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Abstract: Crosslinked polyethylene (XLPE) nanocomposite has superior insulation performance due
to its excellent dielectric, mechanical, and thermal properties. The incorporation of nano-sized fillers
drastically improved these properties in XLPE matrix due to the reinforcing effect of interfacial region
between the XLPE–nanofillers. Good interfacial strength can be further improved by introducing
a hybrid system nanofiller as a result of synergistic interaction between the nanofiller relative to a
single filler system. Another factor affecting interfacial strength is the amount of hybrid nanofiller.
Therefore, the incorporation amount of hybridising layered double hydroxide (LDH) with aluminium
oxide (Al2O3) nanofiller into the XLPE matrix was investigated. Herein, the influence of hybrid
nanofiller content and the 1:1 ratio of LDH to Al2O3 on the dielectric, mechanical, and thermal prop-
erties of the nanocomposite was studied. The structure and morphology of the XLPE/LDH-Al2O3

nanocomposites revealed that the hybridisation of nanofiller improved the dispersion state. The
dielectric, mechanical, and thermal properties, including partial discharge resistance, AC breakdown
strength, and tensile properties (tensile strength, Young’s modulus, and elongation at break) were en-
hanced since it was influenced by the synergetic effect of the LDH-Al2O3 nanofiller. These properties
were increased at optimal value of 0.8 wt.% before decreasing with increasing hybrid nanofiller. It
was found that the value of PD magnitude improvement went down to 47.8% and AC breakdown
strength increased by 15.6% as compared to pure XLPE. The mechanical properties were enhanced by
14.4%, 31.7%, and 23% for tensile strength, Young’s modulus, and elongation at break, respectively.
Of note, the hybridisation of nanofillers opens a new perspective in developing insulating material
based on XLPE nanocomposite.

Keywords: crosslinked polyethylene; hybrid filler; dielectric properties; mechanical properties;
thermal properties; hybrid nanocomposite

1. Introduction

Polymeric materials have been well known for years as electrical insulating materials
because they have good dielectric, mechanical, and thermal strength. Crosslinked polyethy-
lene (XLPE) has the best insulation properties among polymeric materials. XLPE materials
are not limited to low-voltage and medium-voltage cable application, but are also used
in high-voltage and extra-high-voltage cables [1,2]. As the XLPE material is subjected to
the degradation process caused by high voltage current, it is also exposed to mechanical
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damage that would occur during installation or operation. Furthermore, the stress and
continuous bending of insulating materials would initiate defects and reduce polymeric
materials’ durability [3]. Therefore, in addition to dielectric properties, the mechanical
and thermal properties of XLPE materials need to be studied to increase its service life by
adding nanofiller into XLPE.

Starting with macro-sized fillers, progress in the field has allowed for the expansion to
nano-sized fillers. The advantage of nano-sized filler is the high aspect ratio, resulting in
high surface area, which can potentially change the property to enhance the insulation sys-
tem [4]. To utilise the nano-sized filler’s characteristics, uniform distribution of nanofiller
into the XLPE matrix needs to be achieved by increasing the interfacial interaction between
XLPE–nanofiller and internanofiller. The introduction of a hybrid nanofiller can achieve a
robust interfacial bonding compared to a single filler system that is attributed to synergistic
effect [5], and this process enhanced the mechanical behaviour of the XLPE nanocom-
posites [6] in addition to dielectric and thermal properties [7]. The properties of hybrid
nanocomposite improved in dielectric properties and thermal conductivity in addition to
promoting mechanical properties on Young’s modulus and tensile strength [3,8–10] and
showed remarkable performance with a homogeneous distribution of hybrid nanofiller
obtained at low nanofiller loading with a maximum of 1 wt.% [11–13]. These successful
studies proved that a combination of two different background characteristics achieve
synergistic effect towards the nanocomposite with high compatibility achieved between
matrix–nanofiller and interfiller. The nanofillers support each other by bringing the nan-
otube to platelet [14], inserting the nanosheet into nanofiber [8], and the capability of the
nanofiller to sit well with other nanofiller should be considered.

