measured
diffraction efficiency (η; Equation (2)) using Kogelnik’s coupled wave theory [24].

η =
π ∆n d
λ cosθB

, (2)

where λ is the reconstruction wavelength, i.e., the wavelength of the probe beam inside
the material, θB is the Bragg angle inside the material, and d is the thickness of the grating.
Increasing the curcumin load enhances the refractive index contrast from 7.8 × 10−4 for the
photopolymer with the lowest curcumin load to 1.1 × 10−3 for the photopolymer with the
largest load (Table 2).

Table 2. Optical properties of curcumin photopolymers after 60 s exposure.

η (%) d (µm) ∆ n S (cm·J−1)

Cur1 7.8 50 7.8 × 10−4 7.0
Cur2 11 50 7.98 × 10−4 8.2
Cur3 16 50 1.11 × 10−3 9.8

The sensitivity (S) of the photopolymers is defined by Equation (3) [25]:

S =
η1/2

I × τ × d
, (3)

where η is the diffraction efficiency, I (I = 2P
A , where P is the power of each beam and A

is the illuminated area) is the intensity of light exposure, τ is the exposure time to reach
the maximum efficiency, and d is the material thickness. Table 2 shows that the increase
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in curcumin concentration promotes an increase in the sample’s sensitivity from 6.99 to
9.80 cm·J−1 for the samples of Cur1 and Cur3, respectively.

The angular selectivity of the recorded gratings was investigated by rotating the
samples with a resolution of 0.1◦. Figure 6 illustrates the angular dependence of the
diffraction efficiency at 633 nm with a spatial frequency of 2306 lines/mm. A symmetrical
shape around the maximum diffraction efficiency is observed in all photopolymers. By
increasing the curcumin concentration, the diffraction efficiency increases from 7.8% for
Cur1 to 16% for Cur3, and the full width at half maximum (FHWM) is reduced to 0.5◦,
showing the selective nature of Bragg diffraction in thick volume holograms [24].
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Cur3 (c).

The action of the recording wavelength on the Cur3 photopolymer is shown in Figure 7,
with different argon-ion laser lines at 488, 476, and 457 nm. The diffraction efficiency
increases linearly (R2 = 0.99) with the wavelength. This behaviour can be explained as
increasing the wavelength increases the fringe spacing, rendering the index contrast larger
owing to the photopolymerization process that is limited by the diffusion of the monomers.

Finally, we investigated the influence of the NaOH content in the AA-curcumin-based
photopolymers. Therefore, samples with various NaOH content were prepared while keep-
ing the quantity of other reactants identical. Holographic gratings were recorded under
identical conditions, i.e., for 90 s exposures at 133 mW·cm−2 and 2.15 × 10−4 mol·L−1 cur-
cumin concentration. Table 3 summarizes the effect of basicity on the diffraction efficiency.
The diffraction efficiency increases with the NaOH content, showing that the enol form
(Figure 3 inset) is a more efficient photosensitizer. In summary, from the results above it is
clear that curcumin is an interesting and natural dye that can be suitable in applications for
optical storage through dual-frequency holography [26].

Table 3. Diffraction efficiency (η) for different NaOH concentrations (curcumin concentration is
2.18 × 10−4 mol·L−1).

Basis Content [NaOH] (mol·L−1) η (%)

0.290 4.7

0.200 2.9

0.083 1.2
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4. Conclusions

Curcumin is an efficient photosensitizer for volume data storage applications. It per-
mits the creation of transmission gratings in an acrylamide-based photopolymer. Diffraction
efficiency increases noticeably with the curcumin concentration, up to a refractive index
modulation of 1.1 × 10−3. The enol form favoured in basic media appears as the most
efficient photosensitizer. The results show that curcumin is a promising natural dye that
can find applications for optical storage through dual-frequency holography.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15071782/s1, Figure S1. 1H NMR spectrum of extracted
curcumin in CDCl3; Figure S2. 13C NMR spectrum of extracted curcumin in CDCl3; Figure S3. 1H
NMR spectrum of purified curcumin in CDCl3; Figure S4. 13C NMR spectrum of purified curcumin
in CDCl3; Figure S5. Identification of H and C atoms in curcumin molecule used in this work;
Figure S6. HSQC whole (a) and amplified (b) spectra of purified curcumin; Figure S7. The UV-Vis
spectra of curcumin solutions in CH2Cl2, C2H5OH, DMSO, NaOH 0.5 mol/L, and CHCl3; Figure S8.
FTIR spectrum of extracted curcumin; Figure S9. FTIR spectrum of purified curcumin; Table S1. 1H
and 13C NMR chemical shifts of protons and carbons in extracted (EC) and purified curcumin (PC);
Table S2. Summary of CH2Cl2, C2H5OH, DMSO, NaOH, and CHCl3 relative polarities, polarity
indexes, type of solvent, pH and curcumin peaks in these solvents [19,27,28].
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