Among the best hybrid nanofiller system selections is layered double hydroxide (LDH).
The success of LDH studies on flame retardant, biomedical, gas barriers, and anti-corrosion
led to an expansion to electrical insulators [15]. LDH has appreciable thermal stability in
improving heat dissipation by distributing the temperature more uniformly throughout
the electric insulation cable to ensure the reliability and stability of the nanocomposite
material [16–19]. Moreover, the layered silicate of LDH contributes to increasing most
of the mechanical properties, including strength, modulus, and stiffness of nanocompos-
ite. Furthermore, LDH treated with sodium dodecyl sulphate (SDS) would change the
morphology, expand the interlayer distance, and allow the polymer to intercalate [20].
With all these advantages, LDH has high potential as an electrical insulator nanofiller to
hybrid with aluminium oxide (Al2O3) to increase the dielectric, mechanical, and thermal
properties of XLPE nanocomposites. The alumina (Al2O3) nanofiller is well known for its
excellent thermal stability and mechanical properties, and its high surface area makes it
suitable as a co-nanofiller [13]. Moreover, silane-treated Al2O3 promotes smooth dispersion
state and thus improved compatibility between matrix–filler adhesion [21]. The tensile
strength increased 100%; in addition, Young’s modulus of the nanocomposite increased
208%, which contributed to higher stiffness of the nanocomposite resulting in restricting
polymer chain mobility. One of the strongest reasons for increasing mechanical properties
is the alkyl group of Al2O3 linked like-a-bridge between Al2O3 and polymer as -OCH3
part of trimethoxyoctyl silane chemically bonded to Al2O3 while the octyl group forms a
linkage with the polymer [22].

The hybrid system often exhibits excellent properties, which typically cannot be found
in nature because of the unique characteristics of individual nanofillers compared to single
nanofillers. Resner et al. [3] studied nanoplatelets–nanotube, whereas Mansor et al. [23]
explored spherical–spherical of XLPE nanocomposite that focused on the water treeing
phenomenon. Meanwhile, Jose and Thomas [22] researched nanoplatelets–spherical by
investigating its mechanical and thermal properties. Most of the properties of hybrid
nanofiller tend to increase due to the reinforcing effect and better distribution of hybrid
nanofiller into XLPE matrix. Furthermore, the study found that nanotube and spherical
nanofillers have a higher tendency to agglomerate at higher concentration (>5 wt.%) than
the nanoplatelets, which are well distributed regardless of concentration. Consequently, the
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hybridising of LDH-Al2O3 must be studied to investigate the synergistic effect that could
enhance the dielectric, mechanical and thermal characteristics of the XLPE nanocomposite
as insulation materials.

2. Materials and Methods
2.1. Materials

The low-density polyethylene (LDPE) with trade name “TITANLENE LDF265YZ” pro-
duced by Lotte Chemical Titan (M) Sdn. Bhd., Pasir Gudang, Malaysia was used as the host
polymer. The magnesium nitrate hexahydrate (Mg (NO3)2·6H2O) and sodium hydroxide
(NaOH) were provided by Fluka and Irganox 1010 from BASF (M) Sdn. Bhd., Pasir Gudang,
Malaysia respectively. The aluminium nitrate nonahydrate (Al (NO3)3·9H2O), sodium dode-
cyl sulfate (SDS), and Al2O3 nanoparticles with average particle size of <50 nm (TEM) (CAS
No.:1344-28-1), trimethoxykt(octyl)silane and dicumyl peroxide (DCP) with average density
of 1.56 g/cm3 were obtained from Sigma Aldrich, Petaling Jaya, Malaysia, whereas sodium
carbonate (NaCO3) was supplied by QReC (Asia), Rawang, Malaysia. The deionised water
was used as a solvent for preparing all solutions. The chemicals and reagents used in this
experiment were of analytical grade and used without further purification.

2.2. Preparation of LDH-SDS

The Mg/Al LDH was synthesised with a ratio of 2:1 by the coprecipitation method.
The 0.05 mol Mg (NO3)2·6H2O and 0.025 mol Al (NO3)3·9H2O were dissolved in deionized
water (50 mL) and denoted as solution A. Caustic solution was prepared using 0.1 mol
NaOH and 0.05 mol Na2CO3 in 100 mL as solution B, and solution C was 0.05 mol SDS
in 100 mL of dissolved deionised water. Solutions A, B, and C were vigorously stirred at
room temperature during the preparation. Then, solution A was added drop by drop into
solution B and dropwise into solution C, a process that took about 3 h. The solution pH
was adjusted and maintained at pH 10.5 ± 0.5. The solution was kept under continuous
agitation for 18 h at 65 ◦C. The solid sample was finally collected using centrifuge at
5000 rpm until it reached pH 7 by washing it with deionised water. The resultant powder
was dried in an oven for 12 h at 90 ◦C and grounded using mortar and pestle to obtain pure
Mg/Al powders. The schematic structures of LDH are shown in Figure 1.
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Figure 1. The structures of (a) LDH−SDS, (b) silane Al2O3.

2.3. Surface Pre-Treatment of Al2O3

Approximately 11.52 g of Al2O3 was dispersed into 20:80 (water: 2-propanol) mixture
solution at 2750 mL and treated with an ultrasonic bath for 15 min. To promote hydrolysis
process, 25% ammonia solution is added in 61.2 mL to the suspension under vigorous
stirring together with silane (64.8 mL). The reaction takes 24 h at room temperature and
centrifuges at 5000 rpm for 7 min. The Al2O3 nanoparticles were dried at 80 ◦C overnight,
ground with a pestle and mortar to obtain the fine powder. The silane-Al2O3 treatment
was adopted from Liu et al. [24] with the schematic structures of Al2O3 shown in Figure 1.
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2.4. Preparation of Nanocomposite

Figure 2 illustrated the XLPE nanocomposite preparation by a melt mixing method
using a Brabender internal mixer at 110 ◦C with a speed of 60 rpm in 7 min to obtain semi-
XLPE. The formulation of XLPE nanocomposite is 0.0, 0.2, 0.5, 0.8, and 1.0 wt.% of hybrid
LDH-Al2O3 nanofiller with a constant ratio of 1:1. All samples contained a composition
of constant DCP and Irganox at 1.5 wt.% and 0.25 wt.%, respectively, throughout the
preparation. The adding material sequence started with LDPE resin for about 2 min
followed by LDH and Al2O3 at minutes 3 and 4, whereas DCP and Irganox were added
later before completing 7 min and these parameters were constant during nanocomposite
preparation. The fully crosslinked nanocomposites were obtained using hydraulic press,
preheating the samples for 5 min at 120 ◦C without any pressure to flatten the sample for
another 15 min at a temperature of 180 ◦C with 3.5 tons pressure. The samples were cooled
down by cool-pressing for 15 min. All prepared samples were placed in a vacuum drying
oven for the degassing process for 36 h at 80 ◦C prior to testing and characterisation analysis.
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2.5. Testing and Characterisation

The state of LDH nanofiller was studied using X-ray diffraction studies using a wide
angle X-ray diffractometer (WAXD) with Ni-filtered CuK∞ source having a wavelength,
λ = 0.154 nm operated at 40 kV and 30 mA with a step size of 0.02 from 2 thetas 1◦ to 10◦

(D8 Advance, Bruker AXS, Ettlingen, Germany). Fourier transform infrared spectroscopy
(FTIR), Varian 4100 FTIR Excalibur Series instrument, in the attenuated total reflectance,
attenuated total reflectance (ATR) mode, and the wavelength of ATR started in the range of
4000–400 cm−1, with 32 scans with a resolution of 4 cm−1 was used.

For the electrical test, the partial discharge (PD) measurements of the sample were
conducted at the high voltage on the disc-like shape sample using a cylindrical-like high
voltage electrode with 5 mm thickness of the ideal flat surface. According to the IEC 60270
standard, (a) 1 nF coupling capacitor and measuring impedance were connected parallel
to the IEC (b) test containing the nanocomposite samples. The AC breakdown strength
tests were conducted according to ASTM D149 standard by submerging the sample into
silicon oil between two steel ball-bearing electrodes with a diameter of 6.35 mm. The
50-Hz AC voltage was increased gradually at a rate of 1 kV every 20 s to the sample until
the sample experienced breakdown. Three samples were prepared with total points of
15 measurements collected at particular thicknesses for analysis. All the data were analysed
using Weibull analysis.

The tensile properties include tensile strength, Young’s modulus, and elongation at
break carried out by Zwick with software test expert II at a crosshead speed of 50 mm/min
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at 25 ◦C room temperature. The specimen dimensions are Type I according to ASTM D638,
with a sample thickness of 3 mm. All measurements were conducted in five replicates, and
the value was averaged.

The DSC tests were performed on Mettler Toledo STARe DSC 1 with samples sealed
in aluminium pans under a nitrogen atmosphere of 5 mL/min in a temperature range
between 25 ◦C to 300 ◦C at a heating rate of 10 ◦C/min. The heat of fusion, ∆Hm, was
integrated with the DSC endothermic peak while crystallinity, Xc, normalised the heat of
fusion to the heat of fusion of 100% crystalline PE ∆HmPE as in Equation (1).

Xc =
∆Hm

∆HmPE
(1)

The specific enthalpy melting value for 100% crystalline PE was taken as 288 kJ/kg [25].
Morphological feature of the nanocomposite samples was analysed using Carl-Zeiss

Supra 35VP FESEM. The fillers were nonconductive samples; thus, the sample needed to
be coated in platinum using a platinum sputter coater under vacuum pressure for a time of
1 min at a current of 20 mA and voltage of 1.6 kV to provide electrical conductivity and
prevent the surface charge accumulation. The nanocomposite samples were then examined
at 10 kV of acceleration voltage.

3. Results
3.1. Characterisation of LDH Nanofiller

Figure 3a shows the XRD patterns of LDH and LDH-SDS. The diffraction peaks of
LDH-SDS are shifted to the lower angle from LDH, indicating the intercalation of SDS. The
peaks diffraction pattern is narrow and symmetrical, indicating a high degree of order in
the LDH-SDS. The strong diffraction peaks (0 0 3), (0 0 6), and (0 0 9) at 2θ are 3.02◦, 12.94◦,
and 19.49◦, respectively, and the LDH-SDS interlayer distance is expanded to 2.923 nm
from 0.772 nm of LDH. It is proven that SDS successfully intercalated the interlayer space
of LDH. Moreover, a broad reflection in the range of 20◦–23◦ (in the circle) confirmed that
the hydrocarbon chains of SDS were intercalated into the interlayer of LDH. In general
acknowledgement, the interlayer space is 2.6 nm as SDS anions intercalated into LDH [19].

Figure 3b shows LDH and LDH-SDS composition, and both showed a broad band
at 3200 to 3400 cm−1, indicating the stretching mode of hydroxyl group formation in
the interlamellar water molecules and the brucite-like layers. The presence of SDS was
confirmed by –CH stretching mode 2918, 2852 cm−1, while the C–H bending mode band
was at 1468 cm−1. Meanwhile, the bending mode of the hydroxyl group appeared at
1656 cm−1. The typical sulphate absorption bands stretch modes at 1216, 1000, 982, and
824 cm−1. The absorption peak for carbonate 1378 cm−1 showed greater reduction at
LDH-SDS than LDH, indicating SDS replaced carbonate anions into the interlayer [19,26].
The FTIR analysis was performed to certify that SDS was successfully intercalated into
the interlayer.

Figure 3c highlights the FESEM morphology for nanofiller is nano-sized with a thick-
ness of less than 30 nm (left) while the width ranges from 60 to 80 nm (right). Meanwhile,
the TEM picture shows LDH was stacked one above the other in an orderly and tight
manner by strong attractive force within anions interlayer in Figure 3d. This phenomenon
was achieved due to a slow and homogeneous precipitation formed of LDH. After SDS ion
intercalated inside the LDH nanolayer, the LDH was less orderly stacked on top of each
other due to decreasing layers charges. This result has good agreement with XRD analysis.
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3.2. Dielectric Properties of LDH-Al2O3 Nanocomposite
3.2.1. Partial Discharge Measurement

Figure 4 shows the comparison of the partial discharge inception voltage (PDIV)
and partial discharge extinction voltage (PDEV) on XLPE nanocomposite acquired based
on different nanofillers loading. Theoretically, the higher the values of PDIV and PDEV
exhibit better-insulating material because it requires a higher voltage level to initiate and
extinguish the PD activities. For all samples tested, the trend showed that the values of
PDIV and PDEV obtained using cylindrical-shaped high-voltage electrodes exhibited the
lowest value at 0.0 wt.%. Introducing LDH-Al2O3 nanoparticles into the XLPE matrix
changes the insulating materials’ PDIV and PDEV. Even though the difference in terms
of PDIV and PDEV were not significant from one sample to another, it showed that the
amount of fillers had slightly influenced the profile of voltage where the PD signals initiated
and extinguished with the percentage of error ranging 0.001 to 0.051.
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The highest PDIV and PDEV was at 0.8 wt.% of the filler composition, followed by 0.5,
1.0, and 0.2 wt.%. It was related to the morphological analysis, which illustrated at 0.8 wt.%
showed a uniform, smooth, and continuous surface compared to other nanocomposites.
This outcome comprehensively reflected the morphological analysis results, which showed
that the 0.8 wt.% sample has the largest and strongest interfacial region formed through the
formation of interfacial bonds from the nanofillers–polymer surface interactions. At high
voltage stresses, the values of PDIV and PDEV are relatively related to the distribution of the
electric field on the sample. The effective deep trap is when interfacial region formation is
large and strong enough to trap the charges that emitted from the high voltage source. Thus,
less agglomeration of nanoparticles would form larger and stronger interfacial regions,
which lead to a more effective mechanism in capturing charges [27]. As a result, it may
reduce the charge mobility [28], hence reducing the charge transfer rate from the high
voltage source to the XLPE nanocomposites under high voltage stress. The results obtained
show that the electric field distributed at 0.8 wt.% is better than the other samples due to
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the minimal local electric field distortion at 0.8 wt.% sample. It seems promising in PD
resistance since the values of PDIV and PDEV increase.

Figure 5 shows the phase-resolved partial discharge (PRPD) pattern with the peak
charge magnitude for all the PD pulses represented in every single dot. The pattern is
asymmetrical on the applied voltage’s positive and negative half cycles. The positive PD
pulse count showed it was higher than the negative pulse count for all samples. The PD
pulses were captured in the first quadrants, which depicted the phase angle from 0◦ to 90◦,
and the third quadrants, which indicated the phase angle from 180◦ to 270◦ also represents
the discharge that happened on the sample’s surface [29]. The PRPD pattern for all samples
tested demonstrated that the type of PD that occurred was surface discharge, which refers
to the 50 Hz voltage waveform. The discharge occurred on the surface of samples directly
contacted with high voltage electrodes, which is indicated by the characteristics of the
charge emitted through the PD activities. The maximum PD charges were extracted and
are presented in Figure 6 accordingly.
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Figure 6 shows the maximum positive and negative PD magnitude released from
the PD activities that occurred on the XLPE nanocomposites at different weight percent-
ages of LDH-Al2O3 nanoparticles. The presence of LDH-Al2O3 nanoparticles within the
XLPE matrix affected its PD resistance, which was stressed under a high electric field.
Apparently, the PD magnitude has changed in each XLPE nanocomposite formulation.
The PD magnitude is considered one of the comprehensive parameters in interpreting PD
activities. Hence, this parameter is taken into account in determining the PD resistance for
different XLPE nanocomposite formulations. The highest PD magnitude released from the
PD activities was shown on the unfilled XLPE with 2656 pC positive charge magnitude.
Moreover, the highest negative PD charge was exhibited by the PD activities that occurred
on the unfilled XLPE with 1245 pC of charge emitted. The non-existent hybrid nanofiller
appears to be least resistant against PD attacks, as shown by the highest charge produced
compared to the XLPE nanocomposite.
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varying the weight percentage of nanofillers.

Meanwhile, at 0.2 wt.%, the PD magnitude reduced to 23%. With further addition
of 0.5 and 0.8 wt.% LDH-Al2O3 nanofillers, the PD magnitude has gradually decreased,
recorded at 1776, −761 pC and 1384, −638 pC for positive and negative PD magnitude,
respectively. Furthermore, 0.2 and 0.5 wt.% were considered insufficient weight percentages
of nanofillers due to poor interfacial region, and the charge capturing mechanism tends to be
less effective as the samples are stressed under a high electric field. Thus, the PD resistance
was not significantly affected because the charges released from the external electrical
sources were easy to move around on the sample’s surface and formed ionised channels.

The most effective loading occurred at 0.8 wt.% since it showed the lowest PD mag-
nitude compared to the other weight of nanofillers. This result agreed with the outcomes
from the FESEM analysis that showed 0.8 wt.% was the optimum formulation of XLPE
nanocomposites, exhibiting well-distributed nanofillers compared to 1.0 wt.% and higher
intensity of interfacial bonds formed through the nanofiller–polymer surface interactions
compared to 0.2 and 0.5 wt.%. Therefore, the formation of large and robust interfacial
regions leads to 0.8 wt.% having higher PD resistance. Unfortunately, 1.0 wt.% led to a
significant increase in the PD magnitude recorded at 1523 and −731 pC. These results were
due to the occurrence of increased nanofiller loading in the XLPE matrix. Higher filler
concentration contributed to space charge trapping that occurred in XLPE, which became
bigger [29]. The poor distribution of the nanoparticles is attributable to the incompatible
interfaces between nanoparticles and polymer matrix, which eventually lead to the larger
PD magnitude.

The addition of nanofillers in the XLPE nanocomposites create a wall by nano-sized
filler arrangements in the host polymer, and it performed as a resistance to electron flow
between two electrodes during the electrical stress. Therefore, it has been indicated that the
XLPE sample with nanofillers had better PD-resistant insulation than the unfilled XLPE.
The nanofillers serve as a barrier on the surface sample against PD attack. An indication
supported by [30] confirmed that the addition of nanofillers enhanced the ability of XLPE
nanocomposites to withstand surface degradation due to PD. Furthermore, the PRPD
results show that the occurrences of PD pulses at 0.8 wt.% is the optimum amount of
LDH-Al2O3 nanoparticles to incorporate in the XLPE matrix.

Figure 7 shows results obtained from PD numbers for XLPE nanocomposite. The
number of PD pulses was 38751 for the unfilled XLPE, indicating the highest number
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of PD pulses compared to other XLPE nanocomposite samples. The PD numbers were
reduced using 5.7, 8.6, and 22.5% of unfilled XLPE as weight percentages of LDH-Al2O3
nanoparticles were filled in the XLPE matrix at 0.2, 0.5, and 0.8 wt.%, respectively. Then,
the PD pulse count increased to 1.0 wt.% by 8.3% at 32764 and not more than 0.5 wt.%
PD pulse count. It is clear that 0.8 wt.% showed the most effective formulation of XLPE
nanocomposites with the lowest PD numbers, 30,027. The LDH-Al2O3 nanoparticles
restricted the electron flow between two electrodes when the insulating materials were
subjected to electrical stress. Therefore, the samples of XLPE with nanofillers have better
PD resistance than the unfilled XLPE. Again, the nanofillers serve as a barrier on the
surface sample against PD attack. These findings were supported by Awan et al. [30] and
Chandrasekar et al. [31] who confirmed that the addition of nanofillers could enhance the
ability of XLPE nanocomposites to withstand surface degradation due to PD. The trend
of PD characteristics for PDIV, PDEV, PD magnitudes, and PD numbers have showed
the same trend, which indicated that the most effective formulation was sample 0.8 wt.%,
followed by sample 1.0 wt.%, and sample 0.5 wt.%. The unfilled sample showed the least
resistance against PD attacks.
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3.2.2. AC Breakdown Voltage

Figure 8 represents the Weibull probability plot comparing the AC breakdown strength
of the XLPE nanocomposites containing 0.2 to 1.0 wt.% of LDH-Al2O3 nanoparticles. The
0.0 wt.% showed the lowest AC breakdown strength with 169.38 kV/mm. Introducing
LDH-Al2O3 nanoparticles into the XLPE matrix increased the AC breakdown strength of
the insulating materials. The breakdown strength increased to 180.50 kV/mm at 0.2 wt.%
nanoparticles distributed into the XLPE matrix, which indicates an improvement of 6.6%
from the non-existence of hybrid nanofiller; the AC breakdown strength of the nanocom-
posites of each loading of LDH-Al2O3 nanofillers increases as long it exists in the nanocom-
posites. It showed the enhancement of AC breakdown strength up to 11.8% and 15.6% at
0.5 and 0.8 wt.%, respectively. Through these improvements, it was found that the highest
AC breakdown strength was 0.8 wt.% XLPE nanocomposites of LDH-Al2O3 nanoparticles
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with 195.82 kV/mm, followed by 0.5 and 0.2 wt.% with 189.38 kV/mm and 180.50 kV/mm,
respectively. However, the breakdown strength has slightly reduced to 173.97 kV/mm as
the loading of hybrid nanofillers increased to 1.0 wt.%. The results align with the previous
researchers, Said et al., who also found that the AC breakdown strength of XLPE has
improved with the presence of nanoparticles within the XLPE matrix [32].
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Based on these findings, the optimum loading was determined to be 0.8 wt.% with
the highest AC breakdown strength. It could be due to the compatible nanofiller–polymer
surfaces leading to improved filler distribution in XLPE matrices. It related to the distribu-
tion of LDH-Al2O3 nanoparticles within the XLPE matrix, which illustrated that 0.8 wt.%
showed a smoother cross-section surface than other XLPE nanocomposites. The local
electric field would be distributed more uniformly on the samples by forming interfacial
bonds and better distribution of nanofillers [33], and the charges pulled under the influence
of the electric field would be trapped on the interfacial regions. Therefore, charge mobility
or charge transfer rate would reduce, as a result improving the AC breakdown strength of
the XLPE nanocomposites [28].

From the results, the incorporation of LDH-Al2O3 nanoparticles has increased the AC
breakdown strength, and this suggests that the nanoparticles act as electron scavengers
in the insulation material under electrical stresses. The electron scavenger mechanism
helps in capturing the fast electrons liberated from the external source, reducing the
streamer propagation process and consistency [34]. Since the large interfacial regions
between nanofillers–polymer contributed to increasing trap charge carriers and the ability
to suppress electrons by being trapped on the nanoparticles surface, a reduction in mobility
charge carriers occurred, thus improving the AC breakdown strength. The dielectric
strength improved due to more time and energy needed to stimulate the charge carriers in
forming conduction channels [35], as also highlighted by Montanari et al. [36]. The 1.0 wt.%
were considered too high due to the shorter particle–particle distance at higher loading of
hybrid nanofillers and tended to cause the nanoparticles to overlap and stick together via
the attraction of van der Waals forces [37].
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3.3. Tensile Properties of LDH-Al2O3 Nanocomposite

Table 1 shows the mechanical performance of XLPE/LDH-Al2O3 nanocomposite on
tensile properties. The tensile properties are influenced by the content and distribution
of incorporation LDH-Al2O3 nanofillers to XLPE matrix as well as interfacial interaction
between XLPE and LDH-Al2O3 nanoparticles. The tensile strength, Young’s modulus, and
elongation at break initially increased and subsequently decreased as further addition of
hybrid nanofillers to the XLPE matrix. It is reported in various studies that all samples
of the nanocomposite have better tensile properties than unfilled XLPE [38–40]. This
study ascertained an enhancement of tensile strength with increase in the LDH-Al2O3
nanofillers content from 0.0 to 0.8 wt.% and slight decrease at 1.0 wt.%. The reinforcing
effect and a better dispersion are the main contributions that influenced the quality of
the XLPE/LDH-Al2O3 nanocomposite tensile properties and the molecular chain bonds
rarely broken [41].

Table 1. This mechanical properties of XLPE/LDH-Al2O3 nanocomposite.

LDH-Al2O3
(Wt.%)

Mechanical Performance of the Nanocomposite

Tensile Strength
(MPa)

Young’s Modulus
(MPa)

Elongation at Break
(%)

0.0 15.5 ± 0.7 140.8 ± 21.0 484 ± 16
0.2 16.9 ± 0.9 153.7 ± 12.6 510 ± 29
0.5 17.8 ± 0.4 174.3 ± 23.5 581 ± 15
0.8 18.1 ± 0.6 205.0 ± 16.6 633 ± 19
1.0 17.2 ± 0.8 180.4 ± 20.5 563 ± 18

It is intended that the amount of nanofillers reduce the free volume of the XLPE/LDH-
Al2O3 nanocomposites as well as provide a well-distributed morphology and smoother
fracture surfaces. The nano-sized particles provided a large interfacial interaction between
LDH and Al2O3 to XLPE matrix. LDH is suggested to reduce the gaps between Al2O3 and
is fairly connected through the matrix, which creates a network morphology [42]. Hence,
LDH and Al2O3 nanoparticles were forming net structures in the XLPE matrix, improving
the structural stability and enhancing the deformation resistance and shear resistance [40].
In the meantime, there was slight reduction in tensile strength at 1.0 wt.% but the value is
still higher than 0.0 and 0.2 wt.% of XLPE/LDH-Al2O3 nanocomposites.

Meanwhile the enhancement in Young’s modulus could be attributed to the synergistic
stabilisation of LDH and Al2O3 that involves the formation of network morphology and the
reinforcing effect of the LDH-Al2O3 on the nanocomposites. Lei et al. reviewed that hybrid
nanocomposites, specifically from metal oxide and mineral fillers, have a much higher
modulus than polymer matrices [43]. The addition of nanofillers increased the stiffness
of the nanocomposite; consequently, Young’s modulus also increased. The stiffness of the
LDH-Al2O3 nanocomposites changed by crystallinity, which was observed from the DSC
results. This improvement is attributed to the layer silicate structure of LDH, which mainly
contributed to increasing Young’s modulus due to high aspect ratio with large surface area
as compared to Al2O3 nanofillers. As a result, the capability of stress transfer was higher
across the reinforcement and nanocomposites; thus, the applied stress is disseminated by
the interface more evenly [44]. Moreover, the tendency to interconnect and form a network
structure of LDH is larger than in Al2O3 nanofillers [39].

The increasing of elongation at break values of XLPE/LDH-Al2O3 nanocomposites
due to incorporation of a low number of nanoparticles into the nanocomposite improved
the interaction between the molecules by slipping without breaking the samples due to the
nanoparticles being reinforced and oriented along the stress direction resulting in higher
elongation at breaks. However, further addition of LDH-Al2O3 nanofillers to the XLPE
matrix subsequently increased the restriction of mobility on polymer chains; thus, the



Polymers 2023, 15, 1702 13 of 18

elongation at break showed a decrement curve. Notably, this situation is expected in most
polymer nanocomposites [32].

The small amount of LDH-Al2O3 nanofiller provides a huge total interface area and
increases reinforcement efficiency. The reinforcing effect of the small amount of nanoparticle
loadings has huge specific surface area and dramatically larger total interface area for
reinforcement work efficiency. It is shown that, at lower weight percentage, the addition
of LDH-Al2O3 nanofiller in XLPE matrix increases surface interaction bonding between
the molecules. At the high amount of LDH-Al2O3 nanofiller, tensile properties showed
a gradual drop. These experimental results are attributed to the reinforcing effect of the
nanoparticles in which a higher number of nanoparticles reduces the reinforcing effect by
the poor dispersion, agglomeration of nanoparticles, and large volumes of voids. These
agglomerated nanoparticles occur due to the filler–filler interaction being higher than
filler–matrix interaction and acting as stress concentration in nanocomposites. The slight
volume of voids at the interface or trapped in a cluster would make the molecule move
freely; thus, the polymer chains’ mobility slipped past one another and later decreased the
tensile performance [45].

Generally, the addition of nanofillers to most polymer nanocomposites is expected to
reduce the values because of the restriction in chain mobility caused by poor interconnection
between nanofillers and polymer chains [45]. However, the results obtained at 0.8 wt.%
significantly increased the three key mechanical properties, for instance tensile strength,
Young’s modulus and elongation at break. The improvement in mechanical properties
have been correlated with the surface fracture of nanocomposite in Figure 9. Moreover, as
the nanofillers–matrix are located close to each other, the nanofillers surface needs higher
temperature to induce the motion whereas the matrix which is unaffected with nanofillers
surface properties is unchanged [46].

3.4. Morphology of LDH-Al2O3 Nanocomposite

Figure 9 shows cross-sectional morphologies of the XLPE/LDH-Al2O3 nanocomposite
using FESEM. The nanocomposite displays good distribution and shows no obvious visible
agglomeration of hybrid LDH-Al2O3 nanofiller at different weight percentages in XLPE
to a large extent. From the cross-section, surface fracture of the nanocomposite showed
the tendency of nanofillers to aggregate is low. This situation is explained by interfiller
interaction being low compared to nanofiller–matrix interaction due to the different surface
characteristics and different surface energies that belong to hybrid nanofillers. The FESEM
images showed that hybrid nanofillers have great potential to resolve the agglomeration
of nanofillers and the nanocomposite surface was observed to become rougher with the
addition of hybrid nanofiller into XLPE nanocomposites.

3.5. Differential Scanning Calorimetry of XLPE/LDH-Al2O3 Nanocomposite

Table 2 provides the thermal performance of XLPE/LDH-Al2O3 nanocomposite based
on crystallisation temperature (Tc), melting temperature ™, enthalpy (∆Hm), and crys-
tallinity (Xc) of nanocomposite. Both Tm and Tc increased slightly as a result of nanofiller
content of all nanocomposite samples. The Tm and Tc move toward the high temperature
direction, from 107 ◦C to 109 ◦C and 90 ◦C to 94 ◦C, respectively, with the introduction of
LDH-Al2O3 nanofillers. The temperature increment is due to increased interaction between
the XLPE matrix and LDH-Al2O3 nanofillers, which lead from restricted mobility of XLPE
chains to relaxation of the nanocomposite system at higher temperature. Another reason for
increment of about 2 ◦C is attributed to the introduction of LDH-Al2O3 is that it provides
better networking to improve thermal properties [47]. Donghe and Qingyue concluded the
introduction of nanoparticles in XLPE showed two main parameters: first, an increase in
the melting point; second, the ability of crystallisation to slow down due to restriction in
movement of molecular chain segment [40,48].
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Table 2. The DSC analysis of XLPE/LDH-Al2O3 nanocomposite.

LDH-Al2O3
(Wt.%)

Thermal Performance of Nanocomposite

Crystallisation
Temperature

(◦C)

Melting
Temperature

(◦C)

Enthalpy
(J/g)

Crystallinity
(%)

0.0 90.5 107.8 99.31 34.5
0.2 93.7 109.7 124.3 43.2
0.5 93.5 109.5 125.9 43.7
0.8 93.2 109.3 132.8 46.1
1.0 94.5 109.1 101.7 35.3

Based on DSC thermograms in Figure 10a,b, the endothermic recorded during the
second heating cycle and the exothermic curve was recorded cooling from the melt of
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the first heating cycle, respectively. The degree of crystallinity, which can be calculated
using the melting enthalpy with the specific enthalpy melting value for 100% crystalline
PE, was taken as 288 kJ/kg. Note that the slight increase in Tc and Tm from unfilled XLPE
to XLPE nanocomposite ensures that the crystalline region melts and enhances mechanical
properties at relative temperatures [49]. This finding is in agreement with Thomas et al. [50]
stating that DSC results of XLPE nanocomposites had comparable results on Tc and Tm
indicating a low effect of nanofillers on XLPE phase transformations. However, after
analysing the value of the Xc, it can be seen that the incorporation of LDH-Al2O3 to XLPE
caused the Xc to increase. It was also that with the addition of LDH-Al2O3 content, an
explicit decrease in the Xc was observed but still higher than the unfilled XLPE [3].
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4. Conclusions

The incorporation of hybrid LDH-Al2O3 nanofiller into XLPE matrix has success-
fully improved the dielectric properties of PD and AC breakdown voltage without
sacrificing the mechanical properties of the nanocomposites. Based on the amount of
hybrid nanofiller, the 0.8 wt.% showed the potential hybrid loading of XLPE/LDH-Al2O3
nanocomposites. The dielectric properties were enhanced, with PD magnitude reducing
to +1384, −638 and the PD number being reduced to 30,027, whereas the mechanical
properties exhibit the highest tensile strength, Young’s modulus, and elongation at break
of 18.1 MPa, 205 MPa, and 633%, respectively. Moreover, the formation of a strong inter-
phase region was promoted by the balance effect of morphological features of the hybrid
network of each component with no visible agglomeration. It was found that increasing
the crystallinity slightly improved the thermal properties of the hybrid nanocomposite
in this study. The outcomes of this work provide further guidance for the design of
high-voltage direct current insulation materials.
